
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/156759/

Deposited on: 06 February 2018

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
*Graphical Abstract

FT-IR
- WSP700 + Lead
- WSP700

TGA
- CO\textsubscript{2} loss
- 0.31\% (TGA) WSP700 + Lead
- (TGA) WSP700 + Lead
- (TGA) WSP700 (W)

XRD
- Adsorbed Pb2+ on biochar
- Characterise the adsorption mechanisms of Pb2+ on biochar

Sequential extraction
- Water soluble
- Exchangeable
- Acidic soluble
- Non-bioavailable

SEM/EDX
- Qualitative

FT-IR
- Qualitative

TGA
- Quantitative

XRD
- Quantitative
• Pb\(^{2+}\) mainly exists as acid soluble fraction (75.61-85.76\%) on SB, WSP700 and RH700

• 82.24\% of total adsorbed Pb\(^{2+}\) exists as cerussite on SB

• 13.00-29.70\% of total adsorbed Pb\(^{2+}\) exists as hydrocerussite on rest three biochars

• The rest acidic soluble fraction for Pb\(^{2+}\) is likely adsorbed through cation-\(\pi\) interaction

• Using chemical and micro-structural methods to quantify mechanisms is feasible
Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars

Zhengtao Shena,b,*, Yiyun Zhanga, Fei Jina, Oliver McMillana, Abir Al-Tabbaaa

a (Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom)

b (Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada)

*Corresponding author: Email: ztshennju@gmail.com; zs281@cam.ac.uk. Phone number: 0044+7541935253. Fax: 0044+7541935253
Abstract: The adsorption mechanisms of lead (Pb^{2+}) on four biochars (SB produced from British hardwood at 600 °C and three standard biochars produced from wheat straw pellets at 700 °C (WSP700), rice husk at 700 °C (RH700) and soft wood pellets at 550 °C (SWP550)) were characterised qualitatively and quantitatively, using a combination of chemical and micro-structural methods. Sequential extraction test results show that Pb^{2+} was predominantly adsorbed on SB (85.31%), WSP700 (75.61%) and RH700 (85.76%) as acidic soluble fraction, which was potentially bioavailable if applied in soil. The exchangeable fraction for SB, WSP700 and RH700 was low (1.38-4.29%) and their water soluble fraction was negligible (0-0.14%). Micro-structural analysis further investigated this fraction and confirmed the presence of cerussite (PbCO_3) on SB and hydrocerussite ($\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$) on WSP700, RH 700 and SWP550, suggesting a mechanism of surface precipitation for Pb^{2+} adsorption on the biochars. The percentages of Pb^{2+} in the form of PbCO_3 on SB (82.24%) and $\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$ on WSP700 (13.00%), RH 700 (19.19%) and SWP550 (29.70%) were quantified using thermogravimetric analysis (TGA). This study suggests that it is feasible to quantify different adsorption mechanisms of Pb^{2+} on biochars, which is important for the practical application of biochar in water and/or soil treatment.

Keywords: biochar; quantitative; characterisation; adsorption mechanism; lead; speciation
1. Introduction

Biochar is a charcoal-like material produced from agricultural and industrial organic wastes (Lehmann, 2007; Sohi, 2012). Pyrolysis is the typical production process for biochar during which the feedstock (typically biomass) is carbonised and subsequently biochar, bio-oil and syn-gas are produced (Jahirul et al., 2012; Sohi, 2012). Biochar production converts the labile biomass to a recalcitrant form (Lehmann et al., 2008). When added to soil, a meta-analysis showed that 97% of biochar carbon are recalcitrant and can remain in the soil for approximately 556 years (Wang et al., 2016).

Engineered biochars have demonstrated high adsorption capacities for heavy metals due to their aromatic structure and high pH, surface area and cation exchange capacity (CEC) (Lehmann, 2007; Sohi, 2012; Beesley et al., 2011). Biochar has effectively immobilised heavy metals when applied to contaminated soil. Bian et al. (2014) conducted a three-year study using wheat straw biochar to treat agricultural land contaminated with Cd\(^{2+}\) (5 mg/kg) and Pb\(^{2+}\) (100 mg/kg). During the three years after the treatment, Cd\(^{2+}\) and Pb\(^{2+}\) concentrations were continuously reduced in both CaCl\(_2\) and DTPA extractions, and in crop biomass. Shen et al. (2016b) applied a hardwood biochar to a severely contaminated industrial site and observed that the leachability of Ni\(^{2+}\) (from 0.35% to 0.12-0.15%) and Zn\(^{2+}\) (from 0.12% to 0.01%) was significantly reduced three years after biochar treatment. Numerous studies have also shown biochar's effectiveness in water treatment (Cui et al., 2016b; Qian et al., 2016; Shen et al., 2017). A recent meta-analysis study compared the life cycle environmental and economic performance of biochar with activated carbon, which is
one of the most conventional adsorbents used in soil remediation (Alhashimi and Aktas, 2017). It was found that biochar has lower energy demand (6.1 MJ/kg versus 97 MJ/kg), global warming potential impact (−0.9 kg CO₂eq./kg and 6.6 kg CO₂eq./kg) and cost (5 $/kg versus 5.6 $/kg). When adsorption of heavy metals was used as the functional unit during analysis, results indicate that biochar had lower environmental impacts than activated carbon. Therefore, the use of biochar in water treatment or soil remediation to immobilise heavy metals and reduce their environmental risks is regarded as a green sustainable remediation technology due to both its effectiveness in immobilising heavy metals and its additional benefits in waste management, energy production and carbon storage (Lehmann et al., 2006).

