Postsynaptic GABA_BRs Inhibit L-Type Calcium Channels and Abolish Long-Term Potentiation in Hippocampal Somatostatin Interneurons

Graphical Abstract

Highlights
- GABA_B receptors do not activate Kir3-currents in CA1 somatostatin interneurons.
- In somatostatin interneurons, GABA_B receptors inhibit dendritic L-type Ca²⁺ channels.
- Ca_V1.2 channels co-cluster with GABA_B on somatostatin interneuron dendrites.
- GABA_B activation abolishes long-term potentiation in somatostatin interneurons.

Authors
Sam A. Booker, Desiree Loreth, Annabelle L. Gee, ..., David J.A. Wyllie, Ákos Kulik, Imre Vida

Correspondence
akos.kulik@physiologie.uni-freiburg.de (Á.K.), imre.vida@charite.de (I.V.)

In Brief
Booker et al. show that GABA_B receptors are highly expressed on somatostatin interneuron dendrites. Rather than activating Kir3 channels, they preferentially co-cluster with, and negatively couple to, L-type calcium channels inhibiting long-term potentiation at excitatory inputs.
Postsynaptic GABAB_RRs Inhibit L-Type Calcium Channels and Abort Long-Term Potentiation in Hippocampal Somatostatin Interneurons

Sam A. Booker, Desiree Loreth, Annabelle L. Gee, Masahiko Watanabe, Peter C. Kind, David J.A. Wyllie, Ákos Kulik, and Imre Vida

INTRODUCTION

Maintained balance of excitation and inhibition controlled by feedforward and feedback interneurons (INs) is essential for appropriate function of cortical networks. Despite recruitment of local INs being critical to this balance, the contributing cellular mechanisms remain largely unexplored. Somatostatin (SOM) expressing INs constitute a dominant feedback inhibitory element in cortical circuits. In hippocampal CA1, SOM-INs are characterized by a somato-dendritic domain confined to stratum lacunosum-moleculare (sLM) (Leão et al., 2012) and contribute to the generation of network oscillations at theta frequencies (Glouvel et al., 2005; Klausberger and Somogyi, 2008), with known roles in neuropathology (de Lanerolle et al., 1989; Dugladze et al., 2007; Wang et al., 2011). SOM-INs are recruited by recurrent input from CA1 PCs, involving ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (Topolnik et al., 2005; Lamda et al., 2007), N-methyl-D-aspartate (NMDA) (Standaert et al., 1996), and group 1 metabotropic glutamate receptors (mGluRs), particularly mGluR1α (Baude et al., 1993; McBain et al., 1994; Topolnik et al., 2006). Group I mGluRs on SOM-INs activate Ca_{V1.2} (L-type) high voltage-gated Ca²⁺ channels (VGCCs), promoting synaptic plasticity at excitatory inputs (Topolnik et al., 2009; Nicholson and Kullmann, 2014).

While glutamatergic mechanisms have been well characterized, inhibitory control of SOM-INs is less well understood (Tyan et al., 2014). In particular, little is known regarding the effects of metabotropic GABAB_RRs, despite GABAB_R subunits being highly expressed at SOM-IN somata (Sloviter et al., 1999). In this study, we used whole-cell recording, 2-photon Ca²⁺-imaging, and high-resolution quantitative SDS-digested freeze-fracture replica (SDS-FRL) immunoelectron microscopy to examine postsynaptic GABAB_R function and localization in SOM-INs.

RESULTS

To determine whether SOM-INs possess functional GABAB_RRs, we performed whole-cell recordings from rat acute hippocampal slices. CA1 SOM-INs were located in str. oriens/alveus with horizontal dendrites (Figure 1A) and responded with a large voltage “sag” to hyperpolarizing currents and minimally adapting action potential (AP) trains to depolarizing currents (Figure 1A, inset). All INs tested were immunoreactive for SOM (155 INs), of which 64 (41.3%) were identified as O-LM cells and 3 (1.9%) were bistratified INs. The remaining 88 (56.8%) were not morphologically identified due to the axon being cut, but were included in further...
analysis. CA1 PCs were recorded as controls, given their well described functional GABA$_B$R expression (Lüscher et al., 1997).

