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ABSTRACT: Simultaneous integration of photon emission
and biocompatibility into nanoparticles is an interesting
strategy to develop applications of advanced optical materials.
In this work, we present the synthesis of biocompatible optical
nanocomposites from the combination of near-infrared
luminescent lanthanide nanoparticles and water-soluble
chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and
water-soluble chitosan hosts are prepared and integrated
together into biofunctional optical composites. The control of
aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel
optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead
upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible
chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them
exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL−1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods
versus 0.24 mg mL−1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting
response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications.

1. INTRODUCTION

Biocompatible optical nanomaterials are of interest as smart
tools for applications in many fields of science and healthcare
technologies.1,2 There has been an increasing demand for
fabricating functional devices from these materials. In this
framework, light-sensitive nanocomponents and biopolymers
are considered as novel substances to combine together into
promising nanocomposites.3 The optical and biocompatible
responses endow these composites with a wide range of
desirable properties for their prospective use in medicine,
bioimaging, sensing, adsorption, and photocatalysis.4 A great
potential of these composites is useful for biomedical imaging
because of low cytotoxicity of biopolymers and sensitive
response of optical nanoelements.5 It is of key importance to
manipulate the surface, morphological, and structural features
of the integrated materials to obtain a homogeneous
incorporation of the functional components for improving

their reaction performance.6 With multiple-purpose applica-
tions, attempts of fabricating biocompatible optical nano-
composites with different structural forms, such as spongelike
aerogels, beadlike spheres, hybrids, or water-dispersible colloids,
are of great significance to the scientific community.

Upconverting (UC) materials can absorb photons and emit
visible light after excitation by near-infrared (NIR) light.7 The
NIR-emitting luminescence is known to be a photophysical
process of photon UC emission. NaYF4:Yb,Er is a well-known
UC material composed of an insulating NaYF4 host and Yb3+

and Er3+ dopants incorporated into the matrix lattice.8

Remarkably, NaYF4:Yb,Er UC nanocrystals can convert near-
infrared light to visible light through lanthanide (Yb3+ and Er3+)
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doping, attributed to energy transfer pathways by dopant−host
interactions.7 Thanks to structure-dependent photon efficiency,
the control of the size, shape, and crystallinity of the
NaYF4:Yb,Er UC nanomaterials would enable the development
of optical bioprobes with improved performance.9,10 Accord-
ingly, the low-energy light absorption, high sensitivity, low
toxicity, and structural stability make NaYF4:Yb,Er UC
nanoparticles useful as novel photon upconverters to fabricating
advanced optical materials for applications in biomedical
imaging, security labeling, and energy conversion.11−14

Chitosan is the deacetylated derivative of chitin as a major
biopolymer component present in the shells of crustaceans15

and in the cell walls of some fungal species.16 The alkaline
deacetylation of natural chitin generates polycationic networks
of chitosan nanofibrils with exposed primary amine groups,
which are capable of enhancing the chemical reactivity for
surface functionalization. As an abundant biopolymer on the

earth, many attempted syntheses have used chitosan-based
materials as an aqueous stabilizer for nanoparticles,17 a fibril
precursor for bioplastics and gels,18−20 and a polymer template
for hierarchical porous materials.21 The aqueous solubility, low
cytotoxicity, and polycation of chitosan are crucial factors in
determining the efficiency of their derivatives in biomedicine.
Regarding the potential for drug delivery and cellular imaging,
cationic chitosan-based components have been proven to
present stronger electrostatic interactions with anionic cell
membranes, which facilitates cellular uptake.22 This behavior,
combined with its low cytotoxic response, often results in
materials with potential biomedical applications. Another
interesting aspect is the homogeneous solubility of native
chitosan nanofibrils in water as they typically dissolve in acidic
media by surface protonation. It is thus desirable to obtain
neutral aqueous liquids of native chitosan and use them as
either a particle stabilizer or gelling agent for biocompatible

Figure 1. Shape-controlled synthesis of OA-capped NaYF4:Yb,Er UC nanocrystals. (a) Transmission electron microscopy (TEM) image of UC
hexagonal nanorod arrays, (b) TEM image of an individual UC hexagonal nanorod viewed along its tip, (c) TEM image viewed along a tip of
assembled UC hexagonal nanorods showing concave surfaces, (d) TEM image of cube-/rod-shaped UC nanocrystals, (e) PXRD patterns, and (f)
UC photoluminescence (PL) spectra of NaYF4:Yb,Er hexagonal nanorods (red) and NaYF4:Yb,Er cube-/rod-shaped nanocrystals (blue). The inset
shows a photo of UC hexagonal nanorod powders emitting brilliant green color under 980 nm laser excitation.
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optical nanocomposites to enhance their applications in the
field of biomedicine.23−25 One notable example of this subject
has been reported by Duan et al.26 on the use of the freezing−
thawing process of chitosan/alkali/urea solutions to prepare
biocompatible chitosan hydrogels for controlled drug release
applications.