Adsorption is the main mechanism for biochar to immobilise heavy metals in water and soil (Sizmur et al., 2015). Biochar can adsorb heavy metals through a range of mechanisms including physical adsorption, cation exchange, cation-π interaction, surface precipitation and surface complexation (Cao et al., 2009; Choy and McKay, 2005; Keiluweit et al., 2009; Mohan et al., 2007; Zhang et al., 2015). Different adsorption mechanisms have different environmental implications. The heavy metals adsorbed on biochar through physical adsorption and cation exchange represent the readily bioavailable fraction in soil which poses direct risks to plants and humans, whereas those adsorbed through cation-π interaction represent the potentially bioavailable fraction, and those through surface complexation represent the non-bioavailable fraction (Rodriguez-Vila et al., 2015). The bioavailability of heavy metals adsorbed on biochar through surface precipitation depends on precipitate type: the precipitates which can be dissolved in sodium acetate or acetic acid is regarded as potentially bioavailable and the rest is regarded as non-bioavailable. When applied to contaminated soil, it is expected that biochar could reduce the readily bioavailable
heavy metals to reduce the environmental risks. However, when applied in water treatment, the physically bonded and exchangeable heavy metals on biochar are easily desorbed, which will aid the reuse of biochar.

The adsorption mechanisms of heavy metals on biochar vary among biochars produced from different feedstocks at different temperatures due to their different properties (Choy and McKay, 2005; Keiluweit et al., 2010; Mohan et al., 2007; Zhang et al., 2015). For instance, plant feedstock contains mainly cellulose, hemicellulose and lignin however the proportion of each of the three components in different plants (e.g. grass versus wood) varies (Jahirul et al., 2012). The lignin, hemicellulose and cellulose also thermally decompose at different temperatures: hemicellulose decomposes between around 240 and 400 °C; cellulose between around 320 and 410 °C; and lignin only partially decomposes under heating up to 500 °C. The different degrees of thermal decomposition of feedstocks will result biochars with significantly different properties (e.g. pH, CEC and surface area) (Keiluweit et al., 2010) and consequently different adsorption capacities for heavy metals. Therefore, it is important to identify the adsorption mechanisms of heavy metals on biochar in order to direct its practical applications and predict its environmental performances.

In addition, when applied to field contaminated land, environmental factors such as rainfall, groundwater flow, soil microbial activity, plant growth and earthworm movement may affect the long-term stability of heavy metals adsorbed by biochar. Understanding the adsorption mechanisms of heavy metals on biochar prior to field application will aid the selection of biochar, the engineering design and estimation/modelling of the resistance and long-term stability of biochar immobilisation of heavy metals on field conditions.
Batch adsorption studies are the most conventional methods to investigate the adsorption mechanisms of heavy metals on biochar. The adsorption mechanisms can be inferred through the adsorption characteristics obtained from batch adsorption studies. Micro-structural methods such as X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) spectra and scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis are typically used with batch adsorption studies to indicate the adsorption mechanisms of heavy metals on biochar (Cheng et al., 2016; Cui et al., 2016a; DeMessie et al., 2015). The minerals formed, the change of the molecular structure and the surface morphology of biochar after heavy metal adsorption can be used to indicate the adsorption mechanisms. However, these micro-structural analyses remain at a qualitative level, with very limited investigations quantifying the fractions of heavy metals adsorbed on biochar through different mechanisms being published to date. Xu et al. (2014) quantified the portions of different precipitates on a manure and a rice straw biochar after Pb$^{2+}$ adsorption using MINTEQ modelling (accompanied with adsorption studies, XRD and FT-IR tests) (Xu et al., 2014). They found that 91.6% and 67.5% of the total adsorbed Pb$^{2+}$ on the inorganic part of the two biochars can be attributed to precipitation, and subsequently quantified the portions of different precipitates (Pb$_5$(PO$_4$)$_3$Cl and Pb$_3$(CO$_3$)$_2$(OH)$_2$). However, experimental results are needed to verify these findings obtained through MINTEQ modelling. Fristak et al. (2015) used a chemical method called sequential extraction combined with adsorption studies and FT-IR analysis to investigate the adsorption mechanisms of Cd$^{2+}$ to two woody biochars and an activated carbon both qualitatively and quantitatively (Fristak et al., 2015). They found 69-92% of the adsorbed Cd$^{2+}$ existed in the exchangeable and acidic soluble fractions. However, this study did not quantitatively separate the exchangeable and
acidic soluble fractions of Cd$^{2+}$ on biochars which pose different environmental risks.

The quantification of the adsorption mechanisms of heavy metals on biochar needs further understanding.