GABA$_B$R-Mediated IPSCs Are Small in SOM-INs

Hippocampal neurons possess slow GABA$_B$R-mediated inhibitory postsynaptic currents (sIPSCs), elicited by extracellular stimulation (Degro et al., 2015). In SOM-INs, trains of stimuli (5 at 200 Hz) to str. oriens in the presence of GABA$_A$, NMDA, and AMPA receptor blockers produced very small or no sIPSC (Figures 1B, upper, and 1C). The mean sIPSC amplitude was 1.8 ± 0.5 pA (17 cells) and when present was blocked by the GABABR antagonist CGP-55,845 (CGP, 10 cells). In CA1 PCs, sIPSCs were markedly larger with a mean amplitude of 28.3 ± 8.8 pA (6 cells, U$_{(17,6)}$ = 0; p < 0.0001, Mann-Whitney test) (Figures 1B and 1C) and were also blocked by CGP (Figure 1B, bottom), excluding technical limitations affecting SOM-IN recordings. A subset of recordings were performed in adult rats (9 cells, P50–P60) that confirmed that GABA$_B$Rs minimally activate K$^+$ currents in SOM-INs (Figure S1).

Endogenous release of GABA activates only a proportion of the cells’ GABA$_B$R complement (Lüscher et al., 1997; Degro et al., 2015). Therefore, we next measured whole-cell currents (IW$_{WC}$) produced by the GABA$_B$R agonist baclofen. Bath-applied baclofen (10 μM) produced only a small outward IW$_{WC}$ in SOM-INs (12.1 ± 4.0 pA, 24 cells), which was fully reversed by subsequent CGP application (Figure 1D). The same activation in CA1 PCs produced a robust IW$_{WC}$ of 94.9 ± 12.7 pA (10 cells), ~8-fold larger than SOM-INs (U$_{(24,10)}$ = 3.0; p < 0.0001, Mann-Whitney test) (Figures 1D and 1E). This IW$_{WC}$ was accompanied by a marked reduction in input resistance from 130 ± 14 MΩ to 95 ± 11 MΩ in CA1 PCs (10 cells) consistent with channel opening. In contrast, only a small change from 207 ± 14 MΩ to 195 ± 13 MΩ was observed in SOM-INs (14 cells; U$_{(14,10)}$ = 4.0; p < 0.0001, Mann-Whitney test) (Figure 1F). These findings were further validated by briefly activating GABA$_B$Rs through uncaging of GABA over the dendrites of SOM-INs and CA1 PCs (Figure S2A), which resulted in currents of 6.4 ± 2.6 pA (5 cells) and 93.7 ± 23.4 pA (6 cells), respectively (U$_{(5,6)}$ = 0; p = 0.0043, Mann-Whitney test) (Figures S2B and S2C). In summary, the GABA$_B$R-mediated inhibitory conductance in SOM-INs is an order of magnitude lower than CA1 PCs, indicating that GABA$_B$R/Kir3 signaling does not significantly contribute to SOM-IN inhibition.

GABA$_B$Rs Strongly Inhibit Dendritic L-Type VGCCs

The absence of GABA$_B$R-mediated currents in SOM-INs suggests that the receptors may signal through an alternative effector, such as high voltage-gated CaV1.2 (L-type) Ca$^{2+}$ channels (Chalifoux and Carter, 2011) known to contribute to signaling and plasticity in SOM-INs (Topolnik et al., 2006). To determine whether GABA$_B$Rs inhibit CaV1.2 in SOM-INs, we performed 2-photon imaging of IN dendrites filled with a morphometric and a Ca$^{2+}$-indicator dye and evoked short trains of back-propagating APs (bAPs, 4x at 200 Hz) (Figure 2A). Imaging a primary dendrite with rapid line-scans, we observed large Ca$^{2+}$-transients in response to bAPs (Figures 2B and 2C), which had a ΔF/F of 31.5% ± 3.7% (17 cells). These transients were stable for the 20-min recording (4 cells) (Figure S3A) and blocked by CdCl$_2$ (5 mM, 3 cells) (Figure S3B) and did not differ during baseline for any test group (R2(6,4.6) = 0.04; p = 0.78, one-way ANOVA). Baclofen applied to SOM-INs...
(10 cells) resulted in a 27.8% ± 6.5% reduction in the Ca²⁺ response (t(9) = 4.25; p = 0.002, Wilcoxon test), which recovered in CGP (5 μM; t(4) = 0.08; p = 0.94, Wilcoxon test) (Figures 2B and 2C).

