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The chemokines (or chemotactic cytokines) are a large family of small,

secreted proteins that signal through cell surface G protein-coupled heptaheli-

cal chemokine receptors. They are best known for their ability to stimulate the

migration of cells, most notably white blood cells (leukocytes). Consequently,

chemokines play a central role in the development and homeostasis of the

immune system, and are involved in all protective or destructive immune and

inflammatory responses. Classically viewed as inducers of directed chemotactic

migration, it is now clear that chemokines can stimulate a variety of other

types of directed and undirected migratory behavior, such as haptotaxis,

chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhe-

sion. However, chemokine receptors on leukocytes can do more than just

direct migration, and these molecules can also be expressed on, and regulate

the biology of, many nonleukocytic cell types. Chemokines are profoundly

affected by post-translational modification, by interaction with the extracellu-

lar matrix (ECM), and by binding to heptahelical ‘atypical’ chemokine recep-

tors that regulate chemokine localization and abundance. This guide gives a

broad overview of the chemokine and chemokine receptor families; summa-

rizes the complex physical interactions that occur in the chemokine network;

and, using specific examples, discusses general principles of chemokine func-

tion, focusing particularly on their ability to direct leukocyte migration.

Chemokines

Chemokines are defined by their primary amino acid

sequence and the arrangement of specific structurally

important cysteine residues within the mature protein.

These form disulfide bonds that maintain the structure

of the chemokine monomer, which consists of a central

three stranded b-sheet, an overlying C-terminal a-helix,
and a short unstructured N terminus that plays a criti-

cal role in receptor activation [1]. Variation in the pre-

cise configuration of the two cysteines closest to the N

terminus allows chemokines to be split into four
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subfamilies: CC, CXC, CX3C, and XC. In CC

chemokines, these cysteines are directly juxtaposed,

while CXC chemokines have a single variable amino

acid between them. The sole CX3C chemokine has

three amino acids between these two cysteines, while

XC chemokines, of which there are two forms in

humans and one in mice, lack the first and the third

cysteines of the motif. Large numbers of CC and CXC

chemokine genes have been defined in many species

(Fig. 1) [2]: not all are found in all species, or some-

times all members of a species; nonallelic isoforms

exist, such as CCL3L1 and CCL3 in humans [3,4] and

Ccl21a, Ccl21b, and Ccl21c in mice [5]; and allelic and

copy number variation creates considerable genetic

diversity that influences susceptibility to, and severity

of, a number of diseases [3,6,7].

Although chemokines were originally named accord-

ing to specific functions, a systematic nomenclature

was introduced in 2000 that includes a subfamily des-

ignation (i.e., CC, CXC, CX3C, or XC), followed by

the letter L (denoting ‘ligand’), and then a number

according to when the gene was first isolated [8,9].

Chemokines with the same name from different species

are often functional orthologues [2], although this is

not always the case: for example, human CCL8 binds

to the human CCR2 receptor, while mouse CCL8 is a

CCR8 ligand [10], and mouse CCL3 is functionally

more like human CCL3L1 than human CCL3 [11]. All

chemokines are produced with an N-terminal signal

peptide that is removed once it has directed the che-

mokine into the endoplasmic reticulum for secretion.

Two chemokines, CX3CL1 and CXCL16, have an

extended C terminus containing a mucin-like stalk and

a transmembrane domain [12,13]. This holds these

chemokines on the cell surface but can be proteolyti-

cally cleaved to release the chemokine portion into the

extracellular space [14–18]. Other chemokines, such as

CCL6, CCL9, and CCL23, have an extended N termi-

nus that can be proteolytically removed to enhance

receptor activation capabilities [19]. An N-terminal

peptide cleaved off a CCL23 variant can activate for-

myl peptide receptor-like 1 (FPRL1), a G protein-

coupled receptor (GPCR) not classified as a cCKR

[20]. Alternatively spliced transcripts can generate che-

mokine variants: for example, six forms of human

CXCL12 have been described with different C termini

[21] and distinct biological properties [22,23].

GAGs, oligomerization, and post-
translational modification

The postsecretion activity and distribution of chemoki-

nes depends on how readily they become immobilized

on cell surfaces and ECM [24,25]. Glycosaminoglycans

(GAGs) are particularly important in this regard.

Their ability to bind chemokines influences chemo-

kine/receptor interactions; chemokine half-life in a tis-

sue or tissue compartment; how, and where, a

chemokine operates in vivo; and the type of cell move-

ment or adhesion it stimulates [24,25]. They are essen-

tial for maintaining interstitial chemokine functions

and gradients [26–28] and for the presentation of

chemokines on endothelial surfaces, preventing them

being washed away by the blood and so allowing them

to drive leukocyte arrest and extravasation [29–31].
Some chemokines, such as CCL21, are very ‘sticky’

and become rapidly immobilized, while others, such as

CCL19, which activates the same receptor as CCL21,

likely diffuse more readily through tissues [27]. In

addition, mammalian proteins, including TSG-6, can

interfere with chemokine/GAG interactions to alter

chemokine distribution and function [32,33]. Targeted

disruption of chemokine/GAG interactions might have

therapeutic impact [34], as could GAG-based chemo-

kine-capturing hydrogels [35].