It is therefore important to characterise the adsorption mechanisms of heavy metals on biochar both qualitatively and quantitatively to aid its practical application. Pb$^{2+}$ was selected as the target metal in this study as it is among the most serious concerns for water and soil pollution (Yang et al., 2014) and all the four biochars exhibited the highest adsorption capacities for Pb$^{2+}$ compared with other heavy metals. Previous studies about biochar adsorption of Pb$^{2+}$ mainly investigated the adsorption characteristics through batch adsorption tests (Liu and Zhang, 2009; Mohan et al., 2007; Qiu et al., 2008). Several mechanistic investigations on Pb$^{2+}$ adsorption on biochar remain at a qualitative level (Cao et al., 2009; Inyang et al., 2011). In this study, A modified sequential extraction test was used to quantify different speciation of Pb$^{2+}$ on biochar, which represents different environmental risks. Thermogravimetric analysis (TGA) was used to quantify the thermally decomposable minerals (Pb$^{2+}$ precipitates) formed on biochar after Pb$^{2+}$ adsorption. XRD, FT-IR and SEM/EDX were used to qualitatively investigate the adsorption mechanisms of lead (Pb$^{2+}$) on biochars. XRD and SEM/EDX were expected to identify the potential formation of Pb$^{2+}$ precipitates on biochars’ surface. FT-IR was expected to identify the potential change of functional groups of biochar resulting from complexation or other interactions with Pb$^{2+}$. This experimental study aims to investigate the adsorption mechanisms of Pb$^{2+}$ on biochar both qualitatively and quantitatively, so as to aid the understanding of its environmental implications.

2. Materials and methods
2.1 Biochar

Four biochars were used in this study. Salisbury biochar (SB) was obtained from Southern Woodland Products (Salisbury, UK). It was produced from British broadleaf hardwood at a pyrolysis temperature of 600 °C in a retort with a residence time of 13.5 h. SB was previously applied to a field contaminated site in the UK and exhibited excellent performance in immobilising Ni$^{2+}$ and Zn$^{2+}$ in a sandy soil throughout a three-year study (Shen et al., 2016a). In contrast, SB did not affect the mobility or speciation of Pb$^{2+}$ in kaolin in a short-term study (Shen et al., 2016b). Therefore, SB was chosen in this study to further investigate its adsorption mechanisms for heavy metals. In previous studies, the adsorption characteristics of heavy metals on eight standard biochars were investigated. The standard biochars were produced and recommended by the UK Biochar Research Centre (UKBRC) at the University of Edinburgh (Shen et al., 2017a, 2017b). Wheat straw pellets biochar produced at 700 °C (WSP700), rice husk biochar produced at 700 °C (RH700), and soft wood pellets biochar produced at 550 °C (SWP550) were selected for this study as they exhibited a maximum, intermediate and minimum adsorption capacities for heavy metals among the eight standard biochars. The biochars were oven dried at 60 °C for 48 h and ground and sieved to a particle size smaller than 0.15 mm. The volatile matter content, total ash content and elementary contents (C, H, N, O) of SB are determined based on UKBRC standard. Other properties for SB and selected physicochemical properties of WSP700, RH700 and SWP550 can be found from the previous studies (Shen et al., 2015, 2016a, 2016b, 2017) and are also shown in Table 1.

The maximum adsorption capacities of Pb$^{2+}$ on the biochars are shown in Table 1. The equilibrium data were calculated and fitted by the Langmuir isotherm model to
obtain the maximum adsorption capacities of Pb\(^{2+}\) for the biochars based on the methods from Shen et al. (2015). The fitting parameters and regression coefficients are shown in Fig. S1 and Table S1. The maximum adsorption capacities of Pb\(^{2+}\) on SB, WSP700, RH700 and SWP550 calculated through Langmuir fitting are 0.230, 0.549, 0.169 and 0.039 mmol/g, equal to 47.61, 113.64, 34.98 and 8.07 mg/g respectively. The equilibrium data are well described by the Langmuir model for all biochars (R\(^{2}\) of 0.988-0.999).

Table 1 Physicochemical properties of the biochars (Shen et al., 2015, 2016a, 2016b, 2017).

<table>
<thead>
<tr>
<th></th>
<th>SB</th>
<th>WSP700</th>
<th>RH700</th>
<th>SWP550</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area (m(^2)/g)</td>
<td>5.30</td>
<td>23.20</td>
<td>42.00</td>
<td>26.40</td>
</tr>
<tr>
<td>Cation exchange capacity (cmol/kg)</td>
<td>7.20</td>
<td>12.50</td>
<td>5.36</td>
<td>2.53</td>
</tr>
<tr>
<td>pH</td>
<td>6.96</td>
<td>10.03</td>
<td>9.81</td>
<td>7.91</td>
</tr>
<tr>
<td>pH(_{pzc})</td>
<td>6.3</td>
<td>7.4</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Volatile matter (%)</td>
<td>19.26</td>
<td>7.38</td>
<td>4.99</td>
<td>14.20</td>
</tr>
<tr>
<td>Total ash (%)</td>
<td>2.98</td>
<td>23.82</td>
<td>47.93</td>
<td>1.25</td>
</tr>
<tr>
<td>C (%)</td>
<td>78.92</td>
<td>69.04</td>
<td>47.32</td>
<td>85.52</td>
</tr>
<tr>
<td>H (%)</td>
<td>3.61</td>
<td>1.18</td>
<td>0.63</td>
<td>2.77</td>
</tr>
<tr>
<td>O (%) (by difference)</td>
<td>13.82</td>
<td>5.30</td>
<td>2.06</td>
<td>10.36</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.67</td>
<td>1.32</td>
<td>0.85</td>
<td><0.10</td>
</tr>
<tr>
<td>O/C</td>
<td>0.18</td>
<td>0.08</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>(O+N)/C</td>
<td>0.19</td>
<td>0.10</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>H/C</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>P (%)</td>
<td>N.A.</td>
<td>0.25</td>
<td>0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>Pb (%)</td>
<td>0.01</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
</tr>
<tr>
<td>Maximum Pb(^{2+}) adsorption capacity</td>
<td>0.230</td>
<td>0.549</td>
<td>0.169</td>
<td>0.039</td>
</tr>
</tbody>
</table>
(mmol/g) (Langmuir fitting)

201 (N.A. – not available, bdl – below detection limit)

202 2.2 Chemical and micro-structural analyses

203 The equilibrium study revealed that all four biochars reached their maximum
204 adsorption capacities for Pb\(^{2+}\) at initial Pb\(^{2+}\) concentration of 5 mM. Therefore, the
205 biochar samples after Pb\(^{2+}\) adsorption at this initial solution concentration were
206 chosen for the chemical and micro-structural tests for the greatest chance of
207 identifying the adsorption mechanisms.

208 The biochar after Pb\(^{2+}\) adsorption was quickly washed using 20 mL deionised water
209 and the water was discarded after centrifugation. A pre-trial study indicates that the
210 influence of washing on the total amount of adsorbed Pb\(^{2+}\) was negligible. The
211 remaining solid was oven dried at 60 °C for 48 h to represent the biochar sample
212 after Pb\(^{2+}\) adsorption for further analysis. The same procedure was employed on the
213 control sample without the presence of Pb(NO\(_3\))\(_2\) to represent the biochar sample
214 before Pb\(^{2+}\) adsorption for further tests. In order to qualitatively and quantitatively
215 characterise the adsorption mechanisms, the biochar samples before and after Pb\(^{2+}\)
216 adsorption were examined using the following chemical and micro-structural
217 analyses.

218 The 5-step sequential extraction test is typically used to indicate the speciation and
219 bioavailability of heavy metals in soil (Li et al., 1995, 2001; Tessier et al., 1979). As
220 sequential extraction is a time consuming test method, it is useful to simplify the test
221 method while still efficiently determining heavy metal speciation. Since steps 3, 4
222 and 5 in the conventional method all represent non-bioavailable fractions of heavy
223 metals, a simplified 4-step sequential extraction was developed in which the original
steps 3, 4 and 5 are combined. In addition, a step representing the water soluble or physically adsorbed fraction of heavy metals on biochar was added to determine their readily bioavailable fraction in soil. The two steps representing exchangeable (readily bioavailable) and acidic soluble (potentially bioavailable) fractions respectively in the 5-step procedure remained in the 4-step procedure. The Pb\(^{2+}\) in the solid residue from the equilibrium study (as detailed above) was therefore extracted and defined as the following four steps:

Step 1 – water soluble fraction: The solid residue (0.1 g biochar + adsorbed Pb\(^{2+}\)) was mixed with 20 mL deionised water and shaken for 24 h at room temperature (20 °C);

Step 2 – exchangeable fraction: The solid residue from step 1 was extracted with 8 mL of 0.5 M MgCl\(_2\) (adjusted to pH 7.0 using NaOH or HCl) and shaken for 20 min at room temperature;

Step 3 – acidic soluble fraction: The solid residue from Step 2 was extracted with 8 mL of 1 M NaOAc (adjusted to pH 5.0 with HOAc) and shaken for 5 h at room temperature;

Step 4 – non-bioavailable fraction: The solid residue from step 3 was digested with 9 mL of 36% HCl and 3 mL of 70% HNO\(_3\) for 16 h at room temperature and then heated at 95 °C for 2 h.

In sequential extraction, shaking in step 1, 2 and 3 was performed at 200 rpm. Following each step, the samples were centrifuged at room temperature. The supernatant was then collected and filtered through a 0.45 µm filter and acidified or diluted when necessary before analysis with ICP-OES to determine the Pb\(^{2+}\) concentration. The remaining solid sample was washed with 20 mL deionised water.
prior to the next extraction step, and the washing solution was discarded after centrifugation.

XRD was used to indicate the crystalline phases in the sample. The dry samples were mounted on a flat holder and examined by a Siemens D500 X-ray diffractometer with a CuKα source operating at 40 kV and 40 mA, emitting radiation at a wavelength of 1.5405 Angstroms. The scanning regions were between 2θ values of 10-60° at a rate of 0.6 s/step and a resolution of 0.02°/step.

FT-IR was used to study the fundamental vibrations and associated rotational-vibrational structure. The infrared spectrum of biochar was tested by a Perkin Elmer Spectrum 100 Fourier transform infrared spectroscopy spectrometer. 16 scans were taken from 4000 to 450 cm$^{-1}$ with a resolution of 4 cm$^{-1}$.

TGA measures the weight loss with precision while heating the biochar samples. In order to quantify the possible precipitates (e.g. cerussite and hydrocerussite) that formed after biochar adsorption of Pb$^{2+}$, the biochar sample was analysed using Mettler-Toledo TGA/DSC 1 Thermogravimetric Analyzer. Biochar samples of approximately 10 mg were placed into the ceramic crucible and heated from 30 to 600 °C at a heating rate of 10 °C/min under N$_2$ atmosphere at flow rate of 30 mL/min. The first derivatives of the TG curves (DTG) were calculated to identify the thermal decomposition of the possible precipitates.

SB was coated with gold and its surface morphology was examined by a Phenom Pro desktop Scanning electron microscopy at 5 kV. The surface morphology of the WSP700, RH700 and SWP550 were examined by a FEI Quanta 200 FEI system with an acceleration voltage of 20 kV after being coated with gold. After Pb$^{2+}$
adsorption, the surface morphology and elemental composition of biochars were
examined by a JSM-5800LV SEM with EDX at 10 kV after being coated with Pd.

2.3. Quality control

Sequential extraction tests were performed in duplicates. All micro-structural tests
were carried out once, with pre-trials being conducted to check the reproducibility.
The preparation of biochar samples and sequential extraction test were conducted at
a temperature controlled lab at 20 ± 1 °C and 50 ± 2% humidity. The micro-structural
tests were carried out at ambient temperatures.

3. Results and discussion

3.1 Sequential extraction results

The speciation of Pb^{2+} on each biochar determined by sequential extraction tests,
are shown in Fig. 1. The recovery percentages from the sequential extraction tests
are shown in Table S2. The recoveries of Pb^{2+} from SB, WSP700 and RH700 were
78.41-85.52%, while that for SWP550 (46.16%) was much lower. The sequential
extraction recovery of Pb^{2+} from SB, WSP700 and RH700 is similar to the recovery
of heavy metals from biochar or biochar treated soils using conventional sequential
extraction methods in previous studies. Fristak et al. (2015) conducted a 4-step
sequential extraction test (steps 2, 3, 4 and 5 in conventional methods) on two
woody biochars after adsorption of Cd^{2+}, Zn^{2+} and Cu^{2+}, and observed a recovery
range of 82.4-104.4% (Fristak et al., 2015). The conventional sequential extraction
recovery of Pb^{2+} from SB treated soil was 61.50-97.28% (Shen et al., 2016b).
SWP550, which has the lowest recovery, also had the lowest adsorption capacity of
Pb^{2+}, indicating that sequential extraction tests may not work well for samples with
low adsorbed heavy metal contents due to the large relative standard errors. The
discussion about the sequential extraction results below will not include SWP550 considering its low recovery.

The sequential extraction results indicate that the majority of adsorbed Pb\(^{2+}\) on SB (85.31%), WSP700 (75.61%) and RH700 (85.76%) were in the acidic soluble fraction. WSP700 had a non-bioavailable fraction of 22.86% whereas this fraction for SB and RH700 was 10.40% and 11.40% respectively. The exchangeable fraction for all the three biochars was low (1.38-4.29%) and their water soluble fraction was negligible (0-0.14%). The negligible water soluble fraction suggests the adsorption of Pb\(^{2+}\) to the three biochars was a chemical rather than physical process (Inyang et al., 2015).

The low exchangeable fraction together with the negligible water soluble fraction indicates an absence of the readily bioavailable fraction of Pb\(^{2+}\) on the three biochars. The majority of Pb\(^{2+}\) was acidic soluble which represents a potentially bioavailable fraction. This fraction may come from the formation of Pb\(^{2+}\) precipitates which can be dissolved in the NaOAc/HOAc solution (step 3 in sequential extraction). Alternatively, it may result from the adsorbed Pb\(^{2+}\) on biochar through cation-\(\pi\) interaction. Cation-\(\pi\) interaction is a typical mechanism for biochar adsorption of heavy metals (Wang et al., 2014; Keiluweit and Kleber, 2009). Unlike the weak electrostatic attraction, the Pb\(^{2+}\) adsorbed through cation-\(\pi\) interaction has a relatively high binding energy and will only desorb under significant pH changes (Wang et al., 2014; Keiluweit and Kleber, 2009). Table S2 shows the change of solution pH between steps 2 and 3, where the equilibrium solution pH decreased from above pH\(_{pzc}\) to below pH\(_{pzc}\). This would result in the surface charge of the biochar changing from negative to positive, therefore the adsorbed Pb\(^{2+}\) through cation-\(\pi\) interaction would be desorbed at step 3 due to electrostatic repulsion (Keiluweit and Kleber, 2009). The non-bioavailable
fraction may come from the Pb$^{2+}$ adsorbed via surface complexation or the formation of precipitates that cannot be dissolved in the NaOAc/HOAc solution.

Fig. 1. Speciation of lead on biochars.

3.2 XRD and FT-IR results

It was found from the sequential extraction results that the majority of Pb$^{2+}$ on SB, WSP700 and RH700 exists as the acidic soluble fraction, representing an adsorption mechanism of either surface precipitation or cation-π interaction. XRD and FT-IR tests were carried out to verify the formation of precipitates and changes of functional groups caused by cation-π interaction respectively.

The XRD patterns of the four biochars are shown in Fig. 2. Strong evidence was obtained from XRD patterns suggesting the formation of cerussite (PbCO$_3$) on SB, and hydrocerussite (Pb$_3$(CO$_3$)$_2$(OH)$_2$) on WSP700, RH 700 and SWP550. The CO$_3^{2-}$
that formed these precipitates could be generated from the carbonates in biochar that formed during production due to the decomposition of carboxylates (Dodson, 2011), This theory is supported by the presence of calcite (CaCO₃) in SB and WSP700 in the XRD patterns (Fig. 2a and 2b). The absence of peaks associated with carbonates for RH700 and SWP550 (Fig. 2c and 2d) may be due to their low concentrations. The CO₃²⁻ may also come from the dissolved CO₂ in solution from the air during adsorption tests. It was found in this study that a higher biochar pH (WSP700, RH 700 and SWP550) favoured the formation of Pb₃(CO₃)₂(OH)₂ while a lower biochar pH (SB) aided the formation of PbCO₃ in this study. A previous study observed that Pb₃(CO₃)₂(OH)₂ can transfer to PbCO₃ in the presence of a weak acid (Haizhou et al., 2008), which is in line with our finding that lower pH biochar favoured the formation of PbCO₃.
Fig. 2. XRD patterns of biochars before and after Pb\(^{2+}\) adsorption (a – Salisbury biochar (SB), b – WSP700, c – RH700, d – SWP550).

