
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/153048/

Deposited on: 06 December 2017
Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation

Running head: Isotope techniques for ecosystem C science

Tweet: The pros and cons of carbon assessment methods using isotopes across climate change experiments in shrublands.

Affiliations:

1Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, NL; 2Centre for Ecology and Hydrology, Bangor, UK; 3University of Copenhagen, Dept. Geosciences and Natural Resource Management, DK; 4School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK. 5Institute of Forest Ecology, BOKU, AU; 6Isotope Bioscience Laboratory - ISOFYS, Ghent University, BE; 7Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich, Jülich, DE; 8Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, IT; 9Forest & Nature Lab, Ghent University, BE; 10National Research Council, Institute of Biometeorology, Sassari, IT; 11CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès (Catalonia), SP; 12CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, SP; 13NERC Radiocarbon Facility, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Scotland, UK; 14Centre for Ecological Research, Institute of Ecology and Botany, Hungarian Academy of Sciences, HU; 15Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE.

*) Current address: Department of Earth Sciences, University of Gothenburg, PO Box 460, 405 30 Göteborg, SE.
**) Current address: Department of Crystallography, Mineralogy and Agricultural Chemistry, Edaphology Unit, University of Seville, SP (Corresponding author).
***) Current address: Council for Agricultural Research and Economics, Forestry Research Centre (CREA-SEL), IT. (g.dedato@entecra.it)
Summary

1. Long-term climate change experiments are extremely valuable for studying ecosystem responses to environmental change. Examination of the vegetation and the soil should be non-destructive to guarantee long-term research. In this paper, we review field methods using isotope techniques for assessing carbon dynamics in the plant-soil-air continuum, based on recent field experience and examples from a European climate change manipulation network.

2. Eight European semi-natural shrubland ecosystems were exposed to warming and drought manipulations. One field site was additionally exposed to elevated atmospheric CO$_2$. We evaluate the isotope methods that were used across the network to evaluate carbon fluxes and ecosystem responses, including: 1) analysis of the naturally rare isotopes of carbon (13C and 14C) and nitrogen (15N); 2) use of in-situ pulse labelling with 13CO$_2$, soil injections of 13C- and 15N-enriched substrates, or continuous labelling by Free Air Carbon dioxide Enrichment (FACE) and 3) manipulation of isotopic composition of soil substrates (14C) in lab-based studies.

3. The natural 14C signature of soil respiration gave insight into a possible long-term shift in the partitioning between the decomposition of young and old soil carbon sources. Contrastingly, the stable isotopes 13C and 15N were used for shorter-term processes, as the residence time in a certain compartment of the stable isotope label signal is limited. The use of labelled carbon-compounds to study carbon mineralization by soil microorganisms enabled to determine the long-term effect of climate change on microbial carbon uptake kinetics and turnover.

4. Based on the experience with the experimental work, we provide recommendations for the application of the reviewed methods to study carbon fluxes in the plant-soil-air continuum in climate change experiments. 13C-labelling techniques exert minimal physical disturbances,
however, the dilution of the applied isotopic signal can be challenging. In addition, the contamination of the field site with excess 13C or 14C can be a problem for subsequent natural abundance (14C and 13C) or label studies. The use of slight changes in carbon and nitrogen natural abundance does not present problems related to potential dilution or contamination risks, but the usefulness depends on the fractionation rate of the studied processes.

Key-words: warming; drought; bomb-C; FACE; pulse-labelling; stable isotopes; 14C
Global climate change scenarios predict that increased greenhouse gas (e.g. CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O) concentrations in the atmosphere will alter the periodicity and magnitude of drought events and will increase mean global temperatures by approximately 0.2 °C per decade (IPCC 2013). For the European continent this will manifest as drier summers in the South and increased precipitation in the North (IPCC 2013). Elucidating the consequences of such atmospheric changes for biogenic carbon fluxes is one of the main challenges for the scientific community. Some models have predicted a positive feedback to climate change, resulting from higher increases in respiratory fluxes from ecosystems (e.g. carbon release through soil respiration) than in net primary productivity, which would lead to further increases in atmospheric CO\textsubscript{2} (Friedlingstein et al. 2006; Denman et al. 2007). To assess the likelihood of this positive feedback, experimental studies that analyse the long-term adaptations of ecosystem carbon fluxes to climate change are critically needed. However, climate change experiments are often conducted at short or medium time scales due to funding constraints, or due to the limited life-span of the experimental plots, as repeated removal of samples often leads to disturbances and experimental artefacts in the studied system. Hence, there is a necessity for the maintenance of long-term experiments using non-destructive methods.

Carbon fluxes through the plant-soil-air continuum play a central role in soil carbon cycling (Zak et al. 2000; Phillips et al. 2006). Consequently, aboveground to belowground fluxes might largely determine carbon emissions from ecosystems under the different climate change scenarios (Chapin et al. 2009). Stable carbon isotope studies can give important insights into carbon fluxes through the plant-soil-air continuum with the minimal disturbance to the system. The isotopic carbon composition of compartments in this continuum is a result of the
different isotope fractionation processes along the pathway from CO$_2$ fixation by plants to
carbon allocation to soil (reviewed in Brüggemann et al. 2011). Thus, the analysis of the
natural abundance of carbon isotopes in these compartments can give information about some
processes related to photosynthesis and carbon losses through plant or soil respiration. In
addition, *in-situ* pulse labelling with the heavy stable carbon isotope (13C) is a powerful tool
to analyse short-term dynamics of carbon allocation to the soil with high resolution (Högberg
et al. 2008; Epron et al. 2012; Reinsch & Ambus 2013). The application of these isotopic
methods can therefore provide unique information about aboveground-belowground linkages
and their alterations in response to climate changes.

In order to investigate long-term effects of climate change on shrubland ecosystems, an
experimental network was established across Europe (the INCREASE network). Studying the
response of shrublands to climate change is important, since they are representative
ecosystems in Mediterranean and North European countries, where they play an important
ecological role in preserving biodiversity (Wessel et al. 2004). In addition, land area covered
by shrublands has dramatically decreased in temperate Europe during the past century, due to
land use changes, increased pollution and eutrophication, and climate change (Fagúndez
2013). In Mediterranean regions, however, shrublands have increased their extension due to
land abandonment (Fagúndez 2013).

