ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis

Giorgio Perrella*, Mhairi L. H. Davidson*, Liz O’Donnell*, Ana-Marie Nastasea,b, Pawel Herzyk*a,b, Ghislain Bretonc,1, Jose L. Pruneda-Paz*c, Steve A. Kayc,2, Joanne Choryd,e, and Eirini Kaiserli*a,d,3

*Institute of Molecular, Cell and Systems Biology, University of Glasgow, G128QQ Glasgow, United Kingdom; aGlasgow Polymers, University of Glasgow, G611QH Bearsden, United Kingdom; bSection of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; cPlant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and dHoward Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037

Edited by Christian Fankhauser, University of Lausanne, 1015 Lausanne, Switzerland, and accepted by Editorial Board Member Caroline Dean March 24, 2018

(received for review October 17, 2017)

Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana. Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light–dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.


The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The sequences reported in this paper have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus database and Sequence Read Archive series (accession no. GSE112889).

www.pnas.org/cgi/doi/10.1073/pnas.1718099115

Published online April 23, 2018.

Search PNAS

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.

Significance

Light coordinates energy production, growth, and survival throughout plant development. In Arabidopsis, light stimulates transcriptional reprogramming during developmental transitions such as photomorphogenesis and flowering through the action of photoreceptors, transcription factors, and signaling components. Here we assign a function to a member of the zinc-finger homeodomain (ZFHD) transcription factor family in regulating light-induced development. Our findings reveal ZFHD10 to be a missing link in understanding how the recently discovered integrator of light and photoperiodic flowering, TANDEM ZINC-FINGER PLUS3 (TZP), controls the expression of growth-promoting transcriptional regulators via direct association with light-regulated promoter elements. Elucidating how such novel protein complexes coordinate gene expression will allow scientists and breeders to optimize plant growth and development in response to unfavorable environmental conditions.
zinc-finger homeodomain (ZFHD) TF family. ZFHD10. Arabidopsis contains 14 ZFHD family members with limited information on their molecular function in shaping plant growth, patterning, and organ development, contrary to the well-established role of the closely related HD-ZIP TFs (22–25). Our genome-wide ChiP studies and quantitative transcript analysis reveal that TZP and ZFHD10 associate with common promoter elements of transcriptional regulators, light-responsive and growth-promoting genes required for hypocotyl elongation. Moreover, our study assigns a role for ZFHD TFs in light-regulated plant development via a direct interaction with TZP.

Results

TZIP Interacts with a Member of the ZFHD Transcription Factor Family.

TZIP contains two ZF domains and a PLUS3 domain, all of which have potential nucleic acid binding activity; however, there is no evidence suggesting that these domains confer transcriptional activation or repression activity (8, 19, 26–28). To investigate the molecular role of TZP in regulating transcriptional control of gene expression, a large-scale directed yeast–two-hybrid screen was performed using a gold standard TF ORFeome library (29) with TZP as the bait (SI Appendix, Fig. S1B). Nine putative TZIP-interacting TFS were identified and verified, seven of which were members of the TEOSINTE BRANCHED 1/CYCLEDEA/Proliferating Cell Nucleic Acid Antigen Factor (TCP) TF family, one abscisic-acid-responsive NAC TF (ANAC), and one ZFHD TF (SI Appendix, Fig. S1 B and C). No autoactivation was observed for either the bait (TZP) or the positive prey TFS (SI Appendix, Fig. S1 A and D). The strongest interaction was observed between TZP and ZFHD10 (Δ5g39760), a member of the ZFHD TF family, which became the central focus of this study (Fig. L4 and SI Appendix, Fig. S1 B and C).

Deletion analysis revealed that the ZF of ZFHD10 is sufficient to associate with the ZFPLUS3 and PLUS3 domains of TZIP (Fig. 1 B and C and SI Appendix, Fig. S1E). ZFHD10 showed homodimerization properties through the ZF (CHCCH2) motif consistent with a previous report (SI Appendix, Fig. S1F) (22). No interaction was observed between TZP and ZFHD9, the closest ZFHD family member to ZFHD10 or the homeodomain-leucine zipper (HD-ZIP), ATTH23, recently shown to interact with phyB (SI Appendix, Fig. S1G) (30).