To achieve the potential of optical materials for bioimaging
and analytical sensing, it is of interest to combine luminescent
NaYF4:Yb,Er UC nanoparticles with water-soluble chitosan into
chitosan-coated UC nanocomposites. It is also interesting to
control the host−guest interactions of these functional
components by dispersibility, self-assembly, and solidification
to design biocompatible optical nanocomposites with different
structures and compositions for extending their potential
uses.27 To date, several efforts have been made to prepare
chitosan-functionalized NaYF4:Yb,Er nanoparticles for near-
infrared photodynamic therapy.28,29 However, there are limited
descriptions on the preparation of aerogels and microspheres of
NaYF4:Yb,Er nanoparticles supported by water-soluble chito-
san.

Herein, we report the synthesis of well-defined NaYF4:Yb,Er
UC nanocrystals and the subsequent coating with water-soluble
chitosan to generate biocompatible optical nanocomposites.
This combination is based on aqueous stabilization, gelation,
solidification, and assembled confinement to fabricate NaY-
F4:Yb,Er/chitosan aerogels, microspheres, and hybrid materials.
The cytotoxic responses of chitosan-stabilized Au/NaYF4:Yb,Er
nanocomposites in comparison to those of chitosan-stabilized
NaYF4:Yb,Er nanoparticles were tested to show their potential
use in biomedical applications.

2. RESULTS AND DISCUSSION
Hydrothermal treatment of a basic solution of lanthanide
nitrates, sodium fluoride, and oleic acid (OA) in a water/
ethanol mixture at 190 °C yielded OA-capped NaYF4 UC
nanocrystals codoped with 20 wt % Yb3+ and 2 wt % Er3+

(Figure S1a). We found that the precursor concentration and
reaction time have a major influence on the morphological
distribution of the as-prepared UC nanocrystals. Scanning
electron microscopy (SEM) images in Figure 1a−c show that
the UC nanocrystals are uniform single-crystalline hexagonal
nanorods with concave ends having 150 nm sized six facets and
∼800 nm length. The synthetic product is a particle mixture of
20 nm sized cubes and ∼100 × 1500 nm2 sized rods when the
precursor concentration used is 2 times greater than that of the
UC hexagonal nanorods (Figure 1d). This shape variation is
related to the evolution gradient of monomers in the bulk
solution.30 Energy-dispersive X-ray (EDX) analyses (Figure
S1b) confirm the presence of Na, F, Y, Yb, and Er with a similar
atomic ratio in these UC nanoparticles prepared using the low
and high precursor concentrations. Powder X-ray diffraction
(PXRD) analyses (Figure 1e) show a binary mixture of a major
hexagonal � -phase and a minor cubic � -phase in highly
crystalline NaYF4:Yb,Er hexagonal nanorods.31 Conversely, the
cube-/rod-shaped NaYF4:Yb,Er nanoparticles contain the cubic
� -phase predominantly rather than the hexagonal � -phase. The
relative intensity of the (100) diffraction peak of the
NaYF4:Yb,Er hexagonal nanorods is much larger than that of
the NaYF4:Yb,Er cubes/nanorods, suggesting that the elonga-
tion axis of the hexagonal nanorods is along the [100] direction.
Note that in the NaYF4:Yb,Er structure the � -hexagonal phase
is thermodynamically stable, whereas the � -cube phase is
metastable. There is thus a crystal transition of an � -cube phase

to a � -hexagonal phase in the NaYF4:Yb,Er UC nanoparticles
prepared upon extended heating.

The OA-capped NaYF4:Yb,Er UC nanocrystals emit brilliant
green light when excited under near-infrared laser light (980
nm), where the hexagonal nanorods exhibit stronger emission
than the cubes/nanorods (inset of Figure 1f). Photo-
luminescence spectra (Figure 1f) of the OA-capped NaY-
F4:Yb,Er hexagonal nanorods under 980 nm laser excitation
show three main emission peaks at 522.5, 541.5, and 655.5 nm
as a result of the 4H11/2−4I15/2 (green), 4S3/2−4I15/2 (green), and
4F9/2−4I15/2 (red) UC transitions, respectively, of Er3+

dopants.32 The OA-capped UC nanocube/rods also exhibit
three main peaks at the same wavelengths as in the OA-capped
UC hexagonal nanorods but display a lower emission intensity.
The appearance of the enhanced photoluminescence in the
NaYF4:Yb,Er hexagonal nanorods is due to the � -hexagonal
phase being predominant than the � -cubic one.