Within the climate change network, common non-destructive methods were used across sites
to ensure the comparison of treatment effects across different climatic regions. Evaluating the
impact of climate change treatments on shrubland carbon dynamics was one of the main
objectives of this experimental network, and thus a range of methodologies to quantify and
trace distinct carbon pools and their fluxes have been applied since 1999. Priority was given
to those techniques that minimise disturbances to vegetation and soil to guarantee long-term
research.
Here, we review isotope methods that have been applied across this climate change experimental network to study ecosystem carbon dynamics in the plant-soil-air continuum. In particular, we focus on methodologies that: 1) analyse the abundance of naturally rare isotopes of carbon (13C and 14C) and nitrogen (15N) in the different ecosystem compartments, 2) trace experimentally-induced changes in the isotopic signatures to assess rhizodeposition utilisation by soil biota, and 3) manipulate and trace the isotopic composition of C-compounds to analyse C mineralisation by soil microorganisms in laboratory studies. Alongside the methods, data from the field studies are presented as accompanying illustrative boxes, and practical recommendations for the applications of these methodologies at large-scale climate change experiments are outlined in Table 1.

The experimental climate change network INCREASE

The experimental network for the study of climate change impacts on European shrublands (INCREASE, ‘An Integrated Network on Climate Research Activities on Shrubland Ecosystems’) was established in 1998. The network is comprised of eight shrublands situated across a natural temperature gradient of mean annual temperature from c. 8 °C in the North to c. 16 °C in the South, and a rainfall gradient ranging from 510 mm to 1741 mm from East to West (Fig. 1). These sites represent Continental, Atlantic and Mediterranean shrublands. At each site, whole-ecosystem warming and drought treatments were applied in triplicates of 20 m2 plots, by using automated retractable curtain constructions (see Beier et al. 2004 and Mikkelsen et al. 2008 for a full description). At one of the Danish sites (DK-BRA), a FACE treatment was installed, and combinations of the climate treatments were established and resulted in a plot size of 9 m2. Climatic conditions at the plot level (air temperature, humidity, soil temperature and moisture) were recorded in half-hour or hourly intervals, and main
carbon pools and fluxes have been periodically monitored, including aboveground plant
biomass (Kröel-Dulay et al. 2015), litter production, soil respiration and net ecosystem carbon
exchange (Beier et al. 2008; Lellei-Kovács et al. 2016).

Methodologies using natural abundance of carbon isotopes

1. Ecosystem processes reflected by stable isotope fractionation (13C and 15N)

The relative abundance of the rare and heavy stable isotopes of nitrogen (15N) and carbon
(13C) compared to the most abundant stable isotope, 14N and 12C respectively, is expressed as
the delta (δ) notation (e.g. δ^{13}C and δ^{15}N in ‰), which is the deviation of the 13C or 15N
abundance in the sample compared to a reference material (Brand & Coplen 2014). Most
natural processes (chemical, physical or enzymatically catalysed) discriminate against heavy
isotopes (e.g. 13C, 15N, 18O), which in open systems results in an isotopically depleted product
with comparably smaller concentration of the heavy isotopes than its corresponding substrate
(Fry 2006). If the dominant process rate changes, or if the substrate is exhausted, then the δ
value of the product (such as the plant leaf) may significantly change, due to the underlying
fractionation.

Decreases in soil water availability due to drought can alter the isotope signature of both
carbon and nitrogen in the aboveground plant biomass. During drought stress, leaves reduce
stomatal opening to preserve water. As this happens, the space that confines the air as an
immediate source of CO$_2$ for photosynthesis (the sub-stomatal cavity) becomes a more closed
system due to the restriction of the renewal of CO$_2$, and as a result a higher proportion of the
heavy 13C in CO$_2$ is fixed by Rubisco (C3 plants; Tcherkez et al. 2011). Hereby the
discrimination against the heavy 13C isotope is decreased. As a consequence, in plants with a C3 photosynthetic pathway a 13C enrichment in the leaf occurs during drought stress (Cernusak et al. 2013). Indeed, the 13C enrichment at the leaf level is related to an increased intrinsic water use efficiency (WUEi), the ratio of assimilation to stomatal conductance (Farquhar & Richards 1984). Changes in soil water availability may also alter the leaf nitrogen isotope signature by changing the nitrogen availability with soil depth, and thereby the 15N signature of the plant nitrogen source (Lloret et al. 2004). In general, an increase in the δ^{15}N signature in the leaves indicates a progressive N saturation and/or N losses in the surrounding system because all major pathways of N loss (denitrification, ammonia volatilization and nitrate leaching) cause δ^{15}N enrichment of the remaining nitrogen (Peñuelas et al 2000). Interpretation of changes in leaf δ^{15}N, however, is not straightforward since leaf δ^{15}N signatures might largely depend on mycorrhizal associations, and shifts in nitrogen sources between organic and inorganic compounds under a drought or warming could influence the leaf δ^{15}N as well (Michelsen et al. 1998; Andresen et al. 2009). For instance, the increase in plant δ^{15}N values with aridity may also result from increasing reliance on recycled organic N sources as opposed to new inputs.