While chemokines are active as monomers, they also

form homodimers, heterodimers, and higher order

aggregates that can contain one or more chemokine spe-

cies, and this can be influenced by interactions with

GAGs [36–40]. The full chemokine ‘interactome’ reveals

complex and extensive interactions: human CXCL4 and

CCL5, for example, can each heterodimerize/oligomer-

ize with over 20 other chemokines from CC, CXC, and

XC subfamilies [40]. The structures formed rely on two

types of interfaces, referred to as CC- and CXC-type, in

which chemokine activity is typically enhanced and

inhibited, respectively [40]. Oligomerization clearly

influences how individual or mixtures of chemokines

combine to control leukocyte responses, and disrupting

specific interactions may have therapeutic potential

[1,25,39–41].
Chemokines are also profoundly affected by post-

translational modifications such as citrullination [42–
44], nitration/nitrosylation [45–47], and cleavage by

matrix metalloproteinases (MMPs), cathepsins, throm-

bin, plasmin, elastase, the dipeptidyl peptidase CD26,

and other proteases [48–50]. These changes can sub-

stantially modify chemokine activity. For example,

nitration of tyrosine residues in CCL2 by reactive

nitrogen species reduces the ability of this chemokine

to attract monocytes through its receptor CCR2 [45],

while arginine residues in a number of chemokines can

be converted into citrulline by the enzyme peptidy-

larginine deiminase: this reduces the chemotactic activ-

ity of CXCL8, CXCL10, and CXCL11, and prevents

conversion of CXCL8 into a more active shortened
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form by interfering with thrombin- and plasmin-

mediated N-terminal trimming [42,44].

Proteases are key chemokine regulators. CD26-

mediated trimming of two amino acids off a chemo-

kine’s N terminus can, depending on the chemokine,

change receptor specificity, substantially alter receptor

affinity or convert agonists into antagonists [48]. Many

MMPs can also modify this part of certain chemoki-

nes, and the impact of these modifications depends on

the identity of the chemokine being studied. Thus,

MMP-mediated N-terminal trimming typically

enhances the activity of CXCR2 ligands, and of CC

chemokines with extended N-termini (CCL6, CCL9,

CCL23), while CXCL12 is inactivated by MMPs and

CCR2 ligands are converted into receptor antagonists

[50]. Proteolytic cleavage of the C terminus of

chemokines can dramatically alter ECM binding prop-

erties and diffusivity. For example, DC-mediated

cleavage of CCL21 removes the highly charged C ter-

minus that anchors it to the ECM, thereby releasing a

version of this key DC attractant that has much higher

diffusivity than the full-length protein [51]. This is

rather similar to the release of CX3CL1 and CXCL16

from cell surfaces that was mentioned above [14–18].
MMPs and other proteases can also act on the C ter-

minus of chemokines: for example, MMP processing

of the C terminus of CCL16 enhances its GAG-bind-

ing properties [52]. Proteases are also thought to help

create and modify interstitial chemokine gradients, and

have the capacity to degrade chemokines, or the ECM

to which they are bound, so are important in regulat-

ing chemokine half-life and distribution [49,53]. Con-

trolling protease regulation of chemokines could have

therapeutic application: for example, inhibiting CD26-

mediated cleavage of CXCL10 enhances tumor

immunotherapy in mouse models [54].

Chemokine receptors

There are two families of heptahelical surface mole-

cules that bind to chemokines: conventional chemo-

kine receptors (cCKRs) and atypical chemokine

receptors (ACKRs) (Fig. 1).

Conventional chemokine receptors

Chemokine-bound cCKRs typically transduce signals

through pertussis toxin-sensitive Gai G-proteins and b-
arrestins, ultimately leading to cell migration, adhesion

and/or a variety of other biological responses.

Chemokines are thought to initially tether to their cog-

nate cCKR via the extracellular loops and N terminus

of the receptor: the negative charge on these cCKR

domains can be increased by glycosylation, polysialyla-

tion, and/or the incorporation of sulphated tyrosine

residues. Sulphated tyrosines in the N terminus aid

HIV gp120 binding to CCR5 [55] and enhance chemo-

kine binding to CCR2 [56], CCR3 [57], CCR5 [55,58],

Fig. 1. Mammalian chemokine receptors and their known interactions with chemokines and other key secreted, cell surface, and pathogen-

encoded molecules. Chemokines of the four subclasses (CCL, CXCL, CX3CL, and XCL) are arranged numerically in columns and represented

as numbered squares that are color-coded according to whether they are in humans and mice, humans only, or mice only (see Key). The

chemokine–chemokine ‘interactome’ [40] is not depicted. Chemokines are linked by lines to receptors that they are known to bind: yellow

boxes are atypical chemokine receptors (ACKRs) (previous names shown in parentheses); green boxes are conventional chemokine

receptors (cCKRs); and light green boxes show reported human cCKR variants generated by alternative splicing at the N terminus (CCR9,

CXCR3, CXCR4) or C terminus (CCR2) [69–74]. The color of the linking line (see Key) indicates whether the interaction likely exists in

humans only, mice only, or in humans and mice. Hashed black lines ending with a filled circle link chemokines with receptors they can

antagonize [119–126]. CXCL14 is reported to be a positive allosteric modulator of CXCR4 [344]. Chemokine receptors reported to form

heterodimers are linked with a black line [93–101,118]. Nonchemokine proteins in light pink boxes are able to activate the cCKR they are

joined to by a black line [89–92,102,347]. White boxes contain microbial proteins (red text) and other host extracellular/surface proteins

(black text; nonchemokine, nonchemokine receptor) that have been reported to interact, in the absence of chemokine, with the cCKR or

ACKR to which they are attached by a black line [32,92,102–117,147–152,167,233,264,345–348]. Note that cCKRs and ACKRs other than

those shown are known to be capable of binding HIV and/or gp120, but the role of these chemokine receptors during infection is uncertain.

CCL18 receptor PITPMN3 and CCL5 receptor GPR75 are also shown [127,348]. FPRL1 interacts with a peptide released proteolytically from

the N terminus of one form of CCL23 [20]. Gray boxes show drugs in clinical use: Maraviroc [143] and Plerixafor [237], antagonists of CCR5

and CXCR4, respectively; and Mogamulizumab, a humanized anti-CCR4 antibody approved for treatment of relapsed or refractory CCR4+

adult T-cell leukemia/lymphoma (CTCL) [349]. Definitions: ADM, adrenomedullin; ADRA1A/B, a1A/B-adrenoreceptors; C-18, cyclophilin-18 of

Toxoplasma gondii; CB2, cannabinoid receptor 2; DBP, Duffy binding protein of malarial parasites P. vivax and P knowlesi; DOR, delta-opioid

receptor; GluR1, component of the AMPA-type glutamate receptor; Glyco G, RSV G glycoprotein; gp120, the gp120 envelope protein of

HIV; GPR75, G protein-coupled receptor 75; HlgAB, Staphylococcus aureus c-Hemolysin AB; HMGB1, high mobility group box 1 protein;

KOR, kappa-opioid receptor; LukED, S. aureus leukotoxin ED; MIF, macrophage migration inhibitory factor; MOR, mu-opioid receptor;

PITPMN3, phosphatidylinositol transfer protein 3; PSMP, PC3-secreted microprotein; TCR, T-cell receptor; TSG-6, TNF-stimulated gene 6;

b2AR, b2-adrenergic receptor. Extended from previous reviews [64,350].
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CCR8 [59], CXCR3 [60], CXCR4 [61], and CX3CR1

[62]. Polysialylation of CCR7 is essential for its activa-

tion by CCL21, appearing to release CCL21 from an

auto-inhibited conformation [63].

Once a chemokine is tethered to a cCKR, its

unstructured N terminus enters the cCKR’s heptaheli-

cal bundle to induce a conformational change that is

translated into intracellular signals [64,65]. This classi-

cal two-site model of chemokine/receptor interaction is

probably oversimplistic, with recent studies suggesting

that the two supposedly independent ligand-binding

sites can be physically and allosterically linked, and

that additional interactions between chemokine and

receptor are likely to be involved in ensuring full

receptor activation [64]. The signaling pathways down-

stream of chemokine receptors are complex, and a

detailed description is beyond the scope of this review,

but they include, among others, heterotrimeric G-pro-

teins, b-arrestins, and JAK-STAT pathways [66,67].

There are currently 18 cCKRs named according to

the predominant type of chemokine they bind (i.e.,

CC, CXC, CX3C, or XC), followed by the letter R

(denoting ‘receptor’), and then a number reflecting the

order of their discovery (green boxes, Fig. 1). There

are 10 CCRs, 6 CXCRs, and a single CX3CR and

XCR. GPR35 has recently been identified as a

CXCL17 receptor and referred to as CXCR8 [68], but

may become known as CXCR7 now that the original

CXCR7 has been renamed ACKR3 [66]. Transcripts

encoding cCKRs can be subject to alternative splicing:

variants of CCR2, CCR9, CXCR3, and CXCR4 have

been reported with altered ligand-binding or signaling

properties [69–74]. Important detailed insights into

cCKR structure, chemokine binding, and mechanisms

of antagonism have come with the resolution of crystal

structures of CCR2, CCR5 CCR9, CXCR4, and

US28, a cytomegalovirus-encoded chemokine receptor,

and from other biophysical approaches [64,65,75–84].
Receptor specificity is complex: many chemokines

bind to multiple cCKRs, and some cCKRs have many

ligands (Fig. 1). This is prominent among chemokines/

cCKRs involved in inflammation, while those primar-

ily involved in homeostatic cell migration have only

one or two ligands that are faithful to a single cCKR.

Chemokines vary with respect to their affinity for a

particular cCKR, and biased signaling, or functional

selectivity, is emerging as a key feature of cCKRs,

such that the precise pathways activated by a cCKR

depend on which ligand it binds, and the cellular con-

text of that binding [85–88]. Currently, six cCKRs

have been reported to show biased signaling [88].