To validate the interaction between TZP and ZFHD10 in planta, we used bimolecular fluorescence complementation (31, 32). C-terminal translational fusions of ZFHD10-nYFP (spyNe) and TZIP-cYFP (spyCe) showed reconstitution of YFP fluorescence in the nucleus when coexpressed transiently in Nicotiana benthamiana epidermal cells, whereas no signal was detected for the expression of TZIP-cYFP or ZFHD10-nYFP with the empty vector controls (spyNe and spyCe, respectively; Fig. 2A and SI Appendix, Fig. S2C). Colocalization studies also confirmed that TZIP-mCherry and ZFHD10-GFP reside in the nucleus in light-grown plants (Fig. 2B). In planta coimmunoprecipitation (co-IP) was also performed to further verify the interaction between TZIP-GFP and ZFHD10-RFP (Fig. 2C and SI Appendix, Fig. S2D).

Overall, these data demonstrate that TZP and ZFHD10 interact in yeast and in planta.

TZIP and ZFHD10 Promote Hypocotyl Elongation.

qRT-PCR showed that ZFHD10 is abundant in seedlings primarily when grown in blue light, which correlates with the expression pattern of TZIP, whereas no correlation was observed for ZFHD9 (SI Appendix, Fig. S3 D–G). No significant diurnal regulation was observed for ZFHD10 transcript or protein abundance in transgenic lines expressing 35Spro::ZFHD10-GFP/Col-0 (OXZFHD10) (SI Appendix, Fig. S3C) (33, 34). A closer look at seedlings revealed that TZIP and ZFHD10 are present in the cotyledons as well as the hypocotyl, with an increase in abundance in the hypocotyl apex (SI Appendix, Fig. S3I and refs. 35 and 36). TZP is also highly expressed in roots (SI Appendix, Fig. S3 F and H and ref. 37), suggesting a potential role in other tissues.

To further explore the physiological significance of TZIP-ZFHD10 interactions, we examined the photomorphogenic phenotypes of knockdown and overexpressing lines for ZFHD10 and TZIP (Fig. 3 and SI Appendix, Figs. S3 A and B, S4, and S5 A and B).

Fig. 1. Identification of ZFHD10 as an interacting partner for TZIP using a genome-wide Arabidopsis TFL library. (A) Yeast-two-hybrid analysis of pDEST32-TZIP (GAL4BD-bait) and pDEST22-ZFHD10 (GAL4AD-prey) interactions by assessing growth on nonselective media (L/W), selective media (L/W H’ 100 mM 3-AT), or the x-galactosidase assay. pD02, pDEST22; pD03, pDEST32; 3-AT, 3-aminol-1,2,4-triazole. (B) Schematic representation of TZIP and ZFHD10 domain composition as a guide for the deletion constructs used for the interaction studies shown in 1C and SI Appendix, Figs. S1 E and F. (C) Deletion analysis of the interaction between TZIP and ZFHD10. Yeast-two-hybrid analysis of pDEST32-TZIP, pDEST32-TZIPplI, pDEST32-TZIPplus (GAL4BD-bait), pDEST22-ZFHD10, pDESTD22-ZFHD10plI, pDESTD22-ZFHD10plus (GAL4AD-prey) interaction, using the quantitative β-galactosidase assay. Data shown are representative of three independent experimental repeats.