Across the INCREASE network the effects of warming and drought on plant 13C and 15N natural abundance was monitored over four years, starting two years after onset of the climate manipulation. Current year shoots or leaves were analysed for δ^{13}C and δ^{15}N immediately after each artificially prolonged drought. Plant material was dried at 70°C and ground to a fine powder before of δ^{13}C and δ^{15}N using isotope ratio mass spectrometry (IRMS). We expected to find higher δ^{13}C values: i) in drought treated plants (compared to control plots) and, ii) in plants growing at drier locations across the precipitation gradient (for a given common plant species). Furthermore, we expected iii) the δ^{15}N to change in response to drought, as the nitrogen source (depth) is changed (at one location, within-species). Some significant effects
of the drought treatment were observed on plant tissue δ\(^{13}\)C and δ\(^{15}\)N (Box 1). Differences between years (effect of time) were more pronounced than the effect of the drought treatment for *Populus alba* δ\(^{13}\)C (HU), *Erica multiflora* δ\(^{15}\)N (SP) and *Globularium alypum* δ\(^{15}\)N and δ\(^{13}\)C (SP). Only *Calluna vulgaris* showed a significant response to the drought treatment for δ\(^{13}\)C as hypothesized (Box 1A). For *C. vulgaris*, which was growing at several locations (UK-CL, NL and DK-MOLS), the δ\(^{13}\)C was higher at drier locations, when compared along the precipitation gradient, and also higher in the drought treatment at the NL and UK-CL sites (Box 1B). Finally, we found no response of leaf δ\(^{15}\)N to drought or warming, however, *P. alba* had a much depleted δ\(^{15}\)N relative to the other species. We attribute these differences to species specific utilization of different nitrogen sources (perhaps more dependent on nitrate at the HU site) or different mycorrhizal associations with higher rates of isotopic fractionation.

2. Bomb-\(^{14}\)C technique to assess sources of soil respiration

The natural radioactive \(^{14}\)C abundance can be used to identify different sources of carbon in a mixed pool, for instance in soil respiration. Radiocarbon signatures of more recent (i.e. < 65-70 years) and older carbon sources are different as a result of the nuclear bomb tests in the atmosphere during the 1950/60s. These tests led to an increase in the \(^{14}\)C content in the atmospheric CO\(_2\) in the Northern hemisphere, which reached its maximum in 1963 (‘bomb peak’ doubling at ca. 200% pMC). Ever since the subsequent atmospheric nuclear test moratorium, the ‘bomb-\(^{14}\)C’ content has decreased due to the dilution with fossil fuel-derived CO\(_2\) in the atmosphere and its incorporation in ocean and terrestrial carbon pools (Trumbore 2009). Through its incorporation in plant biomass, the radiocarbon analysis of ecosystem fluxes found to contain bomb-\(^{14}\)C provides singularly unique information which crucially and directly confirms the ‘recent’ origin of any (decomposed) carbon substrate. Recently plant-
assimilated carbon (autotrophic component of soil respiration) should have a similar radiocarbon signature as the current atmosphere, while the radiocarbon content of older carbon released through SOM mineralisation (heterotrophic component) reflects the year of fixation of that carbon, with the relative contribution of both sources of different ages being resolvable using a mixing model solution. Several studies have successfully achieved the separation of sources of C respiration across ecosystems using the ‘bomb-\(^{14}\)C’ method (Cisneros-Dozal et al. 2006; Schuur & Trumbore 2006; Subke et al. 2011). In these studies, analysis of the \(^{14}\)C-CO\(_2\) signatures of roots and SOM was performed under controlled conditions and collated with analyses of field gas efflux (the mixed pool). Radiocarbon analysis of soil or ecosystem respiration has been used to evaluate the response of a range of ecosystems to different factors of climate change, such as increasing temperatures, decreasing rainfall or permafrost thaw (Borken et al. 2006; Muhr et al. 2009; Schuur et al. 2009). The method allows for a direct evaluation about possible differential effects of climate change factors on the fate of recent vs. older soil C moieties, a central question for climate change scientists. The applicability, sensitivity and accuracy of the method is obviously improved when more of the ‘bomb-\(^{14}\)C’ is detectable in the specific analysed C pool, e.g. containing relatively more C which laid down in living tissues and subsequent decomposition products in the 1950 to 1970s period.

We tested the effect of experimental warming and drought on the natural abundance of \(^{14}\)C in respired soil CO\(_2\) at early stages of the climate manipulations at the Peaknaze field site (UK-PK). Our hypothesis was that drought increased heterotrophic respiration more than warming in this seasonally waterlogged soil, due to a greater responsiveness of old soil carbon to drought relative to temperature as a driver (Domínguez et al. 2015, 2017). Therefore, we expected the greatest \(^{14}\)C-enrichment in the field-collected soil respiration samples from the drought plots. Soil efflux samples were collected in the late experimental drought period.
(September 2011), using a molecular sieve sampling system (Bol et al. 1995; Hardie et al. 2005) attached to closed dark respiration chambers placed on the soil overnight. CO₂ was subsequently recovered from the molecular sieve traps for ¹⁴C analysis by Accelerator Mass Spectrometry (AMS; Box 2). Soil and root samples were collected to conduct separate incubations to obtain the ¹⁴C-signatures of the heterotrophic and autotrophic respiration, respectively. These incubations were performed in leak-tight glass jars with a connection to the molecular sieve sampling system. The results revealed a high heterogeneity of the ¹⁴C signature of the soil efflux with no significant effect of the warming treatment, and a trend towards the release of older carbon from the drought plots (although not statistically significant). By comparison with the known record of post-bomb atmospheric ¹⁴C-CO₂ concentration (Box 2), the carbon being released from the plots was estimated to have been fixed between six and eight years earlier (M. Dominguez, unpublished).