To confirm that L-type VGCCs contribute to Ca²⁺-transients, we applied the selective blocker nifedipine (10 μM), resulting in a 13.2% ± 4.2% reduction in the signal (t(4) = 3.20; p = 0.033, Wilcoxon test) (Figure 2D), comparable to baclofen effect (t(10,5) = 1.35; p = 0.57, one-way ANOVA). Moreover, co-application of baclofen and nifedipine did not further reduce the Ca²⁺ signal (t(10,9) = 1.02; p = 0.68) (Figures 2D and 2E), independent of whether the co-application followed an initial baclofen (t(4,4) = 1.05; p = 0.62, Holm-Sidak’s post-test) or nifedipine application (t(6,6) = 1.39; p = 0.22, Holm-Sidak’s post-test). This mutual occlusion indicates that GABABRs predominantly inhibit L-type VGCCs in SOM-IN dendrites. This result was verified using 1-photon imaging, using the same pharmacological treatment (Figure S4). Furthermore, GABABR inhibition of Ca²⁺-transients was maintained into adulthood (Figures 2F–2H).

GABABRs and CaV1.2 Channels Preferentially Cluster on Dendritic Shafts of mGluR1α-Expressing Cells

Our data indicate that GABABRs modulate L-type VGCCs but not Kir3 channels in SOM-INs. Therefore, we next examined the distribution, density, and spatial relationship of GABAB, Kir3, and CaV1.2 channel on SOM-IN dendrites by quantitative SDS-FRL electron microscopy, using mGluR1α as a surface marker for SOM-INs (Baude et al., 1993). Immunoreactivity for the GABAB1 subunit was consistently observed at mGluR1α-positive dendrites (Figure 3A), with a density of 49.1 ± 4.5 particles/μm²

See also Figures S3 and S4.
(35 dendrites from 3 animals), higher than that of CA1 PCs in the same replicas (28.5 ± 3.2 particles/µm², 36 dendrites, U(36,35) = 287.0; p < 0.0001, Mann-Whitney test) (Figure 3B). In contrast, Kir3 channel subunit density was 8.6 ± 1.1 particles/µm² on mGluR1α-positive dendrites (39 dendrites from 3 animals) (Figure 3C), 50% lower than on neighboring PCs (16.2 ± 1.6 particles/µm², 45 dendrites, U(38,44) = 459.0; p = 0.0001, Mann-Whitney test) (Figure 3D), explaining the small GABA B1-mediated currents in SOM-INs.

Next, we determined the surface expression of CaV1.2, which was observed on mGluR1α-positive dendrites (Figure 3E) with a density of 14.3 ± 1.5 particles/µm² (37 dendrites from 3 animals) (Figure 3F), over 3-fold higher than on PCs (4.3 ± 0.4 particles/µm², 30 dendrites, U(36,29) = 77.0; p < 0.0001). Finally, to examine the spatial relationship between GABA B1 and CaV1.2 we performed triple labeling for mGluR1α, GABA B1 and CaV1.2 (Figure 3G) and measured the proximity of CaV1.2 subunit-containing channels to the closest GABA B1 particle. This analysis revealed that 51% of CaV1.2 subunits are present within 100 nm of a GABA B1 subunit (Figure 3H). Thus, GABA B1 and CaV1.2 subunits are present at high density and colocalize on SOM-IN dendrites.

Postsynaptic GABA B1 Activation Inhibits Synaptic Plasticity in SOM-INs

Long-term potentiation (LTP) at excitatory synapses onto SOM-INs critically depends on L-type VGCC activation (Topolnik et al., 2009). Therefore, we asked if associative LTP in SOM-INs is sensitive to GABA B1R activation. EPSC amplitudes were potentiated to 163.8% ± 17.3% (measured at 20–25 min; t(6) = 3.99; p = 0.007, t test, 7 cells) (Figure 4A) following LTP induction in SOM-INs. When baclofen was pre-applied, the same stimulus did not potentiate EPSCs (mean EPSC amplitude: 95.8% ± 10.8% of baseline; t(5) = 0.47; p = 0.66, t test, Wilcoxon test, 6 cells) (Figures 4B and 4F). A comparable GABA B1R-mediated inhibition of LTP was observed in adult rats (Figures 4C, 4D, and 4F).

To confirm that the LTP observed was dependent on L-type VGCCs, as previously shown (Topolnik et al., 2009), we pre-applied nifedipine (10 µM) to 6 SOM-INs. As expected, this manipulation fully abolished LTP (EPSC: 89.2 ± 11.0% of baseline; t(5) = 1.07; p = 0.33, t test) (Figures 4E and 4F). These data,
thus, demonstrate that activation of postsynaptic GABA_BRs, via inhibition of Ca_{V1.2} Ca^{2+} channels, abolishes postsynaptic LTP induction at excitatory synapses onto SOM-INs.