The FT-IR spectra of the four biochars are shown in Fig. 3. A new peak representing CO\(_3^{2-}\) stretching appeared on the FT-IR spectra of WSP700 after Pb\(^{2+}\) adsorption (Fig. 3a), which is likely from the Pb\(_3\)(CO\(_3\))\(_2\)(OH)\(_2\) as suggested by the XRD results. The minerals formed on SB, RH700 or SWP550 suggested by XRD patterns were not identified by FT-IR test, probably due to their lower contents. The peaks associated with aromatic C for the four biochars did not reveal significant changes after Pb\(^{2+}\) adsorption. Shifts of FT-IR peaks associated with carbonyl, hydroxyl and ester were observed for water hyacinths biochars after Cd\(^{2+}\) and Pb\(^{2+}\) adsorption in a previous study (Ding et al., 2016), suggesting an adsorption mechanism of electrostatic interaction between biochars and heavy metals. However, the present study did not find peaks shifting from FT-IR results suggesting an adsorption mechanism of cation-π interaction, which may be due to the detection limit.
Fig. 3. FT-IR spectra of biochars before and after Pb$^{2+}$ adsorption (a – Salisbury biochar (SB), b – WSP700, c – RH700, d – SWP550).

3.3 TGA results

TGA tests were carried out to determine the contents of Pb$_3$(CO$_3$)$_2$(OH)$_2$ or PbCO$_3$ on biochars and the results are shown in Fig. 4. CaCO$_3$, lead dichloride (PbCl$_2$) and pyromorphite (Pb$_5$(PO$_4$)$_3$Cl), as suggested by XRD results, are stable at this testing temperature range (Chernorukov et al., 2011; Oniyama and Wahlbeck, 1995). Two new peaks on the DTG curve between 223 and 361 °C for SB after Pb$^{2+}$ adsorption (Fig. 4a) were attributed to the thermal decomposition of PbCO$_3$ (Ciomartan et al., 1996), further confirming an adsorption mechanism of surface precipitation. It is of note that various intermediate products (e.g. PbCO$_3$·PbO and PbCO$_3$·2PbO) may form during the thermal decomposition of PbCO$_3$ to PbO (Sajadi and Alamolhoda,
which can be affected by the experimental conditions and the influence of other substances in the biochar. The two peaks indicate the presence of such intermediate products. However, regardless of the type of the intermediate products, the weight loss between 223 and 361 °C was all attributed to CO₂ loss. The decomposition of PbCO₃ to PbO (if only considering the final products) can be expressed as:

\[\text{PbCO}_3 \rightarrow \text{PbO} + \text{CO}_2 \]

Equation 1

According to the TGA results and Equation 1 and taking the biochar sample before Pb²⁺ adsorption as a control, the weight percentage of Pb²⁺ in the form of PbCO₃ can be calculated as 3.11%, which is equivalent to 82.24% of the totally adsorbed amount of Pb²⁺ on SB. It was calculated from the sequential extraction results that 85.31% of the totally adsorbed Pb²⁺ on SB was acidic soluble, which coincides well with the TGA results and suggests this acidic soluble fraction was mainly in the form of PbCO₃.

Similar to PbCO₃, the thermal decomposition of Pb₃(CO₃)₂(OH)₂ at the testing temperature range can be separated into several steps. The dehydration process (Pb₃(CO₃)₂(OH)₂ to 2PbCO₃·PbO) took place between 100 and 200 °C (Sarig and Kahana, 1976), and then the decomposition of 2PbCO₃·PbO to PbO happened between 260 and 370°C, during which a range of intermediate products may present (e.g. PbCO₃·PbO, 4PbCO₃·3PbO and PbCO₃·2PbO) (Ciomartan et al., 1996). In this study, the dehydration of Pb₃(CO₃)₂(OH)₂ overlapped with the drying process of biochar, which was therefore difficult to be isolated (the big peaks on DTG curves before ~200 °C in Fig. 4). However this will not affect the calculation of the
percentage of $\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$ on biochar. The new peaks on the DTG curves in the
ranges 195-342 °C, 286-339 °C and 288-375 °C for WSP700, RH700 and SWP550
after Pb^{2+} adsorption respectively indicate the presence of the intermediate products,
进一步表明吸附机制为表面沉淀。不管中间产物的类型，重量损失（$2\text{PbCO}_3\cdot\text{PbO}$ to PbO）全
归因于CO_2损失，因此Pb^{2+}在$\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$上的百分比可以通过方程式1计算。

According to the TGA results and Equation 1, the percentage of Pb^{2+} in the form of
$\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$ on WSP700, RH700 and SWP550 can be calculated as 1.46%, 0.66%
and 0.24% (taking the biochar samples before heavy metal adsorption as control),
which are equivalent to 13.00%, 19.19% and 29.70% of the totally adsorbed Pb^{2+}
分别。顺序提取结果表明75.61%和85.76%的总吸附 Pb^{2+} 是酸溶性的，因此，
根据TGA和顺序提取结果，通过TGA定量的沉淀 Pb^{2+} 只占总酸溶 Pb^{2+} 吸附量的
在生物炭上。还有其他机制可能对酸溶 Pb^{2+} 吸附在生物炭上起贡献作用，可能包括分子间相互作用。
Fig. 4. TGA and DTG curves of biochars before and after Pb$^{2+}$ adsorption (a – Salisbury biochar (SB), b – WSP700, c – RH700, d – SWP550).

3.4 SEM and EDX results

The SEM images and EDX results of biochar are shown in Fig. 5, Fig. 6, S2, S3, S4, S5 and S6. Pb$^{2+}$ was observed on the surface of SB (Fig. 5 and S4). This Pb$^{2+}$ may come from Pb$^{2+}$ precipitates, as suggested by XRD, FT-IR and TGA results. The presence of Al$^{3+}$ also suggests it may have exchanged with Al$^{3+}$ on biochar. EDX plots for WSP700 showed the presence of Pb$^{2+}$ both perpendicular and parallel to fibre direction (Fig. S5). Clear solid particles can be seen in plots 1, 3 and 5 (Fig. 6 and S5), suggesting the formation of Pb$^{2+}$ precipitates as suggested by XRD and TGA results. Pb$^{2+}$ was also observed on RH700 (Fig. S3 and S6), which may either come from Pb$^{2+}$ precipitates or through cation exchange with K$^+$ or Ca$^{2+}$. The EDX results for SWP550 did not show Pb$^{2+}$ (Fig. S2), which was likely due to the relatively low concentration of Pb$^{2+}$ on SWP550.
Fig. 5. SEM/EDX images of SB before and after Pb$^{2+}$ adsorption (a – perpendicular to fibre direction before adsorption (Shen et al., 2015), b – parallel to fibre direction before adsorption, c – perpendicular to fibre direction after adsorption. The spectrum for the EDX plot (red circle) is shown in Fig. S4).
Fig. 6. SEM/EDX images of WSP700 before and after Pb\(^{2+}\) adsorption (a – perpendicular to fibre direction before adsorption (Shen et al., 2017a), b – perpendicular to fibre direction after adsorption, c – parallel to fibre direction before adsorption, d – parallel to fibre direction after adsorption. The spectrums for the EDX plots (red circles) are shown in Fig. S5).

3.5 Discussion

SB was previously applied to a field contaminated site (sandy soil) (Shen et al., 2016a) and an artificially contaminated clay soil (kaolin) in laboratory (Shen et al., 2016b). In the field site, it effectively immobilised Ni\(^{2+}\), Zn\(^{2+}\) and Pb\(^{2+}\) (data for Pb\(^{2+}\) not shown) during a three-year study through increasing their non-bioavailable
(residual) fraction, while it did not show a significant influence on the mobility or speciation of Pb\(^{2+}\) in the kaolin during a 28-day study. It was suggested that the insignificant effect in kaolin was due to the failure for SB to competitively adsorb Pb\(^{2+}\) in the acidic environment (pH 4.54-4.92) (Shen et al., 2016b). The present study coincides with that previous study and further confirms that the main mechanism for Pb\(^{2+}\) adsorption on SB was through precipitation to PbCO\(_3\), and therefore it was difficult for SB to precipitate Pb\(^{2+}\) and alter its speciation in the kaolin under such an acidic environment. However, according to the findings from the present study, and considering the soil pH (7.9-8.1) of the field site soil (Shen et al., 2016a), the immobilisation mechanism of Pb\(^{2+}\) would likely be the formation of acidic soluble precipitates on the biochar surface representing a potentially bioavailable fraction in the site soil under field conditions. This finding conflicts with the findings from the previous study that the addition of SB increased the non-bioavailable (residual) fraction of heavy metals (Ni\(^{2+}\), Zn\(^{2+}\) and Pb\(^{2+}\)) on site (Shen et al., 2016a). Previous studies have observed that biochar immobilised heavy metals (Cu\(^{2+}\), Pb\(^{2+}\) or Cd\(^{2+}\)) via conversion to different fractions (e.g. acidic soluble fraction (Ahmad et al., 2016), reducible and oxidisable fractions (Jiang et al., 2012) and residual fraction (Ahmad et al., 2014)) in soils. However these studies did not investigate the speciation of heavy metals after being adsorbed by biochar in aqueous solutions. Therefore the comparison between heavy metal speciation under the two environments (water and soil) cannot be made with those studies. Therefore no references can be found to give hints to the explanation of the conflicting findings regarding the immobilisation mechanism between this study and the site study. It may be due to the alkaline soil aiding biochar’s adsorption for heavy metals through precipitation to stable minerals;
or biochar strengthening the bonding of heavy metals (i.e. increasing the residual fraction) to soils.

Previous studies found that pH and CEC can be good indicators for the adsorption capacities of heavy metals (Cu^{2+}, Ni^{2+} and Pb^{2+}) on the standard biochars, with higher pH and CEC resulting in higher adsorption capacities, which were attributed to the formation of alkaline minerals and an accompanied aromaticity during biochar production (Dodson, 2011). This study confirms that the acidic soluble fraction of Pb^{2+} is the largest fraction on WSP700 and RH700, suggesting adsorption mechanisms of surface precipitation and/or cation-π interaction, which is in line with previous analysis that alkaline minerals and/or accompanied aromaticity controlled the adsorption of heavy metals on the standard biochars (Shen et al., 2017a).