Methods using in-situ ¹³C labelling to study rhizodeposition utilisation

1. ¹³C-CO₂ pulse labelling

In-situ pulse labelling with the stable carbon isotope (¹³C) is a good method to address questions related to the time lag between carbon assimilation and CO₂ release from soil (Kuzyakov & Gavrichkova 2010). In ¹³C-CO₂ pulse labelling experiments, ¹³C enriched CO₂ is released in closed, intact plant-soil systems during daylight hours, typically for 1.5 to 6 hours, where it is assimilated by the photosynthetically active plant biomass. Plant and soil samples are taken from unlabelled and labelled systems at different time intervals, with a higher sampling frequency within the first 48 hours after the labelling. The allocation of ¹³C to belowground pools (roots, exudates, microbiota) is subsequently analysed, which allows the
determination of the fraction of recently fixed carbon actively utilized by e.g. different microbial functional groups if analysis of 13C in specific compounds such as PLFA or RNA is performed. Using 13C-CO$_2$ pulse labelling, several authors demonstrated that the flux of recently photosynthesized carbon to soil microbes occurs very fast, often within a few hours of 13CO$_2$ uptake (Treonis et al., 2004; Rangel-Castro et al. 2005), with a maximum incorporation of 13C into microbial RNA or biomass occurring within one to eight days after the pulse (Ostle et al. 2003; Butler et al., 2004). These studies have also shown that this flux might be affected by a range of factors such as the seasonality of plant activity. Usually, more carbon is allocated belowground towards the end of the growing season (Högberg et al. 2010; Balasooriya et al. 2013), under exposure to elevated atmospheric CO$_2$ concentrations (Jin & Evans 2010; Reinsch et al. 2013), under drought conditions (Fuchslueger et al. 2014) or in plants grown on fertile soils (Denef et al. 2009).

In the INCREASE network, several pulse-labelling experiments were conducted in combination with 13C-PLFA analyses to study rhizodeposit utilisation by microbes. At the Clocaenog site (UK-CL) we aimed to study the utilisation of rhizodeposits along a soil moisture gradient, by applying a 13C-CO$_2$ pulse during the late growing-season (August 2011). Transparent domes of 50 cm diameter and 100 cm height, enclosing individual C. vulgaris plants, were used. Repeated pulses of 13C-CO$_2$ (99 atom% 13C = 99% 13C + 1% 12C) were applied over eight hours (Box 3). The domes were sealed to a frame which was inserted into the ground at least ten days before the pulse, and had several sealed septa to collect gas samples to estimate the concentration of the 13C-labelled CO$_2$. Plant leaves and soil from the rooting zone were collected at different times after the labelling, using a higher sampling frequency during the first hours after the pulse. Soils were freeze-dried, sieved to ≤ 5 mm and PLFAs were extracted. Fatty acid methyl esters (FAMEs) were analysed by gas chromatography combustion-isotope ratio mass spectrometry (GC-c-IRMS). The main
challenge was the low recovery of 13C label in the belowground compartment, especially in individual FAMEs. Despite the applied 13C concentration of 99 atom%, the apparent low photosynthetic rates combined with the excessive dilution of the 13C label in the large carbon pools of unlabelled woody branches and root- and microbial biomass resulted in an overall low level of 13C enrichment in the FAMEs (Box 3). Similar patterns have also been observed in other pulse labelling experiments (Griffith et al. 2004).

Three pulse-labelling events were conducted at the Brandbjerg site (DK-BRA,) between 2010 and 2013 (Box 3). The Brandbjerg experiment consists of drought and warming manipulations in combination with ambient and elevated levels of CO$_2$ concentration. The developed experimental setup for pulse-labelling aimed i) to be easily deployable in remote areas, ii) to distribute labelled 13C-CO$_2$ to as many plots at the same time as possible to ensure similar and constant conditions for CO$_2$ uptake by the vegetation, and iii) to ensure constant CO$_2$ concentration available to the vegetation throughout the labelling period. Therefore, a mobile flow-through system suitable for continuous 13C-CO$_2$ delivery was developed (Box 3):

A gas-tight vinyl balloon (~3 m diameter) was filled with CO$_2$ free synthetic air and mixed with 13C-CO$_2$ (50 or 99 atom%) that supplied the transparent chambers enclosing the vegetation of interest with air over the duration of the experiments ranging from 4 to 7.5 hours. Air was pumped continuously through gas tight tubing via electric diaphragm pumps (Reinsch & Ambus 2013). The first experiment was conducted at the end of the growing season (October 2010), when we observed the highest allocation of carbon belowground as measured by 13C in soil respiration (Reinsch et al. 2014). The second experiment was conducted in the spring (May 2011) and showed a major allocation of carbon to aboveground structures under elevated atmospheric CO$_2$ concentration, but carbon allocation to belowground structures was higher in drought plots than in untreated control plots. The allocation of recently-assimilated carbon under warming conditions was similar to that under
ambient conditions. The last experiment, conducted in early season 2013 (June), was performed during a period with impeded photosynthetic activity and indicated that labelling performance is poor when vegetation is recovering from harsh winter conditions with bare frost or severe drought conditions (Box 3). Thus, it is important that the vegetation of interest displays green, photosynthetically active structures to facilitate CO$_2$ uptake and sufficient labelling of ecosystem carbon pools. From these labelling experiments we learned that climate change factors change the flow of carbon within the plant-soil-atmosphere continuum. Increased atmospheric CO$_2$ concentrations accelerate the carbon cycle as seen as labelled carbon through the bacterial community over time. In contrast, drought slowed down carbon transport dynamics with soil microbes showing the 13C label later in time (Reinsch et al. 2014).

Our studies illustrate the complexity of controlling in-situ pulse-labelling experiments in ecosystems dominated by woody plants, which is even more challenging with 13C-CO$_2$ than with 14C-CO$_2$ because of their respective atmospheric backgrounds and detection limits (Epron et al. 2012). Ideally, 13C doses for in-situ use should be carefully tested in trials, considering the nature of the studied vegetation and the compounds to be analysed. If e.g. specific compounds of the soil microbial biomass are the main interest, then strong isotopic doses should be applied, and it is advisable to deploy the 13C pulse when plants naturally allocate carbon belowground e.g. when preparing for winter. The 13C signal can be increased by using highly labelled 13C-CO$_2$ (99 atom %). However, the usage of a highly enriched CO$_2$ can potentially lead to blurry signals and has to be applied with caution (Watzinger 2015). Furthermore, 13C-CO$_2$ concentration inside the labelling chamber should be as close as possible to ambient values, because unrealistic high CO$_2$ concentration will change plant CO$_2$ uptake. Repeated moderated 13C-CO$_2$ applications during longer exposure times might be more appropriate, but inside closed transparent chambers temperature and humidity may
increase if the labelling period is prolonged, which also affects photosynthetic processes (Epron et al. 2012). Losses of 13C due to physical diffusion and adsorption/desorption into the chamber and tubing material should also be considered. In particular, the back-diffusion of the 13CO$_2$ from the soil to the atmosphere which entered the soil pores during the labelling might confound the interpretation of measured belowground respiration (Subke et al. 2009; Selsted et al. 2011). However, when applied properly, the insights into terrestrial carbon allocation can be detailed and novel (Box 3).