Moreover, some cCKRs can also be activated by non-

chemokine ligands: b-defensins can activate CCR6

[89]; the ‘alarmin’ high mobility group box 1 protein

(HMGB1) is emerging as a key CXCR4 ligand [90,91];

and cells expressing CXCR2 or CXCR4 migrate in

response to macrophage migration inhibitory factor

(MIF) (light pink boxes, Fig. 1) [92].

Like other GPCRs, cCKRs exist as homodimers.

They can also aggregate into higher order oligomers,

and form functionally distinct heterodimers with

ACKRs, other cCKRs, nonchemokine-binding GPCRs

(such as opioid receptors), and other membrane

proteins (white boxes, Fig. 1) [87,93–118]. Some

chemokines can act as natural cCKR antagonists

(Fig. 1) [119–126]. Phosphatidylinositol transfer pro-

tein (PITPMN3), a non-GPCR with six transmem-

brane domains, is reported to be a functional receptor

for CCL18 in the context of tumor cell invasion [127],

although, more conventionally, CCL18 also binds to,

and directs leukocyte migration through, the cCKR

CCR8 [128].

The striking receptor/ligand promiscuity common in

the chemokine network most likely evolved to combat

microbial subversion by building robustness into

leukocyte responses during infection. Many viral gen-

omes carry genes encoding chemokines, chemokine-

binding proteins, and/or heptahelical receptors capable

of interfering with parts of the host chemokine system;

or they contain genes encoding chemokines and/or

chemokine receptors that activate, or are activated by,

host cCKRs or chemokines [129]. The saliva of blood-

sucking ticks contains chemokine-binding proteins

thought to suppress inflammation at the bite site [130–
132]. Human immunodeficiency virus (HIV) has

evolved to exploit cCKRs: CXCR4, and particularly

CCR5, are vital coreceptors mediating HIV entry into

cells and can dock to the HIV gp120 envelope protein

after it has bound CD4 [133–139]. The ligands for

these cCKRs block HIV entry into cells by steric hin-

drance or cCKR down-regulation, and genetic varia-

tion in genes encoding CXCL12, CCR5, and CCR5

ligands profoundly influences susceptibility to HIV

infection and the rate of progression to AIDS

[3,7,140]. Most notably, homozygosity for the non-

functional D32-CCR5 allele profoundly protects

against HIV infection, while D32-CCR5 heterozygosity

is associated with slowed progression to AIDS in most

cohorts of HIV-infected people [7,140–142]. CCR5

antagonist Maraviroc [143] is now used clinically,

alongside other drugs, to delay progression to AIDS in

HIV-positive patients, and there was considerable pub-

licity when transplantation of HLA-matched stem cells

from D32-CCR5 homozygotes proved very effective in

treating an HIV-infected patient [144]. However, some

caution is required because after infection with West
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Nile Virus, D32-CCR5 homozygosity increases the like-

lihood of developing encephalitic symptoms, and of

dying from the infection [145], most likely due to

defects in the trafficking of protective leukocytes into

the brain [146].

Other pathogens target chemokine receptors. Some

malarial parasites use ACKR1 to enter erythrocytes (see

below); cyclophilin-18 from Toxoplasma gondii binds to,

and signals through, CCR5 [147]; respiratory syncytial

virus (RSV) uses it’s glycoprotein G to infect a subset of

B cells through CX3CR1 [148]; and Staphylococcus

aureus leukotoxin ED (LukED) and c-hemolysin AB

toxin (HlgAB) target ACKR1 and various cCKRs to

lyse erythrocytes and kill leukocytes, respectively

[149–152]. These interactions have important conse-

quences for the pathogenicity of these microorganisms.

Atypical chemokine receptors

Atypical chemokine receptors, of which there are four

(yellow boxes, Fig. 1), are structurally related to

cCKRs but do not couple to many, if any, of the sig-

nal transduction pathways activated by cCKRs

[66,153]. Many publications report signaling and asso-

ciated biological responses via ACKR3, but it remains

unclear and/or controversial whether ACKR1, 2, and

4 can transduce signals at all after chemokine binding

[154]. This may be in part due to the absence, or mod-

ification, of appropriate signaling motifs on the intra-

cellular surface of ACKRs, such as the canonical

DRYLAIV motif present in the second intracellular

loop of cCKRs [153]. However, ACKRs bind

chemokines with high affinity [154], and, like cCKRs,

use sulphated tyrosine residues to enhance chemokine

binding [155,156].

All ACKRs appear to be involved in regulating che-

mokine localization, distribution, and abundance,

thereby indirectly controlling interactions between

chemokines and cCKRs [153]. For example, ACKR1

transports chemokines across endothelial cells for pre-

sentation to blood-borne leukocytes [157,158], and, on

erythrocytes, ACKR1 buffers chemokine abundance in

the blood [159–163]: this likely prevents cCKRs on cir-

culating leukocytes being inappropriately desensitized

by exposure to excess chemokine. Interestingly,

ACKR1 can regulate hemopoietic stem and progenitor

cells in the bone marrow (BM), and control neutrophil

phenotype/abundance in the blood, although the

underpinning molecular mechanisms remain unclear

[164,165]. ACKR1 is pirated by malarial parasites

Plasmodium vivax and Plasmodium knowlesi, which use

their Duffy binding protein (DBP) to engage ACKR1

and gain entry into erythrocytes [166–168]. Genetic

variation in ACKR1 profoundly influences susceptibil-

ity to infection by these parasites, and the complete

loss of ACKR1 from erythrocytes is very common in

sub-Saharan African populations [169,170]. The

absence of ACKR1 from erythrocytes also appears to

cause benign ethnic neutropenia [165,171,172] and may

influence HIV infection by leading to CCR5 ligand

dysregulation or loss of ACKR1-mediated HIV pre-

sentation [173,174], although this was not borne out in

other studies [175–178].
ACKR2 is a well-characterized chemokine scav-

enger. It constitutively shuttles to and from cell sur-

faces without needing chemokine-induced signals to do

so, and internalizes any chemokines it encounters while

exposed to the extracellular space [179,180]. Internal-

ized chemokine is dislodged from ACKR2 and

degraded [179,180]. ACKR2 serves key regulatory

functions in developing mammary gland and on lym-

phatic endothelial cells (LECs), innate-like B cells, and

placental trophoblasts [181–190]. ACKR3 is instru-

mental in controlling the CXCL12-CXCR4 axis, either

by scavenging CXCL12 or by heterodimerizing with,

and regulating the function of, CXCR4 [99,100,191–
200]. ACKR4-mediated scavenging of CCL19 and/or

CCL21 can regulate CCR7-dependent dendritic cell

migration and adaptive immune responses [201–204],
and roles for this ACKR have been reported in the

thymus [205,206]. cCKRs can also remove extracellular

chemokines, albeit less efficiently than ACKRs, and

internalization of surface chemokine/cCKR complexes

is a key aspect of cCKR regulation. Consequently,

mice in which a cCKR gene has been deleted can have

elevated levels of the chemokine(s) that normally bind

that cCKR [207]. Thus, chemokine regulation by

receptor-mediated internalization is not limited to

ACKRs.

The function of the chemokine
network

By far the most studied function of the chemokine net-

work is cell migration, particularly of leukocytes.

However, the biological activity of chemokines is by

no means limited to this function or to these cell types

(Fig. 2). As recently reviewed elsewhere [208], a wide

variety of other biological processes can be induced by

the activation of cCKRs on leukocytes, including pro-

liferation, survival, differentiation, cytokine produc-

tion, degranulation, and respiratory burst (Fig. 2).

Moreover, several chemokines have direct antimicro-

bial activity [209]. In addition, many nonleukocytic cell

types, including neurons, astrocytes, epithelial cells,

mesenchymal cells, and endothelial cells, can express
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cCKRs and respond in a wide variety of ways to

chemokines [210–216]. For example, many chemokines

directly regulate angiogenesis, with distinct subsets

showing negative or positive angiogenic activity

[214,215]. Interestingly, cancer cells of nonleukocytic

origin can evolve to express cCKRs and respond to

chemokines: this can encourage local invasion, spread

to draining lymph nodes, and the metastatic seeding of

distant tissues [217,218]. Cell movement is the domi-

nant biological process regulated by chemokines and

their receptors, and many different types of cell move-

ment that have been reported fall under chemokine

control, including chemotaxis (often seen as the classic

chemokine-driven form of migration) and also encom-

passing haptotaxis, chemokinesis, haptokinesis and

transcellular migration. In some contexts, chemokines

can direct the migration of groups of cells (referred to

as collective migration) [219–221], or stimulate cell

adhesion, causing cell movement to stop. There are

also reports of cells moving down, rather than up, che-

mokine concentration gradients, i.e., away from the

chemokine source, a process termed chemorepulsion or

chemofugetaxis [222–224] (Fig. 2).
Leukocyte migration is of critical immunological

importance. Leukocytes must be in the right place at

the right time so that their immunological functions

can be appropriately localized and directed. Immune

surveillance requires the continuous trafficking of

leukocytes out of BM and into, within, and out of the

other tissues of the body. When tissues become dam-

aged and/or infected, the rapid recruitment of innate

immune cells is essential to kill pathogens, prevent

microbial dissemination, drive inflammation, and help

repair damage. The elaboration of a regulated adaptive

immune response, and the subsequent development of

immune memory, depends on further carefully chore-

ographed leukocyte migratory processes. Chemokines

are of central importance in all these processes driving

leukocytes into and out of blood and lymphatic ves-

sels, and directing their interstitial movement and posi-

tioning. Without chemokine-directed leukocyte

migration, immune tolerance breaks down, immuno-

surveillance fails, and protective immune responses are

compromised. However, chemokine-directed leukocyte

migration also contributes to diseases that have an

immune or inflammatory component including autoim-

munity, allergy, chronic inflammatory disease,

atherosclerosis, cancer, and many others. In this con-

text, interfering with chemokine-directed leukocyte

migration has therapeutic potential.