DISCUSSION

In the present study, we provide compelling evidence that GABABRs are present on dendritic membranes of CA1 SOM-INs, but do not activate the canonical Kir3 signaling cascade. Rather, GABABRs cluster with and inhibit L-type VGCCs, reducing dendritic calcium influx and blocking LTP at excitatory synapses onto SOM-INs. This effect will preclude synaptic strengthening during network activation, a mechanism by which GABA_BRs can contribute to a long-term alteration of excitation and inhibition balance in the network.

Small GABA_B-Mediated Inhibitory Currents in SOM-INs

The major GABA_B signaling in postsynaptic compartments has long been considered to involve Kir3 channels (Lüscher et al., 1997; Kaupmann et al., 1998; Degro et al., 2015). In contrast, while we find that GABABRs and Kir3 channels are present on SOM-IN dendrites, only very small K^+ currents were produced, partially explained by a lower Kir3 channel expression.

In a network context, the small GABA_B currents in SOM-INs are consistent with observations in other dendritic-targeting IN types: parvalbumin bistratified cells (Booker et al., 2013) and cholecystokinin INs (Booker et al., 2017) and may be a common principle for dendritic-targeting INs. This divergence between perisomatic and dendritic inhibitory INs implies that GABA_BRs activation shifts inhibition between the two target compartments.

Colocalization and Negative Coupling of GABA_BRs and VGCCs in SOM-INs

We provide evidence that postsynaptic GABA_BRs preferentially signal through and inhibit VGCCs in SOM-INs. The high...
expression of Cav_{1.2} and nifedipine-sensitive Ca^{2+}-transients further indicate that these channels substantially contribute to Ca^{2+} influx in SOM-IN dendrites. In fact, GABA_{\theta}Rs have been shown to inhibit VGCCs, as an alternative postsynaptic effector in PC dendrites (Sabatini and Svoboda, 2000; Challifoux and Carter, 2011; Pérez-Garcí et al., 2013). The co-clustering of the GABA_{\theta1} subunits with the Cav_{1.2} (L-type) VGCCs subunit is a structural correlate of this interaction in SOM-IN dendrites and may reflect a tight functional coupling through a membrane delimited G{\alpha}_{o} \cdot P_{Y} interaction (Pérez-Garcí et al., 2013). Whether these mechanisms also apply to dendritic spines remains an open question.

GABA_{\theta}R Signaling Abolishes Synaptic Plasticity in SOM-INs

By negatively coupling to L-type VGCCs, GABA_{\theta}Rs block the induction of LTP in SOM-INs, adding to the wide repertoire of molecular mechanisms involved in synaptic plasticity in these neurons (Topolnik et al., 2006; Nicholson and Kullmann, 2014; Vasuta et al., 2015). The form of plasticity is dependent on the activity pattern (Lamsa et al., 2007) that is plausibly translated into a differential activation of glutamate and downstream signaling cascades (Topolnik et al., 2005, 2006, 2009; Oren et al., 2009). Indeed, L-type VGCCs potentiation by group I mGluRs promotes LTP in SOM-INs (Topolnik et al., 2009). In cerebellar Purkinje cells, GABA_{\theta}Rs facilitate mGluR1 activation (Hirono et al., 2001). In SOM-INs, the two receptors converge on L-type VGCCs, but exert opposing actions: GABA_{\theta}Rs intercept mGluR-mediated signaling by inhibiting L-type channels and thereby abolish LTP induction.

Inhibition of LTP in SOM-INs by GABA_{\theta}Rs is in stark contrast to the facilitation of LTP by GABA_{\theta}R activation observed in PCs (Davies et al., 1991; Mott and Lewis, 1991). In fact, despite their inhibitory nature, GABA_{\theta}Rs can produce disinhibitory effects in cortical networks due to a preferential inhibition of IFSs and their output synapses (Foster et al., 2013; Papatheodoropoulos, 2015). In SOM-INs, GABA_{\theta}Rs do not produce hyperpolarization, but prevent the induction of LTP and thereby preclude an enhanced recruitment of the feedback circuit. Considering that the main output of SOM-INs is onto PC distal dendrites, this reduced recruitment will allow increased synaptic transmission onto CA1 PCs and may lead to a breakdown of the specificity of spatial information carried by entorhinal inputs onto CA1 PCs (Leão et al., 2012) via activation of GABA_{\theta}Rs on nearby pre- and postsynaptic elements, as previously described in the neocortex (Urban-Ciecko et al., 2015). Indeed, prior studies have shown that GABA_{\theta}R activation is capable of impairing hippocampal-dependent spatial learning (McNamara and Skelton, 1996; Arolfo et al., 1998), consistent with the importance of this circuit.

EXPERIMENTAL PROCEDURES

Electrophysiological Recordings

A full description of methods can be found in the Supplemental Information. In brief, 300-μm acute hippocampal slices were prepared from juvenile (17- to 25-day-old) and adult (50- to 60-day-old) male Wistar rats (Booker et al., 2014, 2017). All experiments were performed in accordance with institutional, local governmental (LaGeSo, Berlin T 0215/11; LaGeSo, Freiburg X-14/11H) and national guidelines (German Animal Welfare Act; ASPA, United Kingdom Home Office). Whole-cell recordings were made using pipettes filled with K-glucuronate-based solution at 32°C ± 1°C. GABA_{\theta}R-mediated currents were measured in the presence of the ionotropic receptor blockers NBQX, CNQX or DNXQ, DL-APV, and bicuculline, gabazine, or picrotoxin at a holding potential of ~65 mV. Synaptic currents were elicited by a glass monopolar electrode in str. oriens.

For Ca^{2+}-imaging, we used 2-photon microscopy with pipettes filled with intracellular solution containing BAPTA-15G1 and a monophotonic dye. Ca^{2+}-transients were measured in proximal dendrites following trains of 4 APs to evoke Ca^{2+} influx, line-scans were recorded at ~200 Hz. Baclofen or nifedipine was applied to the bath; CGP was applied following baclofen to confirm receptor specificity.

LTP was induced at inputs to SOM-INs with EPSCs elicited by a monopolar electrode placed in the alveus. Theta-burst stimulation was paired with a postsynaptic depolarization to ~20 mV, repeated 3 times at 30-s intervals. In a subset of experiments, baclofen or nifedipine were pre-applied to the bath, and the EPSC was titrated to match control recordings. All neurons were filled with biocytin during recordings, fixed overnight, labeled with streptavidin and antibodies to SOM, and imaged with confocal microscopy.

Electron Microscopy

Electron microscopic analysis was performed on 60-day-old wild-type Wistar rats (Althof et al., 2015). Coronal hippocampal sections were cut, cryoprotected, and blocks of str. oriens/alamus of CA1 were dissected and frozen under high-pressure. Samples were fractured and coated with carbon and platinum in a freeze-fracture replica machine. Replicas were then digested, washed, blocked, and then incubated with subunit-specific primary antibodies followed by incubation with gold-coupled secondary antibodies. Strongly mGluR1-s-immunoreactive and CA1 PC dendrites in str. oriens were imaged and analyzed.

Statistics

All data are shown as mean ± SEM. Analysis was performed in GraphPad Prism 3.0 (GraphPad Software, CAUSA). For all electrophysiology data, “n” refers to the number of recorded cells; for electron microscopy “n” refers to the number of dendrites tested from 3–4 rats. Group data were compared with one-way ANOVA test combined with Holm’s-Sidak post-test. Analysis of unpaired and paired data was performed with Mann-Whitney or Wilcoxon matched-pairs tests, respectively. Significance was assumed if p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and four figures and can be found with this article online at https://doi.org/10.1016/j.celrep.2017.12.021.

ACKNOWLEDGMENTS

We thank Natalie Wernet, Julia Bank, and Ina Wolter for excellent technical support. Funding was provided by DFG (FOR 2134 to I.V. and A.K.), BIOSS-2 (to A.K.), McNaught Bequest (to I.V. and S.A.B.), Tenevus Scotland (to I.V.), MRC (to S.A.B., D.J.A.W., and P.C.K.), The Patrick Wild Centre for Autism Research (to S.A.B., D.J.A.W., and P.C.K.), and the Dame Stephanie Shirley Foundation (to S.A.B., D.J.A.W., and P.C.K.).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

Papaairodopoulos, C. (2015). Higher intrinsic network excitability in ventral compared with the dorsal hippocampus is controlled less effectively by GABAB receptors. BMC Neurosci. 16, 75.

Slottter, R.S., Ali-Akkarian, L., Elliott, R.C., Bowery, B.J., and Bowery, N.G. (1999). Localization of GABA(B) (RI) receptors in the rat hippocampus by immunocytochemistry and high resolution autoradiography, with specific reference to its localization in identified hippocampal interneuron subpopulations. Neuropharmacology 38, 1707–1721.