2. Free Air Carbon dioxide Enrichment (FACE)-labelling

An alternative method for 13C labelling of vegetation and whole-ecosystems is to use 13C-depleted CO$_2$ in FACE experiments. The FACE technique has through decades been used within cropping systems (Kimball 2016), grasslands (Hovenden et al. 2014; Reich et al. 2014; Mueller et al. 2016) and forests (Terrer et al. 2016) experiments, with the primary goal of assessing potential carbon dynamics and enhancement of plant growth (Andresen et al. 2016). As a side effect, the change in carbon isotopic composition of vegetation exposed to the FACE-treatment can be used to trace freshly assimilated carbon into soil microbial biomass, fauna and organic carbon pools. This approach was used at the Brandbjerg site (DK-BRA). The CO$_2$ used to elevate concentrations of atmospheric CO$_2$ to 510 ppm had δ^{13}C values ranging from -3.0 to -36.7 ‰ throughout 8 years of experimental treatment, with an overall mean of -26.1 ‰. The source of the CO$_2$ supplied was brewery surplus CO$_2$ as a chemically obtained side product. The mixing of the added CO$_2$ via FACE with ambient CO$_2$ in the moving air mass resulted in a 13C depletion ranging from -6.7 to -15.6 ‰. On average, this equals a depletion of CO$_2$ in FACE plots of -4.8 ‰ relative to the atmospheric -8 ‰ average. Ecosystem carbon pools became depleted accordingly, and the FACE-13C depletion acted as a
long-term persistent isotope labelling. As a result, soil fauna (Enchytraeids) sampled from each of the climate-treated plots was significantly depleted in δ^{13}C by -0.5 to -2.0 ‰ in the CO$_2$ treatments (Andresen et al. 2011). This was due to translocated 13C substrate through the food web, starting with plant assimilation of 13C-depleted CO$_2$, followed by plant root exudation and microbial utilization of the 13C depleted substrate and eventual digestion of microbes by enchytraeids. Hereby the freshly supplied carbon source was recognized to be transferred in the natural setting, within a given time scale. Also microbial biomass and PLFAs had a different baseline of 13C content in ambient (not-treated) plots compared to CO$_2$ treated plots (Andresen et al. 2014). This was used for the calculation of 13C enrichments in each PLFA biomarker, also illustrating the pathway of newly-assimilated carbon into microbial biomass.

A general drawback of the 13C-FACE label is again the contamination of the surroundings, as even short and small un-planned draft winds can carry the depleted label onto ‘ambient’ plots, and these will most likely be ‘contaminated’ with 13C (though not markedly exposed to high CO$_2$ concentrations) after some years of FACE activity. Therefore, one needs to collect reference material for the ‘natural abundance’ level well away from the FACE experiment. Also, FACE-CO$_2$ can only be used as tracer if the isotopic composition of the FACE-CO$_2$ is considerably different than the isotopic composition of the atmospheric CO$_2$.

3. **In-situ injection of 13C-enriched substrate solutions**

As a much more localized approach, *in-situ* injection of 13C- and 15N-enriched substrates directly below the soil surface can be used to assess the competition for the substrate between i) plants and soil microbes, ii) microbial groups, and iii) the effects of the climate change treatments upon the competition for carbon or nitrogen substrates. Much research has focused
on the sharing of nitrogen sources between plant and microbes (Kuzyakov & Xu 2013) using

in-situ soil injections of 15N labelled inorganic nitrogen (ammonium and nitrate) or organic

nitrogen (amino acids) (Sorensen et al., 2008). Once amino acids with dual labelled

compounds (15N and 13C) were available for experimental use, double-labelled substrate was

used to explore e.g. plant uptake of intact amino acids (Näsholm et al. 2009; Rasmussen et al.

2010), and microbial utilization of carbon substrates (Dungait et al. 2013; Rinnan & Baath

2009).

In a labelling experiment at the DK-BRA site, amino acid injections into the soil were

conducted to analyse the impact of the climate treatments on the uptake of free amino acid

nitrogen by plants and soil microbes. Dual-labelled glycine (13C$_2$15N-glycine: 99 atom% 13C -

of both carbon atoms - and 99 atom% 15N) was added to 20 × 20 cm2 sub-plots (Andresen et

al. 2009). Each sub-plot received 0.1 L of re-demineralised water labelled with 0.027 g

glycine, corresponding to 687 mg glycine m$^{-2}$ (223 mg C m$^{-2}$ or 0.016 mg glycine g$^{-1}$ dry

weight soil). The label was injected into the soil just below the soil surface with a syringe

moved among 16 evenly spaced points of a template, placed on top of the vegetation

(Andresen et al. 2009). One day (c. 24 h) after labelling with glycine, soil cores were sampled

from the soil surface to 15 cm depth, for determining the relative uptake of the amino acid in

plant roots (IRMS solid sample) and soil microbes. As in many other soil labelling

experiments, the largest label recovery (measured by 15N recovery since respiratory losses of

13C remain unknown) was found in the total microbial biomass compared to total plant

biomass (Kuzyakov & Xu 2013). A subsample of fresh soil was extracted with re-
demineralised water, and another set of subsamples was first vacuum-incubated with

chloroform for 24 hours to release microbial carbon and nitrogen (Joergensen & Mueller

1996; Brookes et al. 1985), before extraction with re-demineralised water. A third subsample

of soil was freeze-dried and later used for PLFA extractions. The 13C enrichment in PLFA
markers thus indicated the activity (vitality) of the specific microbial group (Watzinger 2015). We found that bacteria opportunistically utilised the freshly added glycine substrate, i.e. incorporated 13C, whereas fungi showed only minor or no glycine derived 13C-enrichment (Andresen et al. 2014). In comparison, 13C traced into the microbial community via the 13C-CO$_2$ pulse label at the same site (DK-BRA) also reached the bacterial community first. Bacteria showed high 13C enrichment compared to fungal groups (Reinsch et al. 2014). This suggests that *in-situ* injection of 13C substrates might be a plausible alternative to mimic rhizodeposition effects. With the direct addition of 13C label to the soil a strong labelling of the microbial community was more easily achieved than with the indirect 13C labelling of microbes via plant assimilated 13C-CO$_2$ (Box 3).

