A novel laser resonator for fractal modes

Hend Sroor, Darryl Naidoo, Johannes Courtial, Andrew Forbes

Event: SPIE LASE, 2018, San Francisco, California, United States
A noval laser resonator for fractal modes
Hend Sroora, Darryl Naidooa,b, Johannes Courtialc and Andrew Forbesa

a School of Physics, University of the Witwatersrand, Johannesburg, South Africa.
b National Laser Centre, CSIR, Pretoria 0001, South Africa.
c School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom.

ABSTRACT
Mathematical self-similar fractals manifest identical replicated patterns at every scale. Recently, fractals have found their way into a myriad of applications. In optics, it has been shown that manipulation of unstable resonator parameters such as cavity length, curvatures of mirrors, the design of aperture and its transverse position can reveal self-similar fractal patterns in the resonators eigenmodes. Here, we present a novel laser resonator that can generate self-similar fractal output modes. This resonator has a special plane termed self-conjugate, during each round trip inside the cavity, is imaged upon itself with either a magnification or demagnification depending on the direction of beam propagation inside the cavity. By imaging an aperture placed in the self-conjugate plane inside the cavity, we qualitatively show the fractal behaviour occurring at various scales which are, given by powers of the magnification at the self-conjugate plane. We computed the fractal dimension of the patterns we generated and obtained non-integer values, as is expected for fractals.

Keywords: laser resonator, fractal, frenesel numeber, differaction limits, unstable resonator

1. INTRODUCTION
Fractal is a mathematical set which is described by a continuous but nowhere differentiable function that exhibit a repeated pattern at every scale. Fractal is known as expanding symmetry or evolving symmetry.1,2 However, if the pattern reassembles itself at different scales, this fractal characterized by self-similarity property. A self-similar fractal means that the object is similar or exactly the same to a part of the same shape which is characteristic of that particular fractal.

One of the most striking characteristics of fractals is their non-integer dimensionality. Classical geometry deals with objects of integer dimensions: zero dimensional points, one dimensional lines and curves, two dimensional plane figures such as squares and circles, and three dimensional solids such as cubes and spheres. However, many natural phenomena are better described using a dimension between two whole numbers. So while a straight line has a dimension of one, a fractal curve will have a dimension between one and two, depending on how much space it takes up as it twists and curves. The more the flat fractal fills a plane, the closer it approaches two dimensions.

The dimensionality can be determined by using the so called box-count method:3 We cover the curve with a grid of boxes of size $d \times d$ and count, for each box size d, the number of boxes n that are needed to cover the curve fully. Then the fractal dimension follows as

$$D = \frac{\log n}{\log (1/d)}.$$ \hspace{1cm} (1)

If this recipe is applied to a smooth curve one will find $D = 1$, since $n = 1/d$ for small d, but for a fractal one will find a non-integer value for D, since a fractal has structure on any scale.

Fractal has permeated many area of science, such as astrophysics,4 biological sciences,5 and has become one of the most important techniques in computer graphics.6 Many image compression schemes use fractal algorithms to compress computer graphics files to less than a quarter of their original size.

Further author information: (Send correspondence to A. Forbes) E-mail: andrew.forbes@wits.ac.za
In optics, the light within unstable laser resonators possess a self-similar and therefore fractal structure.7,8 The fundamental question should be asked is; how come that a simple optical system possess such unexpected property? The answer of this question have been argues by Woerdman and McDonald.9,10 They concluded that diffraction plays crucial role which renders unstable cavities modes not rigorously but only statistically self-similar. This conclusion can be explained as follows; unstable laser resonator are defined using two numbers, the round trip resonator magnification M and Frensel number N which can be determined by

$$N = \frac{1}{2}(M + 1)\frac{a^2}{\lambda L}, \tag{2}$$

where a is the mirror radius, λ is the wavelength and L is the laser cavity. The eigenmodes of the unstable cavities are fully determined by the N and M numbers. If we restricted our discussion into only the lowest order mode. We find that in confocal unstable resonator consists of two spherical mirrors with focal lengths f_1 and f_2 facing each other at distance d, there is a self-conjugate plane S. At this plane, each round trip leads to magnified image of the intensity distribution of the imaged plane. This is an essential property of unstable-cavity resonators that is absent in stable cavity resonators. The eigenmode intensity distribution in the aperture plane does not change after one round trip (otherwise it would not be an eigenmode).11 But a round trip amounts to magnification, so the Eigen mode must be invariant under magnification, and this is exactly the definition of a fractal.