Fig. 2. TZIP colocalizes and interacts with ZFHD10 in planta. (A) Bimolecular fluorescence complementation assay shows YFP reconstitution between TZIP-spyCe and ZFHD10-spyNe when coexpressed transiently in N. benthamiana leaves. (Negative and positive controls are shown in SI Appendix, Fig. S2C.) (B) Representative images of N. benthamiana leaves coexpressing TZIP-mCherry and ZFHD10-GFP. (C) Coimmunoprecipitation of TZIP-GFP and ZFHD10-RFP coexpressed transiently in N. benthamiana. Single infiltration of TZIP-GFP or ZFHD10-RFP were used as negative controls. Plants were grown in white light before examination using confocal microscopy and coimmunoprecipitation. Data shown are representative of three independent experimental repeats. (Scale bars, 20 μm.)
It has previously been shown that overexpression of TZP promotes hypocotyl elongation, whereas a premature stop codon within the TZP locus in Bay-0 results in shorter hypocotyls primarily in response to blue light (19). Hypocotyl elongation measurements showed that OXZFHD10 phenocopies OXTZP in response to blue-light irradiation, whereas tzp and zfhd10 knockout/knockdown mutants exhibited shorter hypocotyls relative to the wild-type (Col-0), OXTZP, and OXZFHD10, primarily under low fluence rate blue light (Fig. 3A and B and SI Appendix, Fig. S5A and B) (19). We also generated and examined transgenic lines overexpressing TZP in the zfhd10 background, and although they showed partial rescue of the mutant zfhd10 phenotype, they never reached the level of elongation demonstrated by OXTZP/Col-0 (Fig. 3B). Overexpression of ZFHD10 in the absence of functional TZP (OXZFHD10/Bay-0) showed rescue of the short hypocotyl Bay-0 phenotype (SI Appendix, Fig. S6). These observations suggest that TZP requires, at least in part, ZFHD10 for function and positions ZFHD10 downstream of TZP action with regard to blue-light-regulated hypocotyl elongation.

**ZFHD10 and TZP Regulate Common Growth-Promoting Gene Targets.**

TZP is known to regulate the expression of growth-promoting genes based on microarray analysis (19). At this time, there is no report of transcriptional targets for ZFHD10. Because ZFHD10 interacts with TZP and regulates hypocotyl elongation, we were interested in examining whether ZFHD10 controls the expression of TZP-regulated growth-promoting genes (19). Indeed, ZFHD10 induces the expression of ATHB2, LONG HYPOCOTYL IN FAR-RED (HFR1), XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 17 (ATXTH17), and PIF7, as shown by qRT-PCR analysis performed on 7-day-old seedlings irradiated with low blue light (Fig. 3C and SI Appendix, Fig. S5C). ATHB2 is an HD-ZIP TF that promotes hypocotyl growth under low-light conditions and in response to auxin (38–40). HFR1 is a non-DNA-binding bHLH TF that associates with PIF TFs to regulate stem elongation in response to far-red, blue, and shade (38, 41–43). ATXTH17 is a light-induced plant cell wall enzyme essential for growth promotion in response to light and hormones (44, 45). PIF7 is known to accumulate in response to light and interacts with phyB to promote plant growth in response to shade (4, 46, 47). An increase in the expression of these genes and the function of the proteins they encode has been associated with light-regulated hypocotyl elongation (19).

OXTZP and OXZFHD10 show increased transcript levels of the aforementioned genes, whereas tzp and zfhd10 mutants show partial reduction in their expression (Fig. 3C and SI Appendix, Fig. S5C). Collectively, TZP and ZFHD10 show a similar trend in the regulation of the expression of well-characterized genes, which directly correlate with the hypocotyl phenotypes described earlier.

To test whether TZP and ZFHD10 could directly control transcription by associating with the promoter regions of the genes they coregulate, we performed ChIP assays followed by qPCR. TZP associates preferentially with the transcriptional start site (TSS) of ATHB2, ATXTH17, and PIF7 and with the G-box (CACGTT), a well-characterized light-regulated element, of HFR1 (Fig. 4 and SI Appendix, Fig. S5D). No significant enrichment was observed for the 3′ untranslated region, the LAA1 promoter, or Col-0 (Fig. 4). ZFHD10 showed a similar pattern of preferential binding to the TSS of ATHB2, PIF7, as well as the first G-box and TSS of HFR1 (Fig. 4 A, B, and D and SI Appendix, Fig. S5D). ZFHD10 showed no enrichment on two canonical ZFHD binding sites on the ATHB2 promoter, whereas binding was observed on the HUD element (Hormone Up at Dawn) of ATXTH17 (Fig. 4 B and C and SI Appendix, Fig. S5D) (19, 22, 33, 48).