The well-defined NaYF4:Yb,Er hexagonal nanorods with
sensitive NIR photoresponse can be used as novel converters
for the design of functional optical materials. Much progress
has been made toward achieving structural diversity of the
NaYF4:Yb,Er-based nanomaterials for a variety of applica-
tions.33 Notable examples are metal−organic framework/
NaYF4:Ln core−shells for NIR-enhanced photocatalysis,34

NaYF4:Yb,Er nanoparticles for latent fingerprints,35 NaY-
F4:Yb,Er UC/magnetite/dye nanocomposites for oxygen
sensing,36 lipid-coated NaYF4:Yb,Er nanoparticles for bioimag-
ing and gene delivery,37 and CdSe/NaYF4:Yb,Er nanohybrids
for photovoltaics.38 Owing to the inherent characteristics of
low-energy light absorption with minimal cell damage, the
NaYF4:Yb,Er nanoparticles are extensively used in biomedicine.
The goal of this strategy is limited to the cytotoxicity of the
lanthanide-doped UC nanoparticles with biopolymers to
achieve the biocompatibility. Consequently, we combined the
NaYF4:Yb,Er-based hexagonal nanorods with water-soluble
chitosan to design different structural types of biocompatible
optical composites.

We found that water-soluble chitosan macromolecules could
be prepared by acetylation of native chitosan nanofibrils with
acetic anhydride and sequential dissolution of acetylated
chitosan in water to form an optically clear aqueous solution.
This solubility is different from that of conventional chitosan
prepared by alkaline deacetylation of chitin as it often does not
dissolve in water because of the high crystallinity of the fibrils.39

It is noteworthy that our acetylation procedure can yield the
homogeneous aqueous solution of chitosan polymorphs rather
than crystalline fibrils as confirmed by PXRD (Figure S2). The
acetylation-induced aqueous dissolution of chitosan is assumed
to present disrupted hydrogen bonding within the fibrils,
leading to the decreased crystallinity. As a result, the acetylated
chitosan fibrils swell dramatically in water and then fully
dissolve to form a viscous polymeric liquid.

The hydrophobic surface of the OA-capped NaYF4:Yb,Er
nanoparticles renders them dispersible in nonpolar solvents,
but they could not be in the form of the aqueous dispersion.
The surface modification of the as-prepared NaYF4:Yb,Er
nanoparticles with hydrophilic and biocompatible properties is
thus an important step to extend their potential to biomedicine.
We prepared the aqueous dispersion of chitosan-stabilized
NaYF4:Yb,Er nanoparticles by sequential coating of the OA-
capped UC colloids with ethylene glycol and water-soluble
chitosan. Remarkably, the resulting NaYF4:Yb,Er nanoparticles
became dispersible in water as the aqueous colloidal solution
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can be stable for several months (Figure S11). Infrared spectra
(Figure S3) of the functionalized UC nanoparticles show
distinct stretching bands of amides and hydroxyls, verifying that
the OA-capped nanoparticles adsorbed with chitosan. Notably,
the surface coating of the OA-capped NaYF4:Yb,Er nano-
colloids with water-soluble chitosan mostly retains the
morphological, dispersible, and optical features (Figures 2c
and S4).

Owing to their low density, large porosity, and high surface
area, optical biopolymer aerogels are an exciting class of soft
materials for applications in sensing, absorption, insulation, and
tissue engineering.40−42 We found that the prepared water-
soluble chitosan is a good polymeric matrix to support the
chitosan-functionalized NaYF4:Yb,Er colloids, encouraging us
to fabricate NaYF4:Yb,Er/chitosan aerogels. The chitosan-
coated NaYF4:Yb,Er colloids and glyoxal cross-linkers were
mixed with water-soluble chitosan to form a homogeneous and
optically transparent dispersion. These mixtures were thermally
gelated at 80 °C to form NaYF4:Yb,Er/chitosan hydrogels

(Figure S5). The removal of water in the hydrogels by freeze-
drying yielded intact NaYF4:Yb,Er/chitosan aerogel composites
(Figure 2b, right). Under lyophilization, the frozen NaY-
F4:Yb,Er/chitosan hydrogels released water by sublimation to
leave large interconnected interspaces in solidified networks,
forming NaYF4:Yb,Er/chitosan aerogels. The aerogel structure
appears to be a homogeneous porous network of highly
interconnected chitosan nanofibrils, where no phase separation
of the NaYF4:Yb,Er nanoparticles is observed, indicating a good
distribution of the UC guests into the biopolymer host.

