
Highlights 

 

1. A new numerical method to calculate the creep rupture limit with less material data. 

2. Two numerical examples to benchmark and prove the reliability of the method. 

3. An efficient and convenient method avoiding the use of creep constitutive equations. 

4. Creep rupture limit for cyclic or monotonic load, using rupture experimental data. 

5. Provide important creep rupture failure mechanisms due to load conditions. 



Creep rupture assessment by a robust creep data interpolation using the 

Linear Matching Method 

 

Daniele Barbera, Haofeng Chen*  

Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK 

 

Abstract 

The accurate assessment of creep rupture limit is an important issue for industrial components under 

combined action of cyclic thermal and mechanical loading. This paper proposes a new creep rupture 

assessment method under the Linear Matching Method framework, where the creep rupture limit is 

evaluated through an extended shakedown analysis using the revised yield stress, which is determined 

by the minimum of the yield stress of the material and the individual creep rupture stress at each 

integration point. Various numerical strategies have been investigated to calculate these creep rupture 

stresses associated with given temperatures and allowable creep rupture time. Three distinct methods: 

a) linear interpolation method, b) logarithm based polynomial relationship and c) the Larson Miller 

parameter, are introduced to interpolate and extrapolate an accurate creep rupture stress, on the basis 

of discrete experimental creep rupture data. Comparisons between these methods are carried out to 

determine the most appropriate approach leading to the accurate solution to the creep rupture stresses 

for the creep rupture analysis. Two numerical examples including a classical holed plate problem and 

a two-pipe structure are provided to verify the applicability and efficiency of this new approach. 

Detailed step-by-step analyses are also performed to further confirm the accuracy of the obtained 

creep rupture limits, and to investigate the interaction between the different failure mechanisms. All 

the results demonstrate that the proposed approach is capable of providing accurate but conservative 

solutions. 
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1. Introduction 

In engineering a great number of structures are subjected to the action of combined loads, especially 

mechanical and thermal loading. In particular fields of engineering like aerospace and nuclear among 
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many others, creep is a remarkable phenomena. Creep rupture is identified during uni-axial testing, 

and is observed as a rapid strain increase in a short time period. The source of creep damage is related 

to the growth and coalescence of voids in the material microstructure. The assessment of this 

degenerative process is necessary to establish in which location and how the component will fail. 

Various of creep damage models have been proposed, such as the Kachanov-Rabotnov model 

(Kachanov, 1999; Rabotnov, 1969), or others (Chaboche, 1984; Dyson, 2000; Hyde et al., 1996; Liu 

and Murakami, 1998). Approaches like these relying on detailed creep strains are able to simulate the 

entire damage process during creep analysis, but require numerous creep constants in the constitutive 

equation, which are not always available. Furthermore, the applied load is typically monotonic in 

these creep analyses, and greater effort is necessary when simulating a cyclic loading condition. For 

industrial applications, usually it is important to employ methods based upon the creep rupture data 

(Ainsworth, 2003) which are able to simulate a precise phenomenon with fewer constants as possible, 

and efficiently consider practical cyclic thermal and mechanical loading conditions.  

For this consideration the Linear Matching Method (LMM) introduced an approach to simulate the 

creep rupture effect by extending the shakedown analysis method (Chen et al., 2003; Chen et al., 

2006). This approach evaluates the creep rupture limit using an extended shakedown method by the 

introduction of a revised yield stress, which is calculated comparing the material yield stress with a 

creep rupture stress obtained by an analytical formulation. The assessment of creep rupture limit in 

this way does not need to explicitly calculate the creep strain during the component lifetime, thus 

avoiding difficulties from using detailed creep constitutive equation. The advantages of this approach 

on the basis of creep rupture data are the limited amount of material data required, and the capability 

to construct a complete creep rupture limit for different rupture times. The method is capable of 

identifying the most critical areas where the failure will occur, and also to highlight which type of 

failure mechanisms (plasticity failure or creep rupture) will be dominant. It is worth noting that the 

LMM creep rupture analysis method for cyclic load condition is also able to evaluate the monotonic 

loading condition as a special case, associated with an extended limit analysis. The proposed LMM 

creep rupture concept has been verified (Chen et al., 2003), however, it does not provide an accurate 

model for various alloys, where creep rupture mechanisms can be notably different, and the analytical 

function in (Chen et al., 2006) can provides inaccurate predictions. 

The aim of this paper is to develop the most efficient numerical method capable of providing the 

accurate creep rupture stress to replace existing analytical creep rupture stress function adopted in the 

LMM creep rupture analysis, by investigating various interpolation and extrapolation methods for the 

calculation of creep rupture stress for the entire range of temperature and creep rupture time using 

limited creep rupture experimental data. For this purpose, three distinct methods a) linear interpolation 

method, b) logarithm based polynomial relationship and c) the Larson Miller parameters, are 

investigated and compared to produce the most accurate prediction. The aim of this paper is also to 

implement the interpolation and extrapolation methods on creep rupture data into the LMM creep 



rupture analysis method, and apply this new procedure to a couple of practical examples of creep 

rupture analysis. The first example provides a benchmarking, which analyses creep rupture limits of a 

holed plate subjected to a cyclic thermal load and a constant mechanical load. The second example 

performs creep rupture analyses of a two-pipe structure under combined action of a cyclic thermal 

load and a constant mechanical load, and is used to further confirm the efficiency and effectiveness of 

the new method, and to discuss distinct failure mechanisms associated with various creep rupture 

limits. For both numerical examples, step-by-step analysis is also used to verify the accuracy of the 

proposed creep rupture assessment method. 

 

2. LMM approach to creep rupture analysis 

The LMM approach to creep rupture analysis is performed through an extended shakedown 

analysis (Chen et al., 2003; Ponter et al., 2000; Ponter and Engelhardt, 2000), where the original yield 

stress of material in the analysis is replaced by so-called revised yield stresses at each integration 

points for all load instances in the finite element model. Using the strategy of extended shakedown 

analysis, the creep rupture limit can be assessed for both the cyclic and monotonic load conditions 

depending upon the number of load instances in a cycle.  In the method, the revised yield stress R
ys  is 

determined by the minimum of original yield stress of material ys and a creep rupture stress Cs for a 

predefined time to creep rupture ft , With this scheme, the creep rupture limit of a structure can be 

evaluated efficiently and conveniently by using the creep rupture data only, without the usage of 

detailed creep constitutive equations. 

Apart from the time to rupture ft , the creep rupture stress Cs also depends on the applied 

temperature T. (Chen et al., 2003) proposed an analytical formulation for the calculation of the creep 

rupture stress, which is the product of  the yield stress of material and two analytical functions as 

shown below: 
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It is worth noting that for several of practical materials a unique equation (1) of creep rupture stress is 

not available. Hence a compromised scheme was provided by (Chen et al., 2003) for a particular case 
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dependency on temperature is formulated by: 
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However, in practical applications with limited experimental creep rupture data, it would be 

impossible to formulate equation (1) for the analysis. To overcome this, a new numerical scheme to 

calculate the creep rupture stress using limited rupture experimental data is proposed in this paper and 

described in Section 3. Once the revised yield stress R
ys  is obtained from the creep rupture stress for a 

given time to creep rupture ft  and temperature, it allows an extension of the shakedown procedure for 

the creep rupture analysis. In the rest of this section, the applied LMM numerical procedure (Chen et 

al., 2003) for the creep rupture assessment is summarised.  

The material is considered isotropic, elastic-perfectly plastic. The stress history has to satisfy both 

the yield and the creep rupture condition. In order to define a loading history an elastic stress field ˆ
ijs  

is obtained by the sum of different elastic thermal stress ˆ
ij
s  and mechanical stress ˆ P

ijs . Such elastic 

stress fields are associated with load parameter l , which allows considering a wide range of loading 

histories: 
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The method relies on a kinematic theorem (Koiter, 1960), which can be expressed by the 

incompressible and kinematically admissible strain rate history. This strain rate  is associated with 

a compatible strain increment c
ij  using an integral definition: 

  (4) 

A creep rupture limit multiplier can be calculated, taking into account the load history introduced: 



  (5) 

For creep rupture analysis, c
ijs  is the stress at the revised yield associated with the strain rate 

history , and ˆ
ijs  is the linear elastic stress field associated with the load history for l = 1. 

Combining the associated flow rule, equation (5) can be simplified and the creep rupture limit 

multiplier creepl  can then be calculated by the following equation: 

  (6) 

where s
y

R (t) is the revised yield stress which is determined by the minimum of the yield stress of 

material s
y
(t) and the creep rupture stresss

C
(t)  depending on the temperature at each integration 

point and the predefined creep rupture time. Equation (6) contains two volume integrals, which can be 

calculated via plastic energy dissipations from the Abaqus solver (Hibbitt et al., 2012). An iterative 

solving process based on a number of linear problems can be arranged (Ponter and Engelhardt, 2000). 

The first step initiates with plastic strain rate , from which a linear problem is posed for a new 

strain history c
ij , 
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where notation () refers to the deviator component of stress and strain, c
ij is the constant residual 

stress field. Equation (8) describes the matching condition between the linear and nonlinear materials, 

where the shear modulus  is defined as the ratio between the revised yield stress R
ys  and the 

equivalent strain rate i . To obtain the solution over the cycle, the equation (7) is further integrated 

over the cycle time producing the following relations: 
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where c
ij  is the plastic strain increment, in

ijs  is the scaled elastic stress component over the cycle and 

  is the overall shear modulus for the cycle period Δt. Once the solution for this incompressible 

linear problem is calculated, a load multiplier f
creepl can be obtained using the strain rate history c

ij  in 

equation (6). For each increment the creep rupture limit calculated has to satisfy this inequality 

f i
creep creepl l . The repeated use of this procedure generates a monotonically reducing sequence of 

creep rupture limit multipliers, which will converge to a minimum upper bound when the difference 

between two subsequent strain rate histories has no effect on creep rupture limit. When convergence 

occurs, the stress at every Gauss point in the finite element mesh is either equal or lower than the 

revised yield stress. 

For a practical case of study, a load history can be defined as a sequence of straight lines in the load 

space, and the entire load history can be fully described by the vertices. These vertices represent a 

number of stress fields, which create the stress history associated with the corresponding loading 

history. Considering a strictly convex yield condition that includes the von Mises yield condition, the 

plastic strain occurs only at these vertices. In such a case the strain rate history over the cycle can be 

expressed by a sum of plastic strain increments at these vertices in the load space. By adopting this 

procedure the creep rupture limit can be calculated by an iterative process which leads to a unique 

solution, considering only the most relevant points of the loading cycle (Chen et al., 2003), and 

avoiding the use of creep costitutive equations which are normaly difficult to be obtained. 

 

3. Numerical schemes on creep rupture stress using limited experimental data  

Equation (1) provides an analytical solution to the creep rupture stress, with no direct relationship 

with experimental data. The aim of this new approach is to use limited experimental rupture data to 

calculate the correct creep rupture stress. The interpolation and extrapolation on creep rupture 

experimental data is a challenging field, on which many other researchers (Larson and Miller, 1952; 

Manson and Haferd, 1953; Mendelson et al., 1965; Pink, 1994; Whittaker et al., 2012) worked to 

produce reliable long term creep rupture data. In order to interpolate and extrapolate creep rupture 

data required for the LMM creep rupture analysis, different approaches and strategies are investigated. 

The first strategy investigated is a linear interpolation. The requested material property is estimated 

by linear interpolation in the smallest temperature range available. When the temperature is out of the 

range provided, extrapolation needs to be performed. This approach is straightforward, but has a 



serious weakness. The accuracy relies on the number of data points provided. If the temperature range 

of simulation is wider than the available experimental one, a remarkable overestimation of creep 

rupture stress is possible. Furthermore, such a method is not capable of fitting complex nonlinear 

material behaviour especially at high temperature with scattering data. 

The second approach uses a polynomial logarithmic relationship between the stress and 

temperature, and least square method is adopted to perform the calculation of polynomial coefficients. 

The “best” fit is the one that minimizes the square of the error, expressed by the following equation 

(Burden, 2001): 
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To minimize the error the constants have to be precisely evaluated. The derivatives of the error with 

respect to the variables are fixed to zero, obtaining two linear equations. These equations can be 

solved, gathering a matrix formulation for a first order linear interpolation, which does not always 

provide a good agreement with experimental data. Therefore, to overcome this issue, a more general 

formulation is introduced. The error that has to be minimized is expressed by the following 

relationship: 
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In order to do this a derivative for each coefficient is needed, and each equation is set to zero. For j  

that represents the order and n  the number of data points the following equation is obtained: 
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This general formulation can be represented in a matrix formulation, and the Gaussian elimination is 

used to achieve the system solution. 
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Using this formulation different interpolating equations can be constructed for the temperature (T) 

dependent creep rupture stress sc. The polynomial formulation considered for a specific j  order is the 

following: 
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The third method evaluated is the Larson Miller (LM) parameter which is based on time-

temperature parameters (Larson and Miller, 1952). Such a method is used to determine the creep 

master curves, compensating time with temperature to predict long term creep data. The Larson Miller 

parameter is widely used for long term creep rupture data prediction and for master curve 

extrapolation using short term experimental results. It relies on the assumption that a coincident point 

exists for all iso-stress plots. The Larson-Miller parameter can be used to establish a relationship 

between the rupture stress, the temperature and rupture time allowing extrapolation for long term 

creep. This parameter is defined by the following expression: 
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where T is the temperature expressed in Celsius degree, ft is the time to rupture measured in hours 

and C is a material constant, normally around 20-22. 

The first step of the LM method is to calculate the LMP values of all the data available, obtaining a 

LMP  versus  log s  plot. A second order polynomial equation is used to fit the data points: 
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The three parameters  0 1 2, ,a a a  are calculated using the least square method. Adopting these 

parameters it is possible to extrapolate data over the temperature for the same rupture time. If 

necessary such method is capable of extrapolating the rupture stress over the time.  

Equation (17) makes the creep stress directly related to the Larson Miller parameter, for a defined 

rupture time, temperature, and constant C  that is shown in equation (16) and is material dependent. 

In order to find the best numerical scheme, a comparison between these approaches is shown in 

Figure 1, which is obtained by interpolating and extrapolating Nimonic 80-A rupture data. In order to 

reproduce the common lack of availability of data for a wide range of temperatures only five data 

points are used (“Assumed Available points”) over the nine presented on the data sheet (“Real Data 

Points”). Figure 1a shows a complete view of the interpolation results. It is clear how linear 

interpolation overestimates rupture stress for high temperatures and contrary underestimates it for low 



temperatures. The other two methods instead are able to provide much more accurate rupture data, 

and the Larson Miller approach is the one which leads to the most precise prediction. Figure 1b 

presents a closer view for temperatures between 480⁰C and 520⁰C. It can be seen clearly that the 

Larson-Miller approach is still the best option due to its capability of providing an accurate prediction; 

instead linear and logarithmic approaches respectively underestimate and overestimate the real 

experimental rupture stress. For each method the maximum and minimum temperatures are imposed. 

The maximum allowable working temperature is a material constant, and is an upper bound limit for 

the simulation. The minimum creep temperature is a material constant too, and depends on the rupture 

time. All the methods described in this section are implemented in the solution process through a 

FORTRAN subroutine called by the LMM creep rupture analysis via Abaqus user subroutine UMAT 

(Hibbitt et al., 2012), where the LM method  is the default method to calculate the creep rupture 

stress, but the user is allowed to use other two schemes as well during the analysis. 

4. Holed plate 

4.1 Finite element model for the holed plate example 

The first example analysed in this paper is a square holed plate subjected to a constant mechanical 

load and a cycling thermal load. A quarter of the plate is modelled due to the symmetry condition 

(Figure 2). The mesh used is composed by 642  20 -node solid isoparametric elements, with reduced 

integration scheme. The following geometric ratios are used in this study, 0.2
D

L
= where D is the hole 

diameter and L the length of the plate, and 0.05
t

L
=  where t is the plate thickness. In order to 

benchmark the new approach the same material properties used by (Chen et al., 2003) are considered. 

The material has a Young’s modulus 208 E GPa= , Poisson’s ratio 0.3 = and a constant yield 

stress 360 MPays = .  

A reference uniaxial tensile load 360 MPaps = is applied on the external face surface, and plain 

conditions are applied to the two external faces. The reference thermal elastic stress field is generated 

by imposing a thermal gradient over the component. The coefficient of thermal expansion of the 

material is 5 11.25 10  C  =   . In order to generate the appropriate temperature field a user defined 

subroutine is used, *UTEMP within Abaqus (Hibbitt et al., 2012), where the temperature gradient of 

the holed plate is defined using the following equation: 
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where a is the radius of the hole, temperature 2000 = and 4000 ==   for the reference 

thermal elastic stress. This analytical formulation computes the temperature for each integration 



points using the coordinates to calculate the appropriate distance r  from the plate centre. In order to 

compare the results obtained by using the new methodology with the previous approach a table of 

creep rupture stresses are calculated using equations (1) and (2).  

 

4.2 Results and discussion for the holed plate example 

 

An initial investigation has been performed for a given creep rupture time corresponding to R=0.5. 

A fictional rupture stress data is obtained using equations (1) and (2). To determine which is the most 

robust interpolation/extrapolation method three creep rupture batches are adopted (Table 1). The first 

batch contains creep rupture stresses at low temperature (300⁰C to 340⁰C), the second one at high 

temperature (450⁰C to 480⁰C) and the last one contains both. A single creep rupture limit calculation 

is performed, for the holed plate subjected to the reference thermal load and nil mechanical load. 

Direct comparison between linear interpolation method and LM method using different data batches is 

showed in Figure 3a. Using data batch-3 equal creep rupture limit multipliers are obtained (black line) 

for both methods. Instead using data batch-1, the solution provided by the linear interpolation is the 

less conservative. This outcome is due to the lower extrapolation accuracy of creep rupture stress over 

temperature. Instead the Larson-Miller approach is capable of interpolating and extrapolating a more 

precise creep rupture stress, which brings to a safer solution for data batch-1. If creep rupture stress 

data points provided are at high temperature (batch-2) the Larson Miller method produces very 

accurate creep rupture limit, contrary the linear interpolation method is over conservative. Figure 3b 

and Figure 3c show the converged revised yield stress calculated by using the linear interpolation 

method and LM method respectively. The creep rupture stress around the hole with the highest 

temperature calculated by the linear interpolation is about 90 MPa  higher than the one predicted by 

the Larson Miller approach. For these reasons the Larson-Miller parameter is considered to be the 

most appropriate approach leading to the accurate solution to the creep rupture stresses for the creep 

rupture analysis. Therefore, only the Larson-Miller parameter is considered in the rest of this paper. 

Figure 4 presents a creep rupture limit diagram of a holed plate under constant mechanical load 

and cycling thermal load for different time to rupture, using the creep rupture data calculated by both 

the analytical function (1) and the new approach using the LM scheme. It can be seen clearly in 

Figure 4 that the new approach with the LM scheme and previous method in (Chen et al., 2003) using 

the analytical function (1) produce identical creep rupture limit curves. