This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/159008/

Deposited on: 11 April 2018

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Review of active noise control techniques with emphasis on sound quality enhancement

Jiguang Jianga,b*, Yun Lic

a School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China

b Experimental Education Center of Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China

c School of Engineering, University of Glasgow, Glasgow G12 8LT, UK

* Corresponding author email: jiangjiguang@cust.edu.cn

ABSTRACT:

The traditional active noise control design aims to attenuate the energy of residual noise, which is indiscriminative in the frequency domain. However, it is necessary to retain residual noise with a specified spectrum to satisfy the requirements of human perception in some applications. In this paper, the evolution of active noise control and sound quality are briefly discussed. This paper emphasizes on the advancement of active noise control method in the past decades in terms of enhancing the sound quality.

KEY WORDS:

Sound quality;
Active noise control;
Filtered-x least mean squares;

Adaptive noise equalizer;

Artificial neural networks;

Frequency selective least mean squares.
1. Introduction

Industrial noise, which becomes increasingly evident with the increased number of industrial equipment, affects the health of the human hearing, digestive system, nervous system, endocrine system, etc. [1, 2] People have understood the harmful of noise pollution, and countries worldwide have formulated strict norms for industrial noise control. In these norms, the sound power and A-weighted noise levels are usually used to measure the noise, but they are not adequate to characterize the perception of a listener [3]. The underlying concept of sound quality (SQ) is the accurate interference of human perception and was proposed by Blauert in 1994[4].

The character of sound that relates to acceptance is called sound quality, which has played a large role in determining satisfaction [5]. With the development of noise control technologies, sound quality research, which focuses on how people cognize, assess and improve noise, has gained attention, particularly in the fields of automobile, transportation and electric appliance industries worldwide [6].

1) Automobile: Noise studies originated from the automobile industry in Europe and America in the mid-1980s. The main theoretical and experimental works on the human perception of sound quality were conducted by companies of AVL LIST [7], Honda [8], Delphi [9], Ford [10], GM [11], etc. Many automobile companies optimized the design of their products based on those research data [12-14].

2) Transportation: Researchers also discussed the effects of the sound quality in aircraft [15], cabin [16], train [17] and maglev trains [18].

3) Electric appliances: The studies focused on air-conditioner, refrigerator,
washing machine and mobile phone [19-21].

4) Other SQ studies: Involving experiments and applications are introduced in [22-25].

Noise control can be classified into two types of methods: passive and active. The passive noise control (PNC) method mainly reduces the noise by vibration absorption, sound absorption and sound insulation with damping materials by using the interaction between sound and materials, and the sound energy can be transformed into other forms of energy to reduce noise [26].

![Diagram of sound wave control](image)

Fig. 1. Schematic diagram of Yaug’s interference principle of sound wave control for (a) sinusoidal wave and (b) complex wave

The active noise control (ANC) method artificially adds a secondary source in the noise control process using Yaug’s interference principle of sound wave to control the original noise as shown in Fig. 1. Compared with passive control, the active control methods have obvious benefits. First, the control system parameters can be targeted to design or change based on different characteristics of the noise. Second, the active control method has better control effect on low-frequency noise and effectively remedies the problem of low-frequency noise reduction effect [27]. Finally, the active noise controller has the advantages of flexibility, low cost, and convenient
installation; more importantly, it does not negatively affect the machine's structure and performance. The rapid development of large-scale integrated circuits and advancement of active control technologies have facilitated many successful implementations of ANC [28].

The active control method was proposed by Lueg in 1936 and applied for the process patent of acoustic-oscillation elimination in the United States [29]; this patent is considered the starting point of the development of active noise control technology. In 1953, the first active noise control device, which was called "electronic sound absorber", was designed in the United States of America. This system consisted of a loudspeaker, an amplifier, and a microphone, and its target was to reduce the sound pressure level near the microphone [30].

In the late 1950s, the acoustic field analysis technology was not mature, and the development of electronic technology was relatively slow. The active control technology was in a relatively quiet stage for a relatively long period of time until the 1980s. With the rapid development of digital signal processing and large-scale integrated circuit technology, the practical active noise control technology began to rapidly develop [31]. Scientists in the United Kingdom first introduced the method of active noise control in automobiles and aircraft cabins [32]. The least-mean-square (LMS) algorithm of channel filtering was used to study interior noise in Japan, and the active noise control model was established [33]. In the United States of America, the detailed study and experiment of noise caused by engine vibration and road surface excitation were conducted by Jerome Couche, and the noise reduction of 6.5 dB was
achieved in the range of 40-500 Hz [34]. Several prominent works on the development of ANC technology have been reported in the last three decades, such as the filtered-x least-mean-square (FxLMS) algorithm [35], genetic algorithm (GA) [36], functional link artificial neural network (FLANN) [37], simplified hyper-stable adaptive recursive filter (SHARF) algorithm [38] and frequency selective least-mean-square (FSLMS) algorithm [39].

In recent years, many research groups attempted to improve the noise sound quality using adaptive active noise control (AANC) methods. In Müller-BBM company, the experiment was performed on an AANC system, which was installed on a vehicle. The engineers found that the sound pressure level and loudness value (an objective parameter of SQ) of the interior noise significantly decreased [40]. Spanish researchers conducted the engine noise active control in the lab, analyzed the psychoacoustic parameters, evaluated subjective evaluation results, and found that the reduction in sound pressure level did not necessarily reduce the annoyance of passengers to the engine noise, which was also related to the spectral characteristics of the noise [41, 42]. More theoretical studies on ANC systems to improve the sound quality were reported in [43–45].

ANC and sound quality studies have made significant progress in the last 30 years, and several relevant review papers have been published [46–50]. Unlike the published reports, this paper aims to survey the development of ANC technology with an emphasis on SQ enhancement. The paper is organized as follows. A brief review of the concept of SQ and its evaluation methodology, which includes the subjective
evaluation and objective evaluation, are discussed in Section 2. ANC methods in the field of SQ enhancement are studied in detail in Section 3. ANC schemes based on the selective attenuation method are briefly presented in Section 4. The conclusions are drawn in Section 5.

2. Sound quality evaluation

The concept of sound quality indicates that the noise control is not simply to reduce the pressure level of sound, but more importantly, the products can be adjusted according to the subjective feeling of the consumers. The most popular approaches to determine the sound quality of a product can be broadly classified into two domains: subjective and objective evaluations [51, 52]. The former emphasizes that sound can be subjective and sensitive for a person; the latter expresses the sound in terms of an objective numerical value such as the physical acoustics and psychological acoustics [53]. In addition to the frequency and intensity, other psychoacoustics factors should be considered.

2.1 Objective evaluation

Psychoacoustic parameters are used to describe different noises caused by the different subjective feelings about objective physical quantities. In the objective test, there are four international general main parameters: loudness, sharpness, roughness and fluctuation strength [54, 55].

The loudness describes the degree of psychological perception of sound in the hearing. The main methods to calculate the complex noise loudness were independently developed by Stevens and Zwicker [56, 57]. The former is suitable for
the diffusing sound field, whereas the latter fits the diffusion and free sound field conditions. The sharpness represents the auditory perception related to the spectral correlation of the sound, the calculation model was introduced by Bismarck and Aures [58, 59]. The roughness reflects the auditory perception characteristic related to the frequency modulation, amplitude modulation and sound level for the sound with a frequency of 20-200 Hz [60]. The calculation model of roughness was introduced by Aures [61]. The fluctuation strength is suitable for the evaluation of sound signal for low-frequency modulation below 20 Hz; it reflects the relief intensity of loudness for the subjective feeling of ears. The calculation model of fluctuation strength was proposed by Fastl and Zwicker [62].

2.2 Subjective evaluation

The subjective perception test is an essential procedure to obtain the sound quality character of sound events and develop parametrical models that describe the sound quality quantities [63]. Two methods are commonly used [55, 64]. The Semantic Differential (SD) method which was created by Osgood in 1957 [65], offers a quick mean to measure people’s attitude and the emotional connotation of concepts. A series of semantic differential indices was studied, which include safe-unsafe, like-dislike, quiet-boisterous, friendly-unfriendly, close-far and happy-sad [66-68]. This method has been applied to various problems in marketing, personality measurement, clinical psychology, cross-cultural communications, and the hearing perception of sound signals. The Paired Comparison (PC) method which was created by David [69], offers an easy way to present people’s attitude with a sequence of pairs
of sounds A and B. For each pair, people must decide which sound is preferred.

2.3 Relationship between objective and subjective evaluations

The relationship between objective and subjective evaluations is drawn in Fig. 2. To find their relationship, it is useful to calculate the correlation factors and perform a regression analysis [70]. The Sound Quality index (SQI) can be expressed as a linear combination of psychoacoustic parameters by

\[
\text{SQI} = a + b_1 \cdot Ld + b_2 \cdot Sp + b_3 \cdot Rg + b_4 \cdot Fs
\]

where \(Ld \) is the loudness, \(Sp \) is the sharpness, \(Rg \) is the roughness, \(Fs \) is the fluctuation strength, and \(a, b_1, b_2, b_3, \) and \(b_4 \) are undetermined coefficients.

Fig. 2. Schematic evaluation of the Sound Quality

Eq. (1) shows that the SQI is affected by variations of the psycho-acoustic parameters, which is similar to human perception for sound. Currently, the ANC method has become a useful tool to change the psychoacoustic parameters of sound
to actively enhance the auditory qualities of sound fields.

3. Active sound quality control algorithms

ANC has been successfully demonstrated as an effective technique to reduce the unwanted sound for a few decades [28, 71]. The ANC introduces secondary sources, which produce additional noise to control the original source. However, in some applications, it is necessary to retain the residual noise with a specified spectrum [72, 73] because an intentional residual noise can provide better natural feeling. For example, drivers may prefer to enhance the driving experience by hearing the engine and vehicle sound to safely drive the vehicle [74]. Moreover, in some applications, one desires to reduce the sound level and adjust the frequency [75] or balance the amplitudes [43, 76-78] towards the desirable sound quality targets [79, 80]. This approach is known as active sound quality control (ASQC) [43, 77, 78, 81–83], which is a variant of the active noise control method that features a specialized handling algorithmic of the unwanted signal. The ASQC algorithms that have broadly gained attention in the past two decades are reviewed in the following section.

3.1 ANE algorithm

The adaptive noise equalizer (ANE) algorithm, which was proposed by Kuo SM [83, 84], can either attenuate or amplify a predetermined sinusoidal noise [74]. The block diagram of the ordinary narrowband ANE system is shown in Fig. 3 [85], where $P(z)$ is the transfer function of the primary path; β is a gain factor to control the amplitude of initial noise [86]. $x_s(n)$ is a noise reference signal for the initial noise; $e(n)$ is an actual residual noise signal; $e'(n)$ is a virtual error signal, which is used to adjust the
weight coefficient vector using the LMS algorithm.

\[e(n) = d(n) - (1 - \beta)y(n) \] \hspace{1cm} (2)

\[e'(n) = e(n) - \beta y(n) = d(n) - y(n) \] \hspace{1cm} (3)

By introducing \(e'(n) \), the updated weight adaptive algorithm will not change the convergence or divergence of the system. If the system achieves a stable convergence, where \(d(n) \approx y(n) \), the system output can be written as

\[e(n) = d(n) - (1 - \beta)y(n) = \beta y(n) \approx \beta d(n) \] \hspace{1cm} (4)

An advantage of the ANE system is the harmonic signal generator, which can decompose the initial noise signal into several narrowband periodic noise signals with different frequencies by digital filtering and substitutes some harmonic waves of the same frequency. The computer simulation was conducted with \(M=8 \). \(x(n) \) is the sinusoidal signal, the gain values are \(\beta_1 = 0 \) (to cancel the amplitude of \(x(n) \)
completely), \(\beta_2 = 0.5 \) (to attenuate the amplitude of \(x(n) \) by half), \(\beta_3 = 1 \) (to keep the amplitude of \(x(n) \) unchanged) and \(\beta_4 = 2 \) (to amplify the amplitude of \(x(n) \) by 2).

The spectrum of \(e(n) \) presents four results of different gain settings showing that the ANE system can reshape the residual noise [85]. This method reserves some other advantages of the active noise control such as the capability of adaptively tracking the exact phase and frequency of the interference, and easy control of bandwidth.

One year later, Kuo SM extended the narrowband ANE technology to a broadband noise control area [87]. Based on this new technology, Jinwei Feng proposed the self-tuning ANE algorithm [88], which used a nonlinear adaptive gain factor to compress the disturbance noise level to a band limited range [74]. Jinxin Liu and Xuefeng Chen tuned the gain factors of the ANE based on its derivative and estimation of transmissibility to address the mis-equalization problem [89]. Gonzalez, who introduced the common error multiple-frequency ANE and its multichannel version, successfully performed a real-time 2×2 multichannel system for the active spectral reshaping of multi-frequency noise [90].

3.2 FELMS algorithm

The effective noise reduction of the FxLMS algorithm [35] is premised that the initial noise and reference noise signals should contain the identical frequency of the narrowband periodic signal. Thus, the secondary source signal can effectively cancel the initial noise signal based on the waves from the reference noise signal. In fact, the initial noise contains some unrelated signals to the random elements, and these acoustic signals may cause the pass-band disturbance, which can affect the
convergence speed and control performance of the ANC system [85]. A proper introduction of the second adaptive filter is extremely important to weaken the pass-band disturbance [91-93]. Based on the FxLMS [94], an upgraded algorithm called the filtered-error least-mean-square (FELMS) was proposed in the literature [95, 96], which can effectively compensate for the deficiency of the FxLMS algorithm.

Fig. 4 is the block diagram of the adaptive control system of the FELMS algorithm. In Fig. 4, the difference between FxLMS and FELMS algorithms is the introduction of the secondary adaptive filter, which can be used to purify the residual noise signals. Here, $W_2(z)$ is roughly equivalent to a bandpass filter for the center interference from other frequency components. The irrelevant noise signal in

![Block diagram of the ANC system based on the FELMS algorithm](image-url)
is significantly reduced when $e(n)$ is filtered by the adaptive filter $W_2(z)$. Furthermore, instead of $e(n)$, the output signal $e'_2(n)$ is entered into the adaptive filter $W_1(z)$, which produces the error signal $e'_1(n)$. $e'_1(n)$ is used to update the weight vector of the adaptive filter $e'_2(n)$ to maintain the convergence speed and control performance of the system.

Simulations are divided into two parts. The first part verifies the superiority of FELMS algorithm compared to FXLMS algorithm. The simulation has been done for the FELMS and FXLMS algorithms under the same conditions and environments. The calculation results show that the FELMS algorithm provides better control performance and faster convergence than the FxLMS algorithm due to the secondary adaptive filter in the FELMS algorithm. While in the second part, the simulation is conducted with $f_1 = 50Hz$, $f_2 = 100Hz$, $f_3 = 200Hz$, and different gain values ($\beta < 2$). The input signal $x(n)$ is the combination of the three sine waves with the same power. The simulation result shows that the FELMS algorithm can effectively control the residual noise spectrum by different gain settings, without affecting neighbour components.

Another variant of the ANE algorithm is the Normalization equalizer filtered-x LMS (NEX-LMS) algorithm, which was developed in [77]. In this algorithm, a normalization filter is added to offer better convergence ability than the ANE algorithm with limited computational complexity.

3.3 SF-cFxLMS algorithm

A simplified Fx-LMS (SF-FxLMS) algorithm was proposed in [97], which enables
one to estimate the relationship between the psychoacoustic analysis results and the parameters of the disturbance. Then, Jaime introduced the complex-domain data to improve the stability of the SF-FxLMS algorithm in response to impulsive disturbances, and developed the SF-cFxLMS algorithm (simplified-form complex FxLMS) [98].

In Fig. 5, the residual noise is measured by the error microphone in the SF-cFxLMS ANC system and written as

\[e(n) = d(n) - y(n) = d(n) - S(z)[W_{i+1}^T(n)x(n)] \] \hspace{1cm} (5)

where \(y(n) \) is the control actuation that superimposes with the primary disturbance \(d(n) \), \(S(z) \) is the real secondary path, \(W_{i+1}(n) \) is the adaptive weight vector and \(x(n) \) is a normalized reference signal. Based on the NEX-LMS strategy [77], the estimated primary disturbance \(\hat{d}(n) \) is [99]:

\[\hat{d}(n) = e(n) + \hat{S}(z)[W_{i+1}^T(n)x(n)] \] \hspace{1cm} (6)

The Fastest Fourier Transform in the West (FFTW) is used to calculate \(\hat{d}(n) \); then, the first \((N/2+1) \) bins are retrained for subsequent operations. The amplitude and relative-phase (block of “Amp/Rel. Phase” in Fig. 5) of the desired components can be estimated as follows:

\[\tilde{D}_k(l) = \mathcal{F} [\hat{d}(n)] = \mathcal{F} \left([\hat{d}_0(n) \hat{d}_1(n) \cdots \hat{d}_{N/2}(n)]^T \right) \]

\[= [\hat{d}_0(\omega) \hat{d}_1(\omega) \cdots \hat{d}_{N/2}(\omega)]^T \] \hspace{1cm} (7)

Similar to \(\hat{d}(n) \), \(e(n) \) and \(x'(n) \) are estimated as follows:

\[E_k'(l) = [e_{DC}(\omega)e_1(\omega) \cdots e_{N/2}(\omega)]^T \] \hspace{1cm} (8)

\[X_k'(l) = [x_{DC}(\omega)x_1(\omega) \cdots x_{N/2}(\omega)]^T \] \hspace{1cm} (9)
From Fig. 5, \(E'_k(l) = E_k(l) - \hat{D}_k(l) \) and \(x'(n) = \hat{S}(z) * x(n) \) are calculated. Then, after the updating operations ([98] Section 3), the missing complex conjugate part can be calculated from the updated \((N/2+1)\) weights. Therefore, the weight vector \(W_{l+1}(n) \) is obtained as follows:

\[
W_{l+1}(n) = \mathcal{F}^{-1}[W_{l+1}(\omega)] = \mathcal{F}^{-1}([W_{DC}(\omega)W_1(\omega) \cdots W_N(\omega)]^T) \quad (10)
\]

Eq. (10) is the weight update equation of the SF-cFxLMS algorithm. It is useful to reduce the computational burden and improve the stability of the updating algorithm; thus, the control signal is generated by the adaptive controller:

\[
u(n) = W_{l+1}^T(n)x(n) \quad (11)\]
Computer simulations for controlling the sound quality of low frequency based on loudness and roughness were conducted. Capabilities such as the independent control of a number of narrowband components with a single adaptive filter, adequate convergence speed and an improved convergence procedure face to impulsive disturbances are thoroughly demonstrated through different computer simulation scenarios [98]. Furthermore, the SF-cFxLMS algorithm can emerge as a promising control scheme, as sound quality targets can be achieved with the implementation of the proposed algorithm, even if the disturbance is contaminated with broadband noise.

In the continued study [100], Jaime’s group introduced the Multiple-Input, Multiple-Output (MIMO) arrays [101,102] and established the MIMO ASQC system, which compensated for the amplitude and relative phase interferences, while retaining an active effect on the SQ metrics, namely, Loudness and Roughness.

3.4 CMD algorithm

Based on the principle of minimal disturbance [103], the constrained minimal disturbance (CMD) algorithm was proposed by Walter J Kozacky [104]. In this study, constraints are added to limit the filter gain, filter convergence, and filter output power. Then, the Lagrange multiplier [105] method, which helps the CMD algorithm obtain a faster convergence speed, is used to solve the constrained optimization problem [106]. Fig. 6 shows the input, weight, and error vectors of the CMD adaptive filter, which are given by
Fig. 6. Block diagram of the CMD adaptive filter with frequency-domain processing

\[
x(m) = [x(n)x(n-1) \ldots x(n-N+1)]^T
\]

\[
w(m) = [w_0(n)w_1(n-1) \ldots w_{N-1}(n)]^T
\]

\[
e(m) = [e(n)e(n-1) \ldots e(n-N+1)]^T
\]

where \(N\) is the block size; \(m\) is the block iteration. By updating \(m\) in each block, the weight vectors are updated using the CMD algorithm, which can minimize the squared Euclidean norm of the frequency domain weight change. The equation is

\[
W_k(m + 1) = 1 - \mu \gamma_k W_k(m) + \mu_k S_k^*(m)X_k^*(m)E_k(m)
\]

where \(\mu\) is the convergence step size; \(\gamma_k = \frac{\alpha_k}{\mu(1+\alpha_k)}\); \(\alpha_k\) is a Lagrange multiplier. By taking the IFFT (Inverse Fast Fourier Transform) on both sides of Eq. (13) and casting into a delay-less structure, we obtain the new algorithm
\[w(m + 1) = w(m) + \mu \text{IFFT}\left\{ \frac{S^*(m)X^*(m)E(m)}{S(m)^2X(m)^2} - \Gamma(m)W(m) \right\} \]

(14)

where \(\Gamma(m) \) is a diagonal matrix of variable leakage factors.

(14) is called the weight update equation of the CMD algorithm. The simulations verify the superiority of the CMD algorithm compared to the leaky LMS algorithm in both power-constrained and gain-constrained applications. The frequency response and convergence of the two algorithms are compared in the power-constrained simulation. The CMD algorithm provides faster convergence performance than the leaky LMS algorithm and maintains a 6 dB power reduction over frequency. The CMD algorithm allows the power constraint to be set explicitly, while the leaky LMS algorithm requires a trial and error approach to determine the parameters. In the gain-constrained simulation, the CMD algorithm has better frequency response performance and faster convergence than the leaky LMS algorithm, particularly in coloured noise environments [104].

3.5 PSC-FxLMS algorithm

The phase scheduled command FXLMS (PSC-FXLMS) algorithm, which was proposed by Rees and Elliott [107], uses an internal model to obtain an estimate of the disturbance signal [89,108]. The block diagram of PSC-FXLMS is shown in Fig. 7 [107].
In Fig. 7, the error signal can be written as

\[e(n) = d(n) + g^T u(n) \] \hspace{1cm} (15)

\[e'(n) = e(n) - c(n) \] \hspace{1cm} (16)

where \(g^T \) is the impulse response vector, \(c(n) \) is a command signal. The filter weight \(w(n) \) of PSC-FxLMS algorithm can be updated as

\[w(n+1) = w(n) - \mu \hat{r}(n)e'(n) \] \hspace{1cm} (17)

where \(\mu \) is the step size and \(\hat{r}(n) \) is the filtered reference signal vector. The disturbance signal \(\hat{d}(n) \) is estimated by plant model \(\hat{G}(z) \), and \(\hat{d}(n) \) can be expressed as

\[\hat{d}(n) = e(n) - \hat{g}^T u(n) = d(n) + g^T u(n) - \hat{g}^T u(n) \] \hspace{1cm} (18)

Furthermore, \(u(n) \) is dependent on \(c(n) \), since \(u(n) = w(n)x(n) \), then the
update weight equation for a single filter coefficient can be written as

\[w(n + 1) = w(n) - \mu \hat{r}(n)e'(n) = w(n) - \mu \hat{r}(n)[d(n) + g^T u(n) - c(n)] \] (19)

Then, Rees and Elliott incorporated automatic phase command technique into PSC-FXLMS algorithm to deal with the problem of phase instability when large system gains are needed.

Experimental Sound profiling of a tone was conducted under the condition of a pure 1000 rad (159.16 Hz) tone at a sample rate of 16 samples per period (2.55 kHz) [107]. Experimental results show that the control effort is not excessive when the output is enhanced. The properties of the command-FXLMS algorithm, the internal model FXLMS algorithm, and the PSC-FXLMS algorithm were evaluated, including: the convergence speed, the stability, and the control effort. The command-FXLMS is stable due to the simplicity of the algorithm, but it has excessive control effort. The internal model FXLMS is stable at low gains, and it requires low values of control effort relative to the command-FXLMS. The PSC-FXLMS shows not only to achieve those modes of control capable by the internal model FXLMS with increased gain accuracy, but also with an increase in stability to plant model magnitude errors.

In the continued study [109], Patel and Cheer introduced the MPSC-FxLMS algorithm which allows the phase of the disturbance signal to be detected directly without the need for an additional internal plant model.

3.6 ANNs algorithm

Artificial neural networks (ANNs) recently became a forceful candidate for active noise cancellation [110-114], particularly for the system identification with active
vibration control [115] and nonlinear dynamic problems [116-122]. ANNs, which have been used to model the relationship between subjective and objective evaluations, can describe an annoyance model with a non-stationary noise signal [123-125].

The structure of the ANNs system in [126] is shown in Fig. 8. The outputs of ANNs are the objective rate of sound quality; if it has great correlation with the subjective rate, the outputs of the ANNs become a good sound quality index.

Fig. 8. Structure of ANNs for the noise index: (a) single neuron i; (b) three-layer, back-propagation (BP) network

The main purpose of the ANNs algorithm is to map an input vector \(x \in \mathbb{R}^N \) into the output vector \(y \in \mathbb{R}^M \), which can be written as:

\[
x_{N \times 1} \rightarrow y_{M \times 1}
\]
In general

\[x^{(p)} \rightarrow y^{(p)}, \text{ and } p=1, 2, 3, \ldots, k \] \hspace{1cm} (21)

where \(k \) is the number of patterns. The network performs this mapping, which consists of processing neurons and their connections. The \(i \)th single neuron is shown in Fig. 8(a); the input signals \(x_j \) are cumulated in a neuron-summing block \(\Sigma \) and export the only output \(y_i \) via function \(F \):

\[y_i = F(z_i), z_i = \sum_{j=1}^{N} w_{ij} x_j + b_i \] \hspace{1cm} (22)

where \(z_i \) is the potential parameter, \(w_{i,j} \) is the weight of connection, and \(b_i \) is the threshold parameter. The sigmoid function can be written as:

\[F(z) = \frac{1}{1 + e^{-\mu z}} \epsilon(0,1) \quad \text{for } \mu > 0 \] \hspace{1cm} (23)

A standard multiplayer network of the input, hidden and output layers is shown in Fig. 8(b). In this figure, \(N = 4 \) is the number of inputs; \(H_1 = 5 \), and \(H_2 = 3 \) are the numbers of neurons in their respective hidden layers; \(M = 2 \) is the number of outputs in the output layer. This network can be called the 4–5–3–2 structure network. In this structure, the biases \(b^l_i \) and weights \(w^l_{i,j} \) (where \(l \) is the number of layers) are the network parameters \([125]\). Mathematically, the sound quality index using \(b^l_i \) and \(w^l_{i,j} \) is written by

\[
\text{Sound quality index} = F^2[Lw^2F^1(I^{w^1}x + b^1) + b^2]
\] \hspace{1cm} (24)

where function \(F \) follows the form of Eq. (23), \(I^{w^1} \) and \(Lw^2 \) are the weight matrices of the input layer and the first hidden layer. The trained ANNs were applied to investigate the characteristics of the interior sounds \([121-125]\). The calculation results show that the output of the trained ANNs has the significant correlation with the
averaged subjective rating of sounds. It is concluded that the output vector of the ANNs can objectively estimate the rate of noise sound. Eq. (24) can be used as a design guide for sound quality with sufficient accuracy and reliability to improve the human subjective satisfaction [123].

4. Selective attenuation method for the ASQC-based ANC scheme

Selective attenuation methods were recently used in ANC schemes [39,126-129], which can reduce the sound pressure level and adjust the sound characteristics. The frequency selective least-mean-square (FSLMS) algorithm has been shown in [39] to be an effective candidate towards the desired selective noise control target; it simultaneously properly eliminates the dysphoric composition and retains the element of pleasure [130].

Fig. 9 is the block diagram of the FSLMS algorithm, where the awaiting cancellation of the original signal is given by:

\[d(n) = d_1(n) + d_2(n) \]

(25)

where \(x(n) \) is strongly correlated with \(d(n) \), after \(x(n) \) is filtered by \(H(z) \), \(x'(n) \) is related to \(d_1(n) \), but \(x'(n) \) and \(d_2(n) \) are irrelevant.

\[x(n) \xrightarrow{H(z)} x(n) \xrightarrow{W(z)} y(n) \xrightarrow{+} d(n) \]

\[x'(n) \xrightarrow{LMS} \]

\[e(n) \]

Fig.9. Block diagram of the FSLMS algorithm

Based on the LMS algorithm and the relevant cancellation principle, input,
output, error vector, and weight of the FSLMS adaptive filter are given by:

\[x'(n) = h(n) \ast x(n) \] \hspace{1cm} (26)

\[y(n) = W^T(n)x'(n) = \hat{d}_1(n) \] \hspace{1cm} (27)

\[e(n) = d(n) - y(n) = d(n) - \hat{d}_1(n) \approx d_2(n) \] \hspace{1cm} (28)

\[w(n + 1) = w(n) + 2\mu e(n)x'(n) \] \hspace{1cm} (29)

where (29) is the weight update equation of the FSLMS algorithm, which is relatively near the autocorrelation matrix eigenvalue of signal \(x'(n) \), and its convergence condition is:

\[0 < \mu < \frac{1}{E[x'(n)^2]} \] \hspace{1cm} (30)

The FSLMS algorithm based on the feed-forward ANC scheme [131], as shown in Fig. 10, must be considering the effect of the secondary-channel sound delay on the algorithm stability. By imitating the derivation process of the FxLMS algorithm, the equations of the FSLMS algorithm based on the feed-forward ANC scheme are given by:

\[y(n) = W^T(n)x'(n) \] \hspace{1cm} (31)

\[W(n + 1) = W(n) - 2\mu e(n)r(n) \] \hspace{1cm} (32)

\[r(n) = x'(n) \ast h_2(n) = h(n) \ast x(n) \ast h_2(n) \] \hspace{1cm} (33)

where \(r(n) \) is the input signal of the weight coefficient iterative updating. In Fig. 10, \(r(n) \) is obtained from the input signal \(x(n) \) and filtered by \(H(z) \) and \(\hat{S}(z) \).

In practical applications, a multiple FSLMS system can be configured in parallel to cancel the residual noise spectrum when the original noise has multiple harmonics. The simulation was conducted with \(M=16 \), step size \(\mu=0.002 \). The original noise signal
consists of two sine waves with different amplitude embedded in white Gaussian noise of variance 0.1. The spectrum of the original noise signal, \(d(n) \), and the spectrum of the converged system output, \(e(n) \), are displayed in [39]. It shows that the corresponding frequency components in the original noise signal are offset when the input signal is a single-frequency harmonic signal. While the input signal is superposed by two single-frequency harmonics, the corresponding frequency components in the original noise signal is also adaptively cancelled.

Based on the FSLMS algorithm, some experimental works were conducted by the research group of Wang [132-134]. In these works, an ASQC system in a passenger car was established. Then, the experimental results showed that an obvious offset frequency noise attenuation, with little effect on other frequency noise components, and the loudness and sharpness values were also effectively reduced.

![Block diagram of the FSLMS algorithm based on the feed-forward ANC system](image)

Fig. 10. Block diagram of the FSLMS algorithm based on the feed-forward ANC system

5. Conclusion

Sound noise control is desirable to reduce the pressure level and enhance the
auditory qualities of sound fields. The paper has introduced the concept of sound
quality, objective evaluation, subjective evaluation and their relationships. Then, we
reviewed the active noise control methods with an emphasis on recent developments
in sound quality enhancement, which is briefly shown in Table 1. This paper can serve
as a reference or a tutorial for beginners in the field of ASQC.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Algorithms</th>
<th>Characteristic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuo</td>
<td>ANE</td>
<td>Attenuate or amplify sinusoidal noise</td>
<td>[83,84]</td>
</tr>
<tr>
<td>Kuo / Bao</td>
<td>FELMS</td>
<td>Introduce the secondary adaptive filter to weaken the pass-band disturbance</td>
<td>[95,96]</td>
</tr>
<tr>
<td>Sun/Jaime</td>
<td>SF-cFxLMS</td>
<td>Estimate the relationship between psychoacoustic analyses results and the parameters of the disturbance</td>
<td>[97,98]</td>
</tr>
<tr>
<td>Walter</td>
<td>CMD</td>
<td>Provide faster convergence and improve frequency response performance</td>
<td>[104]</td>
</tr>
<tr>
<td>Rees and Elliott</td>
<td>PSC-FxLMS</td>
<td>Increase the gain accuracy and the stability of the phase errors</td>
<td>[107]</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>ANNs</td>
<td>Sound quality index</td>
<td>[123-125]</td>
</tr>
<tr>
<td>Jiang and Wang</td>
<td>FSLMS</td>
<td>Eliminate the dysphoric composition and retain the element of pleasure</td>
<td>[39]</td>
</tr>
</tbody>
</table>

Acknowledgment

The financial support of the China Scholarship Council [grant 201607585012] is
gratefully acknowledged.

References

[3] WANG Deng-feng, LIU Zong-wei, LIANG Jie. Subjective evaluation experiments and

interlayer for vehicle interior noise reduction and sound quality improvement. SAE Paper 2003; 01: 1587.

[31] Liu Enze, Yan Jikuan, Chen Duanshi. Survey and development trend of active

[40] Joachim Scheuren, Ulrich Widmann, Jens Winkler. Active noise control and
sound quality design in motor vehicles. SAE Paper 1999; 01: 1846.

[58] Bismarck, V. Sharpness as an attribute of the timbre of steady sounds. Acoustica 1974; 30: 159-172.

[68] Zeitler A, Hellbrück J. Semantic attributes of environmental sounds and their

[77] L.P.R. de Oliveira, B. Stallaert, K. Janssens, H. van der Auweraer, P. Sas, W.
Desmet. NEX-LMS: a novel adaptive control scheme for harmonic sound quality

[78] Lee HH, Lee SK. Objective evaluation of interior noise booming in a passenger car

optimization procedure for guiding the active sound quality control of

[81] C.A. Powell, B.M. Sullivan. Subjective response to propeller airplane interior
sounds modified by hypothetical active noise control systems. Noise Control

5701-5704.

[85] Deng-feng Wang, Ji-guang Jiang, Zong-wei Liu, Xiao-lin Cao. Research on ANE
algorithm for sound quality control of vehicle interior noise. 3rd International

[104] Walter J Kozacky, Tokunbo Ogunfunmi. An active noise control algorithm with
gain and power constraints on the adaptive filter. EURASIP Journal on Advances in Signal Processing 2013:17.