Use of labelled carbon-compounds to analyse carbon mineralisation by soil microorganisms

Since soil microorganisms have an important role in controlling the availability of nutrients via mineralisation of SOM, our understanding of how microbial functioning in the ecosystem is altered by global change must be improved (Grayston et al. 1997). Microbial catabolic diversity of a soil is directly related to the carbon decomposition function within a soil and potentially provides a sensitive and ecologically relevant measure of the microbial community functional structure (Garland & Mills 1991). Subsequently, multiple assays have been developed to generate community level physiological profiles (CLPP) that can act as fingerprints of microbial function. Three approaches for measuring CLPP in soils are reported in the literature: (i) Biolog (Garland & Mills 1991); (ii) a substrate-induced respiration (SIR) technique (Degens & Harris 1997); and (iii) MicroResp (Campbell et al. 2003). These methods are all based on quantifying CO$_2$ respired during the mineralisation of organic carbon.
compounds that vary in size, charge and structural complexity. The first approach, Biolog MicroPlateTM (Biolog), assesses the catabolic diversity of soil organisms using a microtitre plate by incubating a soil culture in the presence of nutrients and 95 different carbon substrates; respired CO₂ is used to reduce a tetrazolium violet salt, which results in a colour change that can be quantified colorimetrically (Garland & Mills 1991). This approach, however, has been criticized for bias towards fast growing organisms that thrive in culture (Preston-Mafham et al. 2002). In response to the criticism of the Biolog method, Degens & Harris (1997) developed a method based on SIR where individual substrates are added to intact soil and evolved CO₂ is sampled and quantified. Finally, Campbell et al. (2003) combined aspects of both methods (MicroRespTM) where the response to carbon substrate addition to soil is measured colorimetrically using a cresol red indicator dye in a microtitre plate format.

Community level physiological profiling of soils samples collected from all treatments across the network was conducted to determine the catabolic utilisation profile, turnover and pool allocation of low molecular weight (LMW) carbon compounds by using a selection of ¹⁴C-labelled substrates. This method enabled the attribution of respired CO₂ to specific metabolic processes that facilitates the quantification and qualification of microbial mineralisation kinetics of substrates varying in structural complexity and recalcitrance. The kinetics of microbial ¹⁴C-CO₂ evolution can be described using a first order exponential decay model (Box 4). The number of terms used in the exponential decay model can be used to explain how microbial kinetics relates time, substrate complexity and carbon pool allocation to, for example, rapidly cycled labile soil solution carbon, microbial structural carbon and recalcitrant extracellular soil organic carbon (Kuzyakov & Demin 1998; Nguyen & Guckert 2001; Boddy et al. 2007). Attribution of modelled carbon pool sizes and turnover rates to biological function are not only time and substrate dependent. Therefore, soil physical,
biological and chemical interactions may be miss-attributed to biological function. Indeed, current knowledge and techniques available might not be enough to examine the interaction between discrete carbon pools (Glanville et al, 2016). Using the half-life of \(^{14}\)C labelled carbon in soil solution we were able to examine the environmental gradient of the warming treatment across the climate change network and identified that temperature becomes rate limiting for microbial uptake of carbon from the soil solution pool at \(< 10.5 \, ^\circ C\). We also showed that experimentally manipulated warming simply speeds up the catabolic utilisation of labile LMW carbon in a predictable pattern (Box 4).

Conclusions and recommendations

Stable isotope studies provide insightful information about carbon (and nitrogen) fluxes through the plant-soil-atmosphere continuum with minimal disturbance to the system. The value of the different isotope techniques depends on the specific research questions. The analysis of the natural abundance of the heavy isotopes is only useful when isotope signatures in the different carbon or nitrogen pools are clearly distinct as a result of important fractionation processes. In practice, the application of this technique is limited to the study of the effects of changing abiotic conditions on processes that operate over a relative broad period of time, for instance to study changes in plant water use efficiency or N sources in a drought experiment over the growing season or different years. In contrast, the radiocarbon analysis (“bomb-C” technique) of instantaneous fluxes (soil or ecosystem respiration) has been proved to be very useful to evaluate whether different factors of climate change provoke the release of older carbon sources through soil or ecosystem respiration, a central question in relation to the proposed positive feedback between climate change and SOM decomposition.
However, the progressive dilution of the bomb-C signature of the atmosphere will limit the application of this technique in the upcoming decades.

If the analysis of climate change effects on plant carbon belowground and cycling through the microbial community is the main research interest, then 13C labelling approaches are the most appropriated tools. Coupled with the analysis of 13C in specific microbial compounds, this technique constituted a remarkable advance in the study of processes occurring at the rhizosphere level. A significant challenge of the application of this technique is the achievement of sufficient 13C enrichment in microbial biomass where the pools of background carbon in the studied compartments are high and hence dilute the 13C signal. As an alternative, direct injection of 13C-enriched substrates into soil can be applied to mimic rhizodeposition and to achieve a higher 13C signal in the microbial community. Fumigation with FACE-CO$_2$ can be used to achieve a longer-term labelling of soil microbes and fauna.

The application of these techniques, however, is not exempt from difficulties and disadvantages. To keep a high caution and avoid mistakes, our collective recommendations for applying the described methods are provided and addressed in Table 1.