The size of the chemokine and cCKR families

enables leukocyte recruitment to be tailored to fit the

immunological needs of tissues. While many molecules

are required for cells to be able to leave the blood-

stream and navigate within tissues [29,225], typically

the expression of a particular cCKR enables a
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leukocyte to migrate in response to that receptor’s

ligands. Figure 3 shows the expression of chemokine

receptor genes in a variety of leukocytes and stromal

cells in mice. These data are consistent with protein

expression data, and broadly conserved in humans.

Some cCKR genes, such as Ccr3, Cxcr1, and Cxcr2,

clearly show highly restricted patterns of expression,

while others, particularly Cxcr4, are more uniformly

expressed. ACKRs are mainly limited to stromal cells,

although Ackr1 is expressed by erythrocyte precursors

(not shown in Fig. 3) [164] and the other ACKRs are

transcribed in discrete subsets of B cells [99,189,226].

Leukocyte activation can change cCKR expression

profiles dramatically to couple changes in immunologi-

cal function with switches in migratory potential. This

makes sense if the new function requires the cell to

localize to a different tissue or microanatomical niche.

This is discussed below in the context of CD4+ T cells.

Likewise, distinct tissues or tissue domains express

specific profiles of chemokines under homeostatic con-

ditions (Fig. 4), and this changes with infection or

damage when the immunological requirements of the

tissue change. For example, in mice, CCL25 is consti-

tutively expressed in the small intestine [227], while

mouse skin makes substantial quantities of CXCL14,

CCL8 ,and CCL27 [10,228,229], but when these or

other tissues are damaged, inflamed or infected, large

numbers of inflammatory chemokines are induced to

direct the rapid recruitment of innate immune cells

and the subsequent homing of effector T cells.

Development, homeostasis, and
immune surveillance

Only the CXCL12/CXCR4/ACKR3 node of the che-

mokine network is necessary for life. CXCL12, the

most primitive chemokine, has been strongly conserved

through evolution. Acting through CXCR4 and regu-

lated by ACKR3, CXCL12 is critical for the develop-

ment of the heart, brain, vascular system,

hematopoietic system, germ cells, and, in fish, the lat-

eral line [99,191–200,230–232]. Deletion of Cxcl12 or

Cxcr4 in mice results in a variety of developmental

abnormalities and death in utero [230–232]. Ackr3 defi-

ciency has a similar outcome, although some Ackr3-

deficient mice survive until birth [99,193,194]. ACKR3-

mediated scavenging of adrenomedullin (ADM) may

be significant during heart and lymphatic vasculature

development [233]. Many indispensable functions for

CXCL12 have been defined in the adult, including its

role in hematopoiesis where it is a key component of

the niche that supports hematopoietic stem cells

(HSCs) in the BM [234–236]. Blocking CXCR4

function liberates HSCs from the BM, and CXCR4

antagonist AMD3100 (Plerixafor) is used clinically to

mobilize HSCs for collection from peripheral blood

prior to autologous stem cell transplantation [237].

Autosomal dominant mutations in CXCR4 are

responsible for WHIM syndrome (warts, hypogamma-

globulinemia, immunodeficiency, myelokathexis syn-

drome), a rare genetic disease in which patients have

IgG antibody deficiency, neutropenia (due to retention

of neutrophils in the BM), and increased susceptibility

to bacterial and viral infections (including human

papillomaviruses, which causes warts) [238]. The muta-

tions truncate or mutate the C terminus of CXCR4

[238,239], disrupting negative regulatory domains and

enhancing receptor activity [240,241]. Plerixafor shows

promise as a therapeutic [242] and there is a remark-

able report that chromothripsis, a process in which

chromosomes undergo extensive rearrangements and

deletions, spontaneously cured a WHIM syndrome

patient [243].

CXCR5 and CCR7 serve key developmental roles

by regulating the homing of lymphoid tissue inducer

(LTi) cells. During embryonic life, these cells migrate

out of the blood into sites where secondary lymphoid

tissues will form. This is critical for the development

of lymph nodes and Peyer’s patches, and mice defec-

tive in both the CXCR5/CXCL13 and CCR7/CCL21

axes lack Peyer’s patches and virtually all lymph nodes

[244–249].
Some cCKRs serve well-defined homeostatic tissue-

specific functions driven by the constitutive expression

of their ligands under steady-state conditions (Fig. 4).

For example, several chemokine receptors, including

CCR4, CCR9, and particularly CCR7, contribute to

T-cell development by enabling cells to enter and

navigate within the thymus [250–260]. This facilitates

the selection and differentiation processes that are

essential for central tolerance, the generation of the

na€ıve T-cell repertoire, and natural regulatory T-cell

(nTreg) formation. Deletion of Ccr7 or its ligands

disrupts thymocyte trafficking in mice creating an

aberrant na€ıve T-cell repertoire that drives autoimmu-

nity [252–255,261]. CCR7 is also essential for leuko-

cyte entry into lymph nodes and other secondary

lymphoid tissues [262], with recent reports describing

circadian fluctuations in the CCL21/CCR7 axis and

lymphocyte trafficking into lymph nodes controlled

by adrenergic nerves [263–265]. CCR7 facilitates lym-

phocyte recruitment from blood [266]; stimulates

intranodal T-cell motility [267–269] and retention

[264,270]; directs dendritic cells (DCs) [27] and other

leukocytes [271,272] into tissue lymphatic vessels

along CCL21 gradients [27] aided by DC-induced
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CCL21 secretion from LECs [273]; mediates intralym-

phatic crawling [274,275]; and allows DCs to enter

the lymph node parenchyma from the subcapsular

sinus [276]. Thus, in addition to directing central

tolerance, CCR7 is essential for peripheral tolerance

and the initiation of adaptive immune responses

[262].

