Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer

Yang, Z. et al. (2013) Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer. Langmuir, 29(5), pp. 1498-1509. (doi:10.1021/la3041055) (PMID:23305497)

Full text not currently available from Enlighten.

Abstract

Antibody microarrays are powerful and high-throughput tools for screening and identifying tumor markers from small sample volumes of only a few microliters. Optimization of surface chemistry and spotting conditions are crucial parameters to enhance antibodies’ immobilization efficiency and to maintain their biological activity. Here, we report the implementation of an antibody microarray for the detection of tumor markers involved in colorectal cancer. Three-dimensional microstructured glass slides were functionalized with three different aminated molecules ((3-aminopropyl)dimethylethoxysilane (APDMES), Jeffamine, and chitosan) varying in their chain length, their amine density, and their hydrophilic/hydrophobic balance. The physicochemical properties of the resulting surfaces were characterized. Antibody immobilization efficiency through physical interaction was studied as a function of surface properties as well as a function of the immobilization conditions. The results show that surface energy, steric hindrance, and pH of spotting buffer have great effects on protein immobilization. Under optimal conditions, biological activities of four immobilized antitumor marker antibodies were evaluated in multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated that the chitosan functionalized surface displayed the highest binding capacity and allowed to retain maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully demonstrated the application of amino-based surface modification for antibody microarrays to efficiently detect tumor markers.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Yang, Dr Zhugen
Authors: Yang, Z., Chevolot, Y., Géhin, T., Dugas, V., Xanthopoulos, N., Laporte, V., Delair, T., Ataman-Önal, Y., Choquet-Kastylevsky, G., Souteyrand, E., and Laurenceau, E.
College/School:College of Science and Engineering > School of Engineering > Biomedical Engineering
Journal Name:Langmuir
Publisher:American Chemical Society
ISSN:0743-7463
ISSN (Online):1520-5827
Published Online:10 January 2013

University Staff: Request a correction | Enlighten Editors: Update this record