For in-situ pulse-labelling studies there are major seasonality constraints to the distribution of the label throughout the ecosystem compartments, i.e. the seasonality of carbon allocation belowground due to changing plant activity, or the plant health status which determines the amount of tracer entering the system. Importantly, field plots previously ‘contaminated’ by highly enriched isotope labelling should be considered potentially inoperable for further scientific isotope studies using the natural abundance approach. However, plant and soil structures remain largely undisturbed. In outlook for setting up a large-scale climate manipulation, areas that have not been previously used for experimental work with isotopes should consequently be selected. In particular, the ‘bomb-C’ method is very sensitive to the
contamination of soil or plant samples with 14C-enriched material, and thus its application should be limited to sites and facilities where no 14C-labelling work has been conducted. Additionally, it should be noted that any history of fertilization might also alter the natural isotope abundance of ecosystem compartments (in particular 15N signatures), potentially confounding experimental results. The surroundings of a FACE experiment can be also “contaminated” by draft winds carrying the depleted label onto ambient plots.

Acknowledgements

This paper is a WP3 and WP15 of the INCREASE EU-infrastructure. Financial support by the European Commission (FTP7-ICT-2008-1, Grant Agreement no. 227628) is gratefully acknowledged. LCA, IKS, PA and CB received support from the VKR foundation through the CLIMAITE project. ME and JP acknowledge support from the Spanish Government grant CGL2016-79835-P, the Catalan Government grant SGR2014- 274, and the European Research Council grant ERC-SyG-610028 IMBALANCE-P. GKD was supported by the Hungarian Scientific Research Fund (OTKA K112576) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The ClimMani (ESSEM COST Action ES1308, Climate Change Manipulation Experiments in Terrestrial) is acknowledged. Authors state that they do not have any conflicts of interest to declare.

Data Accessibility

The manuscript does not have associated archived data.

Author contributions statement
All authors contributed to the collection of the data included as illustration of the methodologies. LCA, MTD, SR, and ARS wrote the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

References

continuum: a review. Biogeosciences, 8, 3457-3489.

of recently fixed photosynthate in ryegrass rhizospheres. Soil Biology and Biochemistry, 36,
371-382.

rapid microtitre plate method to measure carbon dioxide evolved from carbon substrate
amendments so as to determine the physiological profiles of soil microbial communities by

(2013) Environmental and physiological determinants of carbon isotope discrimination in

Chapin, F.S., McFarland, J., David McGuire, A., Euskirchen, E. S., Ruess, R. W., & Kielland,

Cisneros-Dozal, L.M., Trumbore, S. & Hanson, P.J. (2006) Partitioning sources of soil-
respired CO₂ and their seasonal variation using a unique radiocarbon tracer. Global Change
Biology, 12, 194-204.

the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 29:
1309-1320.

Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E.,
Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da

Table 1. Suggestions and advice to consider when applying isotopic methods for the study of carbon fluxes in the plant-soil system.