The aerogel composite is a heterogeneous mixture of � ,� -
NaYF4:Yb,Er crystals and chitosan polymorphs (PXRD, Figure
2e). The aerogel composites are thermally stable up to ∼300
°C, above which chitosan is decomposed to leave ∼10 wt % of
oxidized NaYF4:Yb,Er component (thermogravimetric analysis
(TGA), Figure S6). SEM images (Figure 2d) of the aerogel
composites show the random distribution of the NaYF4:Yb,Er
nanorods in the aerogel networks of the solidified chitosan
assemblies. These results reveal that the glyoxal-crosslinked

Figure 2. Formation of aerogel composites from water-soluble chitosan and NaYF4:Yb,Er UC hexagonal nanorods. (a) Photos of UC/chitosan
aqueous dispersion under visible light (left) and under NIR light (right), (b) photos of UC/chitosan aerogel composites under visible light (left) and
NIR light (right), (c) TEM image of the UC/chitosan aqueous dispersion, (d) SEM image of UC/chitosan aerogel composites, (e) PXRD pattern,
and (f) UC photoluminescence spectrum of UC/chitosan aerogel composites.
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gelation of NaYF4:Yb,Er/chitosan aqueous dispersions occurs
upon curing to form gel composites. Nitrogen adsorption−
desorption isotherms of the NaYF4:Yb,Er/chitosan composites
show a mesoporous structure, indicative of forming macro−
mesoporous networks in the aerogels (Figure S6a). Laser
excitation of the composites at 980 nm emits visible green light
through the aerogels, reflecting a good guest/host combination
(Figure 2b, left). Photoluminescence spectra (Figure 2f) of the
aerogels show UC emission peaks, with the wavelengths and
intensities mostly resembling those of the pristine NaYF4:Yb,Er
nanocrystals, suggesting that the sequential gelation and
solidification of water-soluble chitosan retain the optical
properties of the UC nanoparticles. Although many nanostruc-
tures of luminescent chitosan composite gels based on
nanocarbons43−45 and nanosemiconductors,46,47 for example,
have been reported, this is the first preparation of the
upconverting NaYF4:Yb,Er/chitosan aerogels. Apart from
their promising biomedical applications, the enlarged porous
networks may facilitate the diffusion of volatile reactants to
make the UC/chitosan aerogels useful as gas optical sensors.48

Optical biopolymer microsphere colloids have aroused
attention for applications in drug delivery.49,50 Keeping this
demand in mind, we further explored the fabrication of
NaYF4:Yb,Er/chitosan microspheres. In general, the NaY-
F4:Yb,Er/chitosan aqueous dispersions can self-organize into
microspheres via microemulsion-assisted assembly, where the
optical guests are embedded within the chitosan host. The
synthesis involves a precursor aqueous phase confined in an
oil/surfactant phase. The precursor aqueous phase was
prepared by mixing the chitosan-stabilized NaYF4:Yb,Er
aqueous dispersion and glyoxal with water-soluble chitosan to
form a homogeneous mixture. The solvent (oil) phase was
prepared by dissolving Span 80 surfactant in paraffin. An
emulsion system was prepared by mixing these phases together

under sequential stirring and sonication. The emulsion mixture
was transferred into a round-bottomed flask, sealed, and then
heated to 80 °C under moderate stirring to crosslink chitosan
by glyoxal, producing solidified NaYF4:Yb,Er/chitosan micro-
spheres. We first examined the synthesized materials using
optical microscopy. It is apparent from the optical images that
both the solidified products before and after purification are
dispersible microspheres (Figure 3b).

The solidified microspheres were collected and dispersed in
water to form a microsphere aqueous solution (Figure 3a, left).
On shining the 980 nm laser light through the samples, the
solidified products and their aqueous solutions both emit green
light (Figure 3a, right). Structural and elemental analyses reveal
that the solidified product is a heterogeneous mixture of � ,� -
NaYF4:Yb,Er nanocrystals and chitosan polymorphs (PXRD,
Figure S7a). Thermal analyses (Figure S7b) confirm ∼5 wt %
NaYF4:Yb,Er in the chitosan-based composites. Photolumines-
cence spectrum (Figure S8) of the microsphere composites
shows the retention of the spectral features of the pristine
NaYF4:Yb,Er nanorods. SEM images (Figures 3c and S9) of the
solidified products show a broad size distribution of micro-
spheres in the diameter range of 150−200 � m. The
NaYF4:Yb,Er nanorods embedded within the chitosan micro-
spheres seem to be distinguished by TEM, as presented in
Figures 3d and S10. These analyses confirm the formation of
the photoluminescent NaYF4:Yb,Er/chitosan microspheres in
the microemulsion system with the assistance of the Span 80
nonionic surfactant. In the oil/water phases, the hydrophobic
alkyl tails of the surfactant move forward to the oil phase
(paraffin), whereas its hydrophilic oleate heads (functional
groups) move forward oppositely to the aqueous phase (water).
This chemical behavior leads to the formation of stable sphere-
shaped micelles containing NaYF4:Yb,Er/chitosan aqueous
hydrogels confined within the paraffin oil phase. Under glyoxal

