Deterministic entanglement of photons in two superconducting microwave resonators

Wang, H. et al. (2011) Deterministic entanglement of photons in two superconducting microwave resonators. Physical Review Letters, 106(6), 060401. (doi:10.1103/PhysRevLett.106.060401) (PMID:21405445)

Full text not currently available from Enlighten.


Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N -photon NOON states (entangled states | N 0 ⟩ + | 0 N ⟩ ) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Weides, Professor Martin
Authors: Wang, H., Mariantoni, M., Bialczak, R. C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J. M., and Cleland, A.N.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Physical Review Letters
Publisher:American Physical Society
ISSN (Online):1079-7114

University Staff: Request a correction | Enlighten Editors: Update this record