We previously showed that TZPPLUS is sufficient for binding nonspecific ssDNA in vitro, so we were interested in investigating whether the interaction of TZP with ZFHD10 confers sequence specificity and guides TZP to specific promoter sequences (8). ChiP-qPCR on transgenic plants expressing equal protein levels of TZP-GFP in Col-0 and zfhd10 showed a considerable decrease in the recruitment of TZP on HFR1, ATHB2, and ATXTH17 promoters (Fig. 5 and SI Appendix, Fig. S5E). These results...
suggest that ZFHD10 is important for recruiting TZP on specific promoter sequences.

**TZP and ZFHD10 Associate with Common Chromatin Regions Enriched in Light-Responsive Elements.** In addition to examining whether TZP and ZFHD10 regulate and bind to promoters of genes known to be involved in light-regulated hypocotyl elongation, an unbiased genome-wide approach was also performed using ChIP coupled to next-generation sequencing on 7-day-old GFP-tagged transgenic lines irradiated with low blue light. Bioinformatics analysis on data obtained by ChIP sequencing revealed that TZP and ZFHD10 preferentially associate with promoter regions, as Fig. 5. ZFHD10 is important for the recruitment of TZP on light-regulated promoters. (A) Western blot analysis of TZP protein levels in OXTZP/Col-0 and OXTZP/zfhd10-1 transgenic lines. Col-0 was used as a negative control for the anti-GFP antibody, and UGPase was used a loading control. Relative enrichment of TZP on HFR1 (B), ATHB2 (C), PIF7 (D), and ATXTH17 (E) loci when expressed in Col-0 or zfhd10 mutant background. Col-0 and the 3′ untranslated region were used as negative controls. Seedlings were grown for 7 d under blue light (1 μmol m⁻² s⁻¹). Bars are means ± SE (n = 4 technical replicates). Graphs shown are representative of two independent experimental repeats. An independent experimental repeat is shown in SI Appendix, Fig. S5E. G-box promoter element; HUD, Hormone Up at Dawn promoter element (CACATG); ZfHD, Zinc finger Homeo-Domain binding site TAAATTG.

**Fig. 4.** TZP and ZFHD10 associate with common genomic regions of growth-promoting genes. (A–D) Relative enrichment of TZP and ZFHD10 on HFR1, ATHB2, ATXTH17, and PIF7 loci. Col-0, a region in the 3′ untranslated region of each locus, and the IAA1 promoter were used as negative controls. Seedlings were grown for 7 d under blue light (1 μmol m⁻² s⁻¹). Bars are means ± SE (n = 4 technical replicates). Graphs shown are representative of three independent experimental repeats. An independent experimental repeat is shown in SI Appendix, Fig. S5D. G, G-box promoter element; HUD, Hormone Up at Dawn promoter element (CACATG); ZfHD, Zinc finger Homeo-Domain binding site TAAATTG.
80% and 50% of ZFHD10 and TZP genomic binding sites, respectively, were within 1 kb of the TSS of gene loci (Fig. 6A). Data analysis using stringent parameters revealed a significant amount of promoter regions corresponding to 1,137 genes bound by both TZP and ZFHD10 (Fig. 6B and Dataset S2). The number of targets bound exclusively by ZFHD10 (5,587) was higher than the number identified for TZP (1,439), possibly because ZFHD10 has a canonical DNA-binding domain (HD), whereas TZP may associate with specific promoters indirectly via binding to TFs (Fig. 6B).

De novo analysis of consensus motifs enriched within the promoter-binding peaks of TZP and ZFHD10 identified well-characterized light-, temperature-, and circadian-regulated elements such as the G-box (CACGTG), which is a variation of the E-box, and the SORL1P2 (Sequence Over-represented in Light-Induced Promoters; TGGGGCC) (Fig. 6C) (3, 49–51). Furthermore, peaks specifically bound by ZFHD10 showed over-representation of the transcriptional initiator TATA-box (TATATATA). Recent studies have highlighted the significance of interactions between the TATA-box and cis-regulatory light-responsive promoter elements in activating gene expression in plants (52).

To verify the results obtained by ChIP-seq (Fig. 7 A, D, and G), we performed ChIP-qPCR on selected genomic targets that showed binding by both TZP and ZFHD10 (Fig. 7 B, E, and H). ChIP of seedlings expressing TZP-GFP and ZFHD10-GFP exposed to low blue light showed enrichment in the promoter regions of Arabidopsis Auxin Response Factor (ARF6), the histone-lysine N-methyltransferase Suv4-20h1 (SUVR1) and EARLY FLOWERING 4-LIKE (EFL4; Fig. 7 B, E, and H).

In Arabidopsis, Suv4-20h1 promotes transcriptional gene silencing by forming a complex with SINE2-related chromatin-remodeling proteins that modify nucleosome positioning at RNA-directed DNA methylation-dependent and independent loci (53). EFL4 has 44% sequence identity to ELF4, a protein that regulates phyB-mediated seedling deetiolation in response to red light as well as diurnal regulation and flowering time (6, 54). ARF6 is involved in regulating hypocotyl elongation and flower development (55–57). Recent studies have shown that ARF6 interacts with PIF4 and BZR1 and coregulates genes that promote hypocotyl elongation in response to light, hormones, and temperature (55). Overexpression of TZP leads to a higher induction of ARF6, SUVR1, and EFL4 transcripts than OXZFHD10, even though ZFHD10 showed a greater enrichment on these loci (Fig. 7 C, E, F, H, and I). ChIP experiments on ZFP/zhed10 lines showed a reduction in TZP enrichment on Suvr1 and Efl4 promoters (SI Appendix, Fig. S8 B and C). However, no difference in TZP binding is observed for ARF6 (SI Appendix, Fig. S8 A and J). This study could be bound by separate TZP and ZFHD10 protein complexes. Furthermore, zpf and zhed10 mutants showed down-regulation of SUVR1 and, to a lesser extent, EFL4 and ARF6 transcripts (Fig. 7 C, F, and I). These observations could be a result of additional TZP-interacting proteins and photoreceptor pathways regulating the expression of these genes.

Gene ontology analysis of common promoter targets of TZP and ZFHD10 showed enrichment in TFs (LFY, CCA1, members of the AGAMOUS-like, Dof ZF, WRKY, TCP, ZFHD, and HD-ZIP TF families), transcriptional regulators (ORIGIN OF REPLICATION COMPLEX 1B, NUCLEAR RNA POLYMERASE 1), chromatin remodeling enzymes [HISTONE DEACETYLASE 2 and 19 (HDA2, HDA19), HISTONE MONOUBIQUITINATION 1 (HUB1)], E-box and RNA-binding proteins (splicing factor, poly-A binding proteins, RAD5, MEDIATOR 7), and hormone response factors (ETHYLENE RESPONSE FACTOR 10, EIN3-BINDING F-BOX), suggesting an active role in the transcriptional regulation of gene expression in response to environmental, biotic, abiotic, and endogenous stimuli (SI Appendix, Fig. S9 A and Dataset S3).

Promoter regions exclusively associated by TZP show a huge over-representation in proteins involved in transcription such as C2H2-ZF, WRKY, bHLH, and MYB TFs, as well as TOPLESS-related, brassinosteroid (BZR1 and BZR-like homolog), clock (PRR9 and PRR5), flowering (VIN3-like, FLD, SPATULA), and light signaling components (PIF4, PIL6, PAP2, phyE, cry2, CIB1, SPA4), reflecting its involvement in regulating gene expression in response to environmental stimuli such as light and temperature (Fig. 7B, D, and F). On the contrary, ZFHD10-specific targets were enriched in RNA processing factors as well as proteins involved in salt stress and ABA signaling, in addition to embryo development (SI Appendix, Fig. S9 C). Overall, our findings show that TZP and ZFHD10 coassociate with and regulate the expression of not only light-regulated loci but also transcriptional regulators to shape plant development in response to environmental stimuli.

Discussion

Plant growth and development are coordinated through the action of multiple light, hormone, and photoperiodic pathways. This study focuses on uncovering the molecular role of TZP, a signal integrating component, in promoting hypocotyl elongation in response to low blue light.