Figure 3. Self-assembly of NaYF4:Yb,Er UC hexagonal nanorods with water-soluble chitosan into microspheres. (a) Photos of UC/chitosan
microsphere aqueous dispersion under visible light (left) and NIR light (right), (b) optical microscopy images of UC/chitosan microspheres in the
microemulsion dispersion (left) and aqueous media (right), and (c) SEM image and (d) TEM image of UC/chitosan microspheres.
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crosslinking and curing, the NaYF4:Yb,Er-supported chitosan
networks can be crosslinked to form rigid hydrogel micro-
spheres. Although several examples have recently been reported
for chitosan spheres, to the best of our knowledge, this is the
first combination of NaYF4:Yb,Er UC nanoparticles and water-
soluble chitosan into the biocompatible optical microsphere
colloids.

The structural design of the nanomaterials with multioptical
properties is also a goal to enhance their desirable
functionalities.27,51 We realized that the well-defined aniso-
tropic shape and good dispersity can lead the NaYF4:Yb,Er
hexagonal nanorods to serve as an efficient UC support for
plasmonic additives. In a typical preparation, a HAuCl4
ethylene glycol solution was mixed with an OA-capped
NaYF4:Yb,Er ethanol dispersion under stirring to form a
homogeneous mixture. These mixed dispersions were hydro-
thermally treated at 80 °C to prepare Au/NaYF4:Er,Yb
nanocomposites. The reaction mixtures slowly turned from
yellow to purple upon heating, indicating the formation of Au
nanoparticles (Figure 4a). PXRD analyses reveal the structural
retention of � ,� -NaYF4 crystals in the nanocomposites, and the

Au component could not be detected, possibly due to its low
loading concentration (Figure S12). However, electron micro-
scope images (Figure 4b) show the surface deposition of some
uniform Au nanodots with ∼50 nm particle size on the single
NaYF4:Er,Yb nanorods. These structural analyses confirm the
selective decoration of the Au nanoparticles on the
NaYF4:Yb,Er hexagonal nanorods to generate plasmonic
upconverting nanohybrids.

Ethylene glycol can act as a weak reductant to perform the
polyol-assisted reduction of some metal ions under hydro-
thermal conditions. At elevated temperature, ethylene glycol is
able to slowly reduce Au3+ into small Au nanoparticles, which
are then attached on the NaYF4:Er,Yb nanorods. The weak
reduction allows one to control the growth and size distribution
of the Au nanodots in the nanocomposites. This hydrothermal
polyol reduction provides an advantage over conventional
methods, which often use strong reductants such as NaBH4 or
ascorbic acid to obtain deposited Au nanoparticles with larger
irregular sizes, as additionally evidenced in Figure S14. The UC
emission peaks of the Au/NaYF4:Yb,Er nanocomposites have
the same wavelengths as those of the pristine NaYF4:Yb,Er

Figure 4. Water-soluble chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites and their dose-dependent cytotoxicity. (a) Photos of chitosan-
stabilized Au/NaYF4:Yb,Er nanocomposite aqueous dispersion under visible light (left) and NIR light (right), (b) SEM image of Au/NaYF4:Yb,Er
nanocomposites, (c) UC photoluminescence spectra of Au/NaYF4:Yb,Er nanocomposites (green) in comparison to those of NaYF4:Yb,Er hexagonal
nanorods (red), (d) UV−vis absorption spectrum of Au/NaYF4:Yb,Er nanocomposites and WST-1 viability assay of chitosan-stabilized Au/
NaYF4:Yb,Er nanocomposites in comparison to those of chitosan-stabilized NaYF4:Yb,Er hexagonal nanorods after 24 h (e) and 72 h (f).
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nanorods (three maxima at 522.5, 541.5, and 655.5 nm);
however, their spectral emission has a significantly higher
intensity (Figure 4c). UV−vis spectra (Figure 4d) of the Au/
NaYF4:Yb,Er nanocomposites show a maximum plasmon
absorbance at ∼540 nm for the Au nanoparticles. The
plasmon-enhanced upconverting photoluminescence in the
Au/NaYF4:Yb,Er nanocomposites may be caused by the
plasmon−photon coupling effect, as recently reported else-
where.52,53