There are many other instances of chemokine-driven

homeostatic leukocyte trafficking. For example, CCR2

is required for Ly6Chi monocyte release from BM

[277]; CCR3 controls steady-state eosinophil distribu-

tion [278]; CXCR2 and CXCR4 direct neutrophil

egress from, and return to, the BM [279,280]; mono-

cytes use CX3CR1 to patrol blood vessel walls [281];

and CCR9 regulates plasmacytoid DC and intraepithe-

lial cd T-cell abundance in the small intestine

[258,282]. B cells are specifically directed to lymphoid

tissue follicles by CXCR5 [244,245], which also

controls marginal zone B cell and B1 B cell migration

in mouse spleen and body cavities, respectively

[283,284].

Therefore, chemokine-driven cell migration serves

critical developmental functions; ensures immunologi-

cal tolerance is established and maintained; enables

antigen-specific lymphocytes to enter and survey anti-

gen-presenting cells in lymphoid tissue; and distributes

leukocytes around the body so they are appropriately

placed to respond to immunological challenge.

Infection, inflammation, and
immunopathology

Chemokines, along with an array of other proteins,

peptides, lipids, and microbial products, direct leuko-

cyte recruitment into infected or damaged tissues

[66,285]. Many chemokines are highly inducible and

produced in large quantities in response to a broad

array of infectious and inflammatory stimuli. Leuko-

cytes recruited by chemokines early to damaged or

infected tissues can produce other chemokines that

contribute to the next wave of leukocyte homing

[286,287]. Chemokines are produced by many diseased

tissues, including those affected by autoimmunity

[288–290], allergy [291], Alzheimer’s disease [292],

chronic inflammatory disease [293], cardiovascular dis-

ease [294], and cancer [295]. These inflammatory che-

mokine profiles typically include those chemokines

that bind to the promiscuous cCKRs and ACKRs

(i.e., CCR1, CCR2, CCR3, CCR5, CXCR1, CXCR2,

CXCR3, ACKR1, and ACKR2) (Fig. 1), but other

chemokines can also be induced, and the precise che-

mokine profile in a given tissue will depend on the

exact nature of the inducing stimuli, the phase of the

response, and the genetics of the chemokine network

in the affected individual.

Inflammatory chemokine abundance, distribution,

and activity will be controlled by their interactions

with ECM, proteases, and other proteins within the

tissue, and by scavenging via cCKRs and ACKRs,

particularly ACKR1 and ACKR2. Inflammatory

chemokines make a major contribution to the recruit-

ment of leukocyte populations required to meet the

immunological needs of affected tissues, and will regu-

late any nonleukocyte tissue cells (epithelial, mesenchy-

mal, and/or endothelial) constitutively or inducibly

expressing cCKRs. Many microbes have evolved to

interfere with inflammatory chemokines and cCKRs,

leading to an ‘arms race’ that has built robustness and

redundancy into this part of the chemokine network.

Nonetheless, individual cCKRs serve indispensable

roles in a variety of contexts, and there is a vast litera-

ture describing how deleting, inhibiting, or blocking

individual cCKRs or ACKRs impacts on a wide vari-

ety of experimentally induced immune and inflamma-

tory responses, and modifies pathology in a diverse

array of animal models of human disease. This under-

standably led to the development of small molecule

cCKR antagonists to trial in patients with immune or

inflammatory disease [66]. However, despite consider-

able efforts, to our knowledge, no effective therapeu-

tics for these diseases have yet emerged, and while the

in-built robustness of the inflammatory chemokine net-

work has no doubt been a contributing factor, several

other likely reasons have been proposed and discussed

[296]. Nonetheless, clinical trials using chemokine

receptor antagonists, or other therapeutic approaches

that target or exploit chemokines, continue to take

place.

Fig. 3. Expression of chemokine receptor genes in selected mouse leukocytes and stromal cells. The figure was generated using

transcriptomic data from The Immunological Genome Project database (www.immgen.org) [351]. The maximum expression value was

identified for the cell types shown and is indicated in the row at the bottom of the Figure in arbitrary units. For each receptor, this value

was set to 100%. Estimated background values (typically between 50 and 100) were determined by examining expression graphs for all cell

types on the database. Expression in the cell types shown in the left hand column was then assigned a color according to the percentage

of the maximum expression value (see Key on right). Note that not all cells in a cell population will necessarily express the receptor. BM,

bone marrow; DC, dendritic cell.
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Chemokine receptor switching

Changes in leukocyte function are intimately associ-

ated with switches in cCKR expression. For example,

DC trafficking from tissues to draining lymph nodes

requires inflammatory cCKRs to be lost and CCR7 to

be switched on [262,297–299]. cCKR switching is also

prominent during CD4+ and CD8+ T-cell activation

and differentiation, and cCKRs are reported to

directly contribute to T-cell costimulation [300,301].