To elucidate how TZP promotes growth and regulates gene expression during the early stages of plant development, we screened for TF-interacting partners for TZP, using a large-scale, directed Y2H approach. Nine proteins exhibited positive interactions of various strength with TZP, seven of which were members of the TCP TF family (TCP8, TCP9, TCP12, TCP15, TCP20, TCP22, TCP25) and one ANAC TF (ANAC87, SI Appendix, Fig. S1 B). TCP TFs regulate many aspects of plant development, including circadian rhythms and photoperiodic flowering (58–60). However, in this study, we focus on the characterization and functional significance of the strongest TZP interactors, which is a member of the ZFHD family (Fig. 1).

Homebox TFs have key functions in shaping animal and plant development (25). In Arabidopsis, there are more than 100 proteins that contain DNA-binding HDs. The HD-ZIP class of TFs is one of the most well-characterized classes of HD-containing proteins with major roles in hormone and light-regulated developmental responses (24, 39). A unique combination of ZF and HD modules has given rise to the plant-specific ZFHD class of TFs originally discovered in the C4 plant Flaveria benthamiana (58). This study identifies the TCP TFs, TCP8, TCP9, TCP12, TCP15, TCP20, TCP22, TCP25, and one ANAC TF (ANAC87, SI Appendix, Fig. S1 B) as potential interactors of TZP. Among these, TCP12 and TCP15 are known to regulate hypocotyl growth in response to blue light (25, 45). Further, the TCP family member TCP20 is involved in regulating cell division and expansion in both the root and shoot (32). TCP9, another member of the TCP family, is known to regulate stem cell maintenance and lateral organ development (45). These results suggest that TZP may interact with TCP TFs to promote hypocotyl elongation in response to blue light.

In addition to TCP TFs, the study also identifies members of the WRKY, MYB, and bHLH TF families as potential interactors of TZP. WRKY TFs are known to regulate stress and defense responses in plants (61). MYB TFs are involved in flower development and lateral organ formation (62). bHLH TFs play a crucial role in regulating cell fate and differentiation (63). The identification of these TF families as potential interactors of TZP suggests that TZP may interact with these TFs to regulate a wide range of developmental processes in response to environmental stimuli.

The study also identifies TFs involved in hormone signaling as potential interactors of TZP. Arabidopsis possesses a complex hormonal signaling network that regulates various aspects of plant growth and development (64). The TFs identified in this study, such as MYB and bHLH TFs, are known to interact with hormone signaling pathways, suggesting that TZP may interact with these TFs to regulate hormone-dependent developmental processes.

Overall, this study provides valuable insights into the molecular role of TZP in promoting hypocotyl elongation in response to low blue light. Understanding the interaction partners of TZP may shed light on the mechanisms by which this TF regulates plant growth and development in response to environmental stimuli. Further experimental validation and analysis of these interactions are necessary to fully understand the role of TZP in plant development.
Seminal reports on specific *Arabidopsis* ZFHDs clearly support their action as transcriptional regulators of drought tolerance and flower development via direct DNA binding through the HD (22, 48). However, there is no current study characterizing the function of ZFHD10 or the role of ZFHDs in light signaling and photomorphogenesis.

ZF domains are highly conserved and act as sites for protein or nucleic acid association (28). In the case of ZFHD10 and TZP, deletion analyses showed association through ZFPLUS3 (TZP)–ZF(ZFHD10) interactions (Fig. 1B and C). There is no evidence suggesting that ZFHDs bind DNA as dimers or monomers. It would be interesting to further investigate whether the interaction of TZP with ZFHD10 interferes with the homodimerization status of ZFHD10 or its heterodimerization with other ZFHD TFs.

Our in planta studies (colocalization, co-IP, hypocotyl measurements) verify that the interaction between TZP and ZFHD10 is physiologically significant and reveal a function for ZFHD10 as a positive regulator of hypocotyl growth in response to low blue light (Figs. 2 and 3A and B and SI Appendix, Fig. S5B). To dissect the molecular mechanism of TZP and ZFHD10 function, we performed gene expression analysis and discovered coregulation of key genes involved in light-induced hypocotyl elongation and showed that ZFHD10 guides TZP to light-regulated promoter sequences (Figs. 3C, 4, and 5B–E and SI Appendix, Fig. S8B).
Arabidopsis compared with Col-0, suggesting that cry1 and phyA (6, 8).