To explore the biomedical compatibility, we further prepared
chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites by dis-
persing the ethylene glycol-capped Au/NaYF4:Yb,Er nano-
composites in water-soluble chitosan. A stable colloidal solution
of the Au/NaYF4:Yb,Er nanohybrids can be obtained after
sonication (Figure 4a). Again, the aqueous stability of these
nanocomposite colloids is due to the surface adsorption of
water-soluble chitosan. The chitosan-stabilized Au/NaY-
F4:Yb,Er nanocomposites maintain the morphological integrity
of the pristine samples (Figure S15).

We investigated the cytotoxic response of the chitosan-
stabilized Au/NaYF4:Yb,Er nanocomposites (Figure 4a) in
comparison to that of the chitosan-stabilized NaYF4:Yb,Er
nanoparticles (Figure S11) to assess their suitability for
biomedical diagnosis. In this sense, the lack of the functional
moieties on the UC nanoparticle surfaces is often an obstacle
that needs to be addressed for biomedical applications. To date,
the UC nanoparticles have been coated with silica, sodium
gluconate, poly(ethylene glycol), poly(ethylene glycol)−poly-
(acrylic acid), cationic conjugated polyelectrolytes, phosphati-
dylcholine, and hyaluronate to improve their biocompatibil-
ity.54−58 Our present work has used native chitosan polycation
as a water-soluble biopolymer to coat the NaYF4:Yb,Er
nanoparticles and Au/NaYF4:Yb,Er nanohybrids for generating
the novel biocompatible optical composites.22

Figure 4e,f shows the cytotoxic response of these materials.
The experimental results were performed by incubating
different concentrations of nanoparticles from 10 to 5000 � g
mL−1 with living cells in culture for 24 and 72 h. The dose
response for the chitosan-stabilized NaYF4:Yb,Er nanoparticles
presents half-maximal effective concentrations (EC50) of 240
and 96 � g mL−1 after 24 and 72 h, respectively. After Au
deposition, the respective EC50 value is notably increased to
580 and 410 � g mL−1, respectively. The high cell viability of the
chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites is remark-
able, which is found to be more than 80% when incubated for
24 h at the concentration of 500 � g mL−1. Overall, these UC
nanocomposites present enhanced biocompatibility in compar-
ison to that reported in previous works.59 This enhancement
may arise from the chitosan coating to avoid the possible
release of toxic lanthanide ions to the surrounding cellular
environment.60 Indeed, Tian et al.61 proved that ligand-free
lanthanide-doped nanoparticles are cytotoxic because of the
cellular adenosine triphosphate deprivation of cells. These UC
nanoparticles induced cell death through autophagy and
apoptosis because of the interactions between the particles
and phosphate groups. They concluded that the best practice is
to limit the concentration of the UC nanoparticles below 100
� g mL−1, which is high enough to ensure proper cell imaging
and still far below the EC50 here obtained after 24 h.

The NIR response, aqueous dispersity, biocompatibility, and
low cytotoxicity reported here indicate that the chitosan-
stabilized Au/NaYF4:Yb,Er nanohybrids may be useful as a
promising bioprobe for the imaging of tissues with minimal cell

damage.62 Additionally, recent studies have shown that the
plasmonic upconverting coupling at the nanoscale may induce
photothermal effects by direct laser irradiation through
luminescence resonance emission transfer from NaYF4:Yb,Er
to Au.63 This photon transfer behavior also makes these hybrid
nanoparticles interesting for exploiting hyperthermia therapy.

3. CONCLUSIONS

In summary, we have shown the fabrication of biocompatible
chitosan-functionalized optical nanocomposites based on near-
infrared-sensitive upconverting nanoparticles. Hydrophobic
NaYF4:Yb,Er hexagonal nanorods synthesized by hydro-
thermolysis were used as a photon upconverter. Water-soluble
chitosan was prepared by acetylation of native chitosan
nanofibrils and used to functionalize the NaYF4:Yb,Er nano-
crystals into biocompatible optical nanomaterials. The novelty
of the aqueous solubility and polymorphs led water-soluble
chitosan to serve as a stabilizer, gel matrix, and spherical
support for the upconverting nanomaterials. This homoge-
neous combination allowed us to design the upconverting
nanocomposites with different structures of aqueous colloid,
aerogel, microsphere, and hybrid. The simultaneous integration
of NIR response and biocompatibility endows the optical
materials with biofunctionality, as we have demonstrated the
low cytotoxic response of the chitosan-stabilized Au/
NaYF4:Yb,Er nanocomposites. These novel materials are useful
for extended studies in biomedicine, bioimaging, drug delivery,
and analytical sensing.

4. EXPERIMENTAL SECTION

4.1. Preparation of NaYF4:Yb,Er Upconverting Nano-
crystals. An aqueous basic mixture of ionic coprecursors
(lanthanide and fluoride with the desired concentration) and
0.23 g of NaOH, 4.73 g of oleic acid, 6.6 mL of ethanol, and 1.0
mL of water was prepared under vigorous stirring until a
translucent solution was obtained. The reaction mixture was
transferred into a Teflon-lined autoclave and heated to 190 °C.
After the hydrothermal treatment for 24 h, the white product
that precipitated out of the mixture was collected at the bottom
of the autoclave. The product was washed with ethanol and
harvested by centrifugation to obtain OA-capped NaYF4:Yb,Er
upconverting nanocrystals. Hexagonal rod-shaped nanocrystals
were formed using lanthanide nitrates (150 mg of Y(NO3)3,
108 mg of Yb(NO3)3, and 11 mg of Er(NO3)3) and 116 mg of
NaF, whereas the 2-fold increased precursor concentration
formed cube-/rod-shaped nanocrystals.

4.2. Preparation of Water-Soluble Chitosan. Chitin was
chemically purified from crab shells by deproteinization and
decalcification. The purified chitin (∼25 g) was treated at least
twice with a concentrated NaOH aqueous solution (50 wt %,
500 mL) at 90 °C for 8 h to obtain chitosan flakes. The
prepared chitosan was immersed in ethanol to remove
adsorbed water. The dried chitosan (∼5 g) was added to 40
mL pure acetic anhydride to perform acetylation at room
temperature within 4 h. The acetylated chitosan was collected
from the reaction solution by filtration, dabbed with tissue
paper, and washed quickly with distilled water to remove
adsorbed acetic anhydride. The resulting samples were
immersed in water to make them swell and then dissolved
into a homogeneous chitosan aqueous solution.

4.3. Preparation of NaYF4:Yb,Er/Chitosan Aerogel
Composites. OA-capped NaYF4:Yb,Er hexagonal nanorods
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(∼60 mg) were dispersed in 20 mL of water-soluble chitosan
(∼3 wt %) in the presence of 0.5 mL of glyoxal to form a
homogenous mixture after stirring for 1 h. The reaction mixture
was hydrothermally treated at 80 °C for 6 h to crosslink
chitosan by glyoxal. Upon thermal crosslinking, gelation of the
reaction mixture occurred, forming hydrogel composites. The
resulting hydrogels were freeze-dried to recover NaYF4:Yb,Er/
chitosan aerogel composites.

4.4. Preparation of NaYF4:Yb,Er/Chitosan Microsphere
Composites. An aqueous-in-oil microemulsion system was
designed to prepare NaYF4:Yb,Er/chitosan microsphere
composites. The aqueous phase is ∼2 mg of NaYF4:Yb,Er
nanorods/1.25 mL of water-soluble chitosan (∼3 wt %)/0.1
mL of glyoxal, whereas the oil phase is 1.25 g of Span 80/30
mL paraffin. These phases were mixed together in a flask
reactor, forming a cloudy emulsion system after stirring and
sonication. The flask reactor was sealed and heated at 80 °C to
crosslink chitosan by glyoxal within 48 h. The solidified
microspheres were collected by adding 40 mL hexane into the
microemulsion, followed by centrifugation. The white solidified
product of NaYF4:Yb,Er/chitosan microsphere composites was
washed with ethanol and dispersed in water.

4.5. Preparation of Chitosan-Stabilized Au/NaY-
F4:Yb,Er Nanocomposites. OA-stabilized NaYF4:Yb,Er hex-
agonal nanorods (∼5 mg) were added to 20 mL of ethylene
glycol containing 0.01 mg of HAuCl4. The reaction mixture was
stirred for 1 h and then hydrothermally treated at 80 °C under
stirring for 20 h to form a purple solution. These nano-
composites were collected and purified with Au/NaYF4:Yb,Er
nanocomposites with ethanol and then added to water-soluble
chitosan (20 mL, ∼1 wt %) under stirring and sonication to
form a chitosan-stabilized Au/NaYF4:Yb,Er aqueous dispersion.

4.6. Cytotoxicity Assay. Dose-dependent cytotoxicity of
chitosan-stabilized NaYF4:Yb,Er nanoparticles and chitosan-
stabilized Au/NaYF4:Yb,Er nanocomposites after 24 and 72 h
was evaluated according to the WST-1 viability assay. First, the
nanoparticles were sterilized by irradiation for 10 min. Then,
they were washed by spinning them down at 1000 rpm for 5
min, and the resulting solution was replaced with fresh growth
media (MEM-� with glutamax, 1% P/S, 10% fetal bovine
serum). DU145 human prostate cancer cells were then seeded
in a 96-well plate at a concentration of 1000 cells/well. After 24
h, media in wells were replaced with the nanoparticle media
solution at various concentrations ranging from 0.01 to 1 mg
mL−1. Positive control wells (100% viability) were established
by adding fresh media to a row of cells, whereas negative
control wells (0% viability) were established by adding an
excessive amount of nanoparticle solution (5 mg mL−1). The
EC50 of the cells was determined by plotting relative cell
viability (relative to positive and negative controls in %) in
OriginPro. Each experiment was repeated six times.
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Manuel Salmeroń-Sańchez: 0000-0002-8112-2100

Present Address
◆L.V.N.: Department of Electronics and Telecommunications,
Saigon University, 273 An Duong Vuong Street, Ho Chi Minh
700000, Vietnam

Notes
The authors declare no competing financial interest.

� ACKNOWLEDGMENTS

We are grateful to the National Foundation for Science and
Technology Development of Vietnam under grant number
104.06-2014.87 for funding. H.V.D. thanks financial support
from the Hue University Foundation Programme (DHH 2016-
02-83). M.S.S. acknowledges support from EPSRC (EP/
P001114/1).

� REFERENCES
(1) Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible

semiconductor quantum dots: from biosynthesis and bioconjugation
to biomedical application. Chem. Rev.2015, 115, 11669−11717.
(2) Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of

fluorescent nanomaterials and related systems: new insights into
biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev.
2014, 114, 6130−6178.
(3) Algar, W. R.; Prsuhn, D. E.; Stewart, M. H.; Jennings, T. L.;

Canosa, J. B. B.; Dawson, P. E.; Medintz, I. L. The controlled display
of biomolecules on nanoparticles: a challenge suited to bioorthogonal
chemistry. Bioconjugate Chem.2011, 22, 825−858.
(4) Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-scale

electronics: from concept to function. Chem. Rev.2016, 116, 4318−
4440.
(5) Soenen, S. J.; Parak, W. J.; Rejman, J.; Manshian, B.

(Intra)cellular stability of inorganic nanoparticles: effects on
cytotoxicity, particle functionality, and biomedical applications.
Chem. Rev.2015, 115, 2109−2135.
(6) Pihan, S. A.; Emmerling, S. G. J.; Butt, H. J.; Berger, R.; Gutmann,

J. S. Soft nanocomposites - from interface control to interphase
formation. ACS Appl. Mater. Interfaces2015, 7, 12380−12386.
(7) Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-

activated phosphors based on 4f−5d optical transitions: theoretical
and experimental aspects. Chem. Rev.2017, 117, 4488−4527.
(8) Stepuk, A.; Casola, G.; Schumacher, C. M.; Kramer, K. W.; Stark,

W. J. Purification of NaYF4-based upconversion phosphors. Chem.
Mater.2014, 26, 2015−2020.
(9) Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal

nanocrystals: from intricate structures to functional materials. Chem.
Rev.2016, 116, 11220−11289.
(10) Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion

nanocrystals for emerging applications. Nat. Nanotechnol.2015, 10,
924−936.
(11) Wu, X.; Chen, G.; Shen, J.; Li, Z.; Zhang, Y.; Han, G.

Upconversion nanoparticles: a versatile solution to multiscale
biological imaging. Bioconjugate Chem.2015, 26, 166−175.
(12) Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion

luminescent materials: advances and applications. Chem. Rev.2015,
115, 395−465.
(13) Cates, E. L.; Chinnapongse, S. L.; Kim, J. H.; Kim, J. H.

Engineering light: advances in wavelength conversion materials for

ACS Omega Article

DOI: 10.1021/acsomega.7b01355
ACS Omega 2018, 3, 86−95

93

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsomega.7b01355
http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b01355/suppl_file/ao7b01355_si_001.pdf
mailto:trthaihoa@yahoo.com
mailto:nguyenvietlong@sgu.edu.vn
mailto:ntdinhc@chem.ubc.ca
http://orcid.org/0000-0002-8112-2100
http://dx.doi.org/10.1021/acsomega.7b01355


energy and environmental technologies. Environ. Sci. Technol.2012,
46, 12316−12328.
(14) Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L.

D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: from
design toward bioimaging and therapy. Chem. Rev.2015, 115, 10725−
10815.
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