When CD4+ T cells encounter antigen, they can differ-

entiate into one of many functionally distinct T cell

types, including effector T cells (Th1, Th2, and Th17),

follicular T cells (Tfh and Tfr), induced regulatory T

cells (iTreg), and memory T cells (Tcm and Tem).

These cells have discrete immunological functions that

require specific migratory behaviors so they need to

express particular cCKR profiles. Th1 cells typically

express CCR5 and CXCR3 (as do many recently-acti-

vated CD8+ T cells); Th2 cells preferentially display

CCR3 and CCR4; and Th17 are often CCR6+ [302–
308]. This enables these effector T cells to home to

infected or inflamed tissues where they contribute to

microbial clearance and tissue repair. In contrast, Tfh

and Tfr cells control activated B cells so need to enter

B cell follicles in lymphoid tissues: they achieve this by

up-regulating CXCR5 expression [309–314]. Likewise,

during viral infection, CXCR5 is expressed by some

activated cytotoxic T cells so that they enter follicles

to attack virally infected Tfh and B cells [315].

Antigen-experienced T cells can be imprinted with

cCKRs that enable them to selectively home to specific

tissues. T cells that encounter antigen in mesenteric

lymph nodes draining the small intestine will often

express CCR9 to enable homing back to the small

intestine [316–319]. This depends on the specialization

of DC and stromal cells in the mesenteric lymph nodes

and production of retinoic acid from dietary vitamin

A [319–324]. Likewise, T cells activated in skin-drain-

ing lymph nodes typically express CCR4, CCR8, or

CCR10 to enable homing to the skin: this may depend

on skin-derived vitamin D3 and keratinocyte products

[10,229,325–329]. In contrast, central memory CD4+

and CD8+ T cells (Tcm), like na€ıve T cells, traffic

through secondary lymphoid organs using CCR7,

while other memory T cells lose CCR7 and express

cCKRs that enable them to home to nonlymphoid tis-

sues [330]. These memory cells can remain resident in

the nonlymphoid tissue or home back to lymph nodes

by up-regulating CCR7 [271,272]. In addition, recent

work has defined three functionally distinct subsets of

antigen-experienced CD8+ T cells based on their dif-

ferential expression of CX3CR1 [331].

Antigen-experienced B cells also use chemokine

receptor switching to direct differentiated cells to dis-

crete tissues or tissue domains. CCR7 up-regulation

directs activated B cells to the boundary of the follicle

and the T-cell area [332]. CXCR4 and CXCR5 are

involved in the movement of antigen-experienced B

cells in germinal centers, and CCR6 expression marks

memory B-cell precursors in these structures [333–335].
CXCR4 homes long-lived plasma cells to supportive

niches in BM and spleen [336,337], and CCR9 and

CCR10 direct plasma cell homing to the intestine and

mammary gland [338–343].

Concluding remarks

The chemokine network is enormously complex, com-

prising of a large number of interacting ligands, recep-

tors, and regulatory proteins engaged in overlapping

and diverse cellular processes. The induction of migra-

tion, particularly of leukocytes, is its central biological

purpose, but its influence extends far beyond this. The

physiological contribution of the chemokine network

is substantial, with fundamental roles in development,

homeostasis, immune surveillance, inflammation, pro-

tection from infection, tissue repair, and innate and

adaptive immunity. Virtually all diseases involve

chemokines and their receptors in some way, some

more prominently than others, and although clinical

translation has been slow, drugs targeting cCKRs have

successfully made it to clinic. The first chemokine was

discovered over 40 years ago, and our understanding

of the chemokines and their receptors is now well

Fig. 4. Expression of chemokine genes in selected mouse tissues under steady-state conditions. By examining graphs generated on The

Immunological Genome Project website (www.immgen.org) [351] using their transcriptomic data, the expression of each chemokine, in

each of the tissues shown (left hand column), was assigned to one of the seven color-coded ‘Expression Level Categories’ indicated in the

key in the center of the Figure. Expression in the central nervous system (CNS) was estimated by examining ImmGen data on numerous

component parts of the CNS. Expression by lymphocytes was included to help indicate whether chemokine expression by secondary

lymphoid organs could be attributed to expression by lymphocytes, the dominant cell type in these organs. It was estimated by examining

ImmGen data on B cells, CD4+ T cells, and CD8+ T cells. It should be noted that the function of a chemokine in a tissue will depend of

where it is expressed: for example, expression by blood vessel endothelial cells may enable leukocyte recruitment from the blood, while

their presence elsewhere might help direct leukocytes to specific microanatomical niches, or encourage departure via lymphatic vessels.
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advanced. Nonetheless, there is still much to uncover,

and chemokines and their receptors are likely to

remain prominent in the scientific literature for years

to come.
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