2. EXPERIMENT

Here, we represent the experimental realisation of self-similarity inside the laser cavity. The cavity consisted of an Nd doped YAG rod as a gain medium (6.35×76 mm) that was flash-lamp pumped. The unstable cavity was constructed in a L-shape which consisted of two concave high reflectors acting as the end mirrors with a 45° output coupler (OC) of 99.8% reflectivity positioned at the apex of the L as shown in Fig. 1.

![Figure 1: (a) Schematic of the experimental setup for fractal beam generation where M1 and M2 are concave high reflectors with a 45° OC of 99.8% reflectivity. The length of the cavity is selected as $R_1/2 + R_2/2$ with the S Plane positioned at the centre of the Nd:YAG gain medium. A hexagon shaped aperture is positioned at M2 to induce a fractal pattern. The S plane is captured outside the cavity at a distance $R_2/2$ from M2 using a CCD camera.](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)
resonators eigenmodes. The self-similar patterns were formed by positioning an aperture which induces the
self-similarity,7,8 therefore, in our setup a hexagonal polygon-shaped aperture was inserted at the larger of the
two end mirrors. The aperture is much smaller than the other mirror size; as a result, only diffraction from this
mirror contributes to the fractal pattern. The output beam is captured using a CCD camera (Spiricon SPU260
BeamGage).

The S plane represents the self-conjugate plane which, during each round trip inside the cavity, is imaged upon
itself with either a magnification or demagnification of M or $1/M$, respectively. Resonator parameters manipulate
the position of the self-conjugate plane S. Here, we restricted our cavity to the unstable confocal resonator \textit{i.e.}
the resonators where the length of the cavity corresponded to the curvature of the mirrors $L = R_1/2 + R_2/2$
with $R_2 > R_1$. Consequently, the S plane existed in the common focal plane. The S plane was positioned at the
centre of the gain medium. This position was selected to prevent any aperturing effects on the oscillating mode
by the gain medium with only the polygon-shaped aperture acting on the mode.

The fractal laser cavity, represented in Fig. 1, generated two versions of the self-similarity pattern. Both
exhibiting the same pattern structure, but different magnifications: one version is built up from a successive
magnification of the original pattern of the aperture while the second is built up from a de-magnification of
the original aperture pattern.12 The self-similarity pattern version depends mainly on the beam propagation
direction inside the laser cavity. For example, if the beam inside the cavity propagates from plane S to M_1, M_1
to M_2, and M_2 to plane S, the fractal pattern is magnified by a factor $M (= R_2/R_1)$.

In this case, our resonator considered as an analogue to the monitor outside a monitor effect where the
monitor here is represented by the self-conjugate plane. The self similarity is seen in the magnified output
and was subsequently captured using the CCD camera at a distance of $R_2/2$ from M_2 as illustrated in Fig. 1.
Consequently, if the direction of propagation is the opposite (plane S to M_2, M_2 to M_1, and to plane S), the
output fractal pattern is de-magnified by a factor $1/M (= R_1/R_2)$ and the cavity exhibits an analogue to the
monitor inside a monitor effect.

Several fractal cavities corresponded to different magnifications. The fractal cavities parameters are shown
in Table 1. A snowflake-shaped aperture as well as hexagon polygon-shaped aperture of diameter of varied from
2 mm to 5 mm were tested inside the fractal cavities. The output fractal beams are shown in Fig. 2.
3. CONCLUSION

In this work, we have presented a novel laser resonator that can generate self-similar fractal output modes. The measurement of the on-axis intensity of the propagating modes has been investigated to confirm the position of the self-conjugate, S, plane. By imaging an aperture placed in the self-conjugate plane inside the cavity, we qualitatively show the fractal behaviour occurring at various scales which, are given by powers of the magnification at the self-conjugate plane. We computed the fractal dimension of the patterns we generated and obtained non-integer values, as is expected for fractals.

REFERENCES