<table>
<thead>
<tr>
<th>Method</th>
<th>Expenses (cost)</th>
<th>Advice (do’s and don’ts)</th>
<th>Before you start</th>
<th>Data analysis hint</th>
<th>Time spent</th>
</tr>
</thead>
</table>
| **Bomb-C (natural abundance)** | High (AMS analysis); Equipment for CO$_2$ sampling is cheap (closed chambers, carbon-free pump, batteries, and molecular sieve system). An IRGA is also required. | - Avoid materials and labs with possible 14C contamination.
- If soil CO$_2$ is to be analysed in the field, long incubation times are required to get sufficient CO$_2$ for AMS analysis (typically >1 ml).
- Think carefully about the soil depths to be analysed, and take the sample consistently. 14C signatures might vary strongly along few cm in the soil.
- If bulk soil 14C is to be analysed, try to remove the roots as much as possible, because of their contrasted 14C signature.
- If you are not sure about potential 14C contamination in your lab, use another lab or make a swipe test.
- Make previous trials to assess the incubation times required to get a sufficient CO$_2$ sample
- Go through the whole process of sample preparation with a trial sample.
- Discuss your results with the Radiocarbon facility staff. | - If you are not sure about potential 14C contamination in your lab, use another lab or make a swipe test.
- Make previous trials to assess the incubation times required to get a sufficient CO$_2$ sample
- Go through the whole process of sample preparation with a trial sample. | - Processing time depends on the type of sample, although is usually low; determination by AMS may take several months depending on the facility. |
| **In situ 13C-CO$_2$ pulse-labelling** | 13C- enriched compounds used for labelling and as standards are usually expensive; 13C determination in specific compounds is expensive, although cheaper than AMS. | - Consider the target pools to be analysed and the potential dilution of the label by the unlabelled root system or soil carbon pool.
- If your study requires a high 13C enrichment, mind the potential risk of contaminating the site.
- Avoid above ambient CO$_2$ concentrations in the chamber.
- If you need to monitor CO$_2$ during your pulse, remember that IRGAs are rather insensitive to 13CO$_2$. | - Test your chamber and tubing materials for adsorption / desorption effects, and ensure these are without carbon content (use PTFE (Teflon) tape, not gluing paper-based).
- Make a previous trial if possible and go through the whole process of sample preparation. | Report the label addition per area: g 13C m$^{-2}$.
- Pulse labelling experiments are usually short, but intensive (high sampling frequency immediately after the pulse).
- Experiments requiring root washing or microbial compound extraction are time consuming. |
| **Natural abundance of isotopes (13C and 15N)** | IRMS analysis is relatively cheap. | - Make sure the history of sampling site is known (previous labelling experiments?)
- Be aware that FACE can dilute the isotopic signal, most CO$_2$ enriched systems use 13C depleted. | - | - Sampling time and grinding / weighing of sample.
- Analysis usually |
<table>
<thead>
<tr>
<th>14C-substrates mineralisation</th>
<th>Analysis of the trapped 14C-CO₂ is relatively cheap.</th>
<th>- High risk of contaminating lab equipment.</th>
<th>- You need to work in a dedicated 14C lab safely away from the natural abundance facility.</th>
<th>- Continue sampling until decline in emission is level, this ensures better model fit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C-injection in situ</td>
<td>Similar to 14C-CO₂ pulse-leaching.</td>
<td>- Contamination risk of 13C leaching is present, but smaller to our judgement than from 13C-CO₂ experiments. - Do not use areas dedicated to natural abundance work.</td>
<td>- Labelling intended for soil microbial components is more intense from 13C liquid substrate in-situ injection than from 13C-CO₂ pulse labelling.</td>
<td>- Soil sampling is destructive, consider to have several parallel plots to harvest an undisturbed plot at each sampling event. - Sample handling from field work until the extraction takes a few days so plan only one sampling event per week if possible.</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Map of the European INCREASE network, with the shrubland field sites and annual temperature (red line, right axis) and precipitation (bars, left axis) norm. Sites in Denmark: Mols (DK-MOLS) and Brandbjerg (DK-BRA); in United Kingdom: Clocaenog (UK-CL) and Peaknaze (UK-PK); in The Netherlands (NL): Oldebroek; in Spain (SP): Garraf; in Italy (IT): Porte Conte, and in Hungary (HU): Kiskunság.
Box 1. Isotopic signal of plant leaf responses to precipitation. Stable isotopes (δ\(^{13}\)C and δ\(^{15}\)N) in aboveground plant material collected across the network was analysed by isotopic ratio mass spectrometry (IRMS). A: Leaves and twigs (t) from *P. alba* (HU), *E. multiflora* L. (SP), *G. alypum* L. (SP) and *C. vulgaris* (NL); filled circle ● is control, open circle ○ is drought treatment, ▼ is warming treatment. P-values indicate effects of treatment, year, and the interaction of these factors on \(^{13}\)C or \(^{15}\)N, analysed by two-way ANOVA; ns is non-significant effect. Number indicates year (2001=1, 2002=2, 2003=3 or 2004=4). Species (site) differences and annual differences are stronger than treatment effects. B: δ\(^{13}\)C of *C. vulgaris* leaves versus annual precipitation of the previous year.
Box 2. Impact of warming and drought on the 14C signature of soil respiration. A: Records of atmospheric 14C over the 20th century. The unit for 14C signature (% Modern) is a measurement of the deviation of the 14C/12C ratio of a sample from the "Modern" standard, which is defined as 95% of the radiocarbon concentration (in AD 1950) of a reference material (NBS Oxalic Acid I, SRM 4990B), adjusted to a δ^{13}C reference value of −19 ‰. B: At the UK-PK site, the 14C signature of the soil efflux was measured (bars, left axis). 14C values were highly heterogeneous (ranging from 105.49 to 110.13 % Modern; values of >100 % Modern suggest that a substantial component -and potentially all- of the carbon was trapped by photosynthesis during the post-bomb era i.e. since ~AD 1955). There were no significant effects of the warming treatment, while there was a trend towards the release of older carbon in the drought plots. On average, the carbon being released from the plots had been fixed from the atmosphere between six and eight years earlier (line, right axis). C: Detail of a closed static chamber used to collect CO$_2$ from the soil efflux.
Box 3. Analysis of rhizodeposit utilisation by microbes using in-situ 13C-CO$_2$ pulse-labelling experiments. A: At the Clocaenog site (UK-CL) this technique was applied along a peat layer gradient. Repeated pulses of 13C-CO$_2$ were applied during eight hours to C. vulgaris using sealed transparent domes attached to a core inserted into the ground. B: The incorporation of 13C into soil microbial PLFAs was analysed. Despite a high applied dose of 13C (99 atom %), the dilution of the tracer within the large pool of unlabelled root biomass was remarkable, and as a consequence most of the analysed PLFAs showed no 13C enrichment. C: 13C recovery in Gram negative bacteria after a 13C-CO$_2$ pulse at the Brandbjerg site (DK-BRA). The enrichment pattern in PLFAs attributed to Gram negative bacteria in soils exposed to drought and elevated CO$_2$ concentration (+120 ppm) for 8 years show different carbon utilization patterns and magnitudes under imposed climatic conditions implying changed carbon cycle dynamics. D: Flow-through pulse-labelling equipment showing the gas reservoir containing 13C-CO$_2$ for up to eight hours of labelling connected to transparent Plexiglas chambers via tubing.
Box 4. Exponential decay kinetics for 14CO$_2$ evolution during microbial 14C substrate mineralisation. The catabolic utilisation profile, turnover and pool allocation of low molecular weight (LMW) carbon substrates was determined in soils collected across the experimental network. Sixteen 14C labelled amino acids and sugars varying in structural complexity and recalcitrance were used in a multiple substrate induced respiration (SIR) assay on soil. Evolved CO$_2$ was collected using NaOH traps and absorbed 14CO$_2$ was measured with a scintillation counter. A: For substrate mineralisation a double-term first order decay model with an asymptote fitted the data with an r^2 of 0.99. Using the coefficients from the fitted equation, estimated half-life of the substrate in the first phase (soil solution uptake) was 30 h, and in the second slower phase (microbial turnover) 408 h. Approximately 40 % of the substrate was immobilised in the soil, 48.3 % respired during the first phase, and 13.2 % respired during the slower second phase. B: Half-life of the substrate in the soil solution versus mean annual temperature, in control (triangle) and warming (circle) treatments, data points are mean ± SE (n=3). Warming treatment and relative warmer site, simply increases the catabolic utilisation of labile LMW-carbon until a threshold mean annual temperature of 11.5 °C.
A

Populus alba

- treat: ns
- time: 0.018 (13C)
- treat x time: ns

Erica multiflora

- treat: ns
- time: 0.015 (15N)
- treat x time: ns

Globularium alpyrum

- treat: ns
- time: 0.011 (13C) 0.008 (15N)
- treat x time: ns

B

δ¹³C vs precipitation previous year

δ¹³C vs precipitation previous year
A

B

Mean Annual Temperature (°C)

Soil Solution Half Life (hours)

Control

Warming

UK

HU

DK

NL

IT

R²=0.98; P=0.02

R²=0.95; P=0.05