TZP and ZFHD10 downstream of the clock and the photoreceptors. TZP and ZFHD10 directly interact through their ZF domains, respectively. ZFHD10 recruits TZP to light-regulated promoter elements (G-box, SORLIP), and they act in concert to control the expression of growth-promoting transcriptional regulators in response to blue light (LBL). Whether TZP and ZFHD10 act cooperatively or independent of the PIF TFs remains to be investigated.

Materials and Methods
Plant material and growth conditions are described in SI Appendix, SI Materials and Methods. The ProQuest Two-Hybrid System (Invitrogen) was used to identify and verify direct interactions between TZP (bait, pDEST32) and a library of TFs (prey, pDEST22) by sequential transformation of the yeast strain MaV203. Construction of the pDEST22-TF library screened has been described previously (29). For more information, please see SI Appendix, SI Materials and Methods. Protein extraction and Western blot analysis are described in SI Appendix, SI Materials and Methods. Transient protein expression in N. benthamiana using Agrobacterium-mediated infiltration was performed as previously described (8). Coimmunoprecipitation was performed using the μMACS GFP Tag Protein Isolation Kit (Miltenyi Biotech), using 500 μg total protein extracted as described for Arabidopsis (6, 8). Confocal microscopy was performed with Leica SP2 and SP8 inverted microscopes, and image analysis was performed as described previously (8). Representative images from three independent biological repeats are shown in this study. Transient expression and imaging in N. benthamiana was performed as described previously (32). Cloning and genotyping strategies are described in SI Appendix, SI Materials and Methods. Quantitative RT-PCR and ChIP assays were performed as described previously, with minor modifications (8, 71). SI Appendix, SI Materials and Methods. Next-generation sequencing and analysis of the ChIP DNA was carried out in the Glasgow Polymics Facility (University of Glasgow). Raw data, analysis, and gene ontology studies can be accessed in SI Appendix, SI Materials and Methods (Datasets S2 and S3). A complete list of primers used for genotyping, qRT-PCR, cloning, and ChiP-qPCR are listed in SI Appendix, SI Materials and Methods and Dataset S1. Accession numbers of Arabidopsis genes that are the main focus of this study are AT5g43630 (Tzp) and AT5g39760 (ZFHD10).

ACKNOWLEDGMENTS. We are grateful to Prof. Olivier Loudet (French National Institute for Agricultural Research, Versailles) for sharing the original 41AV and Bay-0 seeds. Many thanks to Prof. John M. Christie for critically reading the manuscript. We are indebted to Dr. J. Stuart Sullivan for providing the RNA from basal and apical hypocotyl segments. E.K. is indebted to the John Grieve Bequest for supporting her lectureship in biochemistry and the UK Biotechnology and Biological Sciences Research Employment Conditions of Service. We have in this study. We are grateful to Prof. Olivier Loudet (French National Institute for Agricultural Research, Versailles) for sharing the original 41AV and Bay-0 seeds. Many thanks to Prof. John M. Christie for critically reading the manuscript. We are indebted to Dr. J. Stuart Sullivan for providing the RNA from basal and apical hypocotyl segments. E.K. is indebted to the John Grieve Bequest for supporting her lectureship in biochemistry and the UK Biotechnology and Biological Sciences Research.
Hughes Medical Institute. E.K. was supported by fellowships from the Council for New Investigator Grant BB/M023079/1. The early stages of this work were supported by NIH Grant R01-GM52413 and the Howard Hughes Medical Institute (to J.C.). J.C. is an investigator at the Howard Hughes Medical Institute. E.K. was supported by fellowships from the Human Frontier Science Program (LT000159), the Sail Institute (Pioneer Fund, Kirby and Stern Foundations), and the University of Glasgow (Lord Kelvin Alliance for Research Fellowships with P.P.-P., and S.A.K. acknowledge support from the NIH (R01 GM050006 and GM067837 to S.A.K.). M.L.H.D. is funded by a College of Medical, Veterinary, and Life Sciences PhD studentship from the University of Glasgow.