Although the CEC value predicts the adsorption capacities of heavy metals on the standard biochars well, it was suggested that this was only due to the fact that CEC value can be an indicator for the occurrence of alkaline mineral contents (Shen et al., 2017a). Cation exchange itself may not be the controlling mechanism in heavy metal adsorption for the standard biochars (Shen et al., 2017a). This study observed that cation exchange made a very small contribution to the adsorption of Pb^{2+} on WSP700 and RH700, confirming that cation exchange played an insignificant role in Pb^{2+} adsorption on the standard biochars and CEC was only an indicator of alkaline mineral contents.

It is of note that these experiments are based on the fact that all four biochars reached their maximum adsorption capacities and all of the implications from the results of this study should be based on this assumption. Practical conditions of Pb^{2+} concentrations in soil and water may vary and therefore the applied biochars may not reach their maximum adsorption capacities. The adsorption of Pb^{2+} onto biochar
will start with higher energy bindings to lower ones (Shen et al., 2016a). Therefore, the speciation of Pb$^{2+}$ adsorbed on biochar can be easily predicted according to the present sequential extraction results when biochar did not reach their maximum adsorption capacities.

4 Conclusions

This study quantified different speciation of Pb$^{2+}$ on SB, WSP700 and RH700. The majority of Pb$^{2+}$ was adsorbed on biochar as an acidic soluble fraction, which represents a potentially bioavailable fraction if applied in soil. Within the acidic soluble fraction, the percentage of Pb$^{2+}$ adsorbed through precipitation to PbCO$_3$ on SB and Pb$_3$(CO$_3$)$_2$(OH)$_2$ on WSP700 and RH700 was quantified. Therefore the long-term stability of this fraction under field conditions can be estimated based on the solubility of these precipitates, and the site conditions if these biochars were applied to field contaminated land. It is also possible to model the long-term performance of biochar for soil remediation if the adsorption mechanisms can be quantified and other environmental parameters can be obtained. The pH of field soil may vary due to acidic rainfall, and plant root and microbial activities. Other cations in the soil environment may also compete against Pb$^{2+}$ for precipitation on biochar’s surface. Therefore, the estimation and modelling of the long-term performance of biochar in field conditions should carefully consider the various influencing factors. Based on the evidence found from this study, the properties of biochar may be altered by controlling the production process so as to specify the most suitable biochars for a specific engineering usage, however the linkage between biochar field performance and laboratory test results needs careful verification before large-scale application.

Acknowledgements
Special thanks go to Dr. Kai Gu from Nanjing University, China, who kindly offered the TGA tests for this study. The standard biochars were obtained from the UK Biochar Research Centre (UKBRC) at the University of Edinburgh. The authors would like to thank Dr. Ondrej Masek from the UKBRC for his kind help in preparing and delivering the biochar samples. Special thanks also go to Dr. Zhen Li from the College of Resources and Environmental Sciences, Nanjing Agricultural University, China, who conducted the SEM tests for the biochars used in this study. The authors would like to thank Mr. Bin Zhao for conducting the elementary and ash analyses for Salisbury biochar. The first author would like to thank the Killam Trusts from Canada for kindly providing the Izaak Walton Killam Memorial Postdoctoral Fellowship.

References

term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the
doi:10.1016/j.scitotenv.2015.10.057
Shen, Z., Zhang, Y., McMillan, O., Jin, F., Al-Tabbaa, A., 2017. Characteristics and
mechanisms of nickel adsorption on biochars produced from wheat straw pellets
Sizmur, T., Quilliam, R., Puga, A.P., Moreno-Jiménez, E., Beesley, L., Gomez-Eyles,
doi:10.2136/sssaspecpub63.2014.0046.5
Shen, Z., Zhang, Y., McMillan, O., Jin, F., Al-Tabbaa, A., 2017. Characteristics and
mechanisms of nickel adsorption on biochars produced from wheat straw pellets
Sizmur, T., Quilliam, R., Puga, A.P., Moreno-Jiménez, E., Beesley, L., Gomez-Eyles,
doi:10.2136/sssaspecpub63.2014.0046.5
doi:10.1126/science.1225987
doi:10.1126/science.1225987
Tessier, a., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for
doi:10.1021/ac50043a017
decomposition and priming effects. GCB Bioenergy 8, 512–523.
doi:10.1111/gcbb.12266
Wang, Z., Liu, G., Zheng, H., Li, F., HaoNgo, H., Guo, W., Liu, C., Chen, L., Xing, B.,
2014. Investigating the mechanisms of biochar’s removal of lead from solution.
Xu, X., Cao, X., Zhao, L., 2013. Comparison of rice husk- and dairy manure-derived
biochars for simultaneously removing heavy metals from aqueous solutions:
doi:10.1016/j.chemosphere.2013.03.009
inorganic fractions of biochar with Pb(. RSC Adv. 4, 44930–44937.
doi:10.1039/C4RA07303G
Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently.
Zhang, Y., Tang, X., Luo, W., 2015. Metal Removal with Two Biochars Made from
Municipal Organic Waste: Adsorptive Characterization and Surface
doi:10.1080/02772248.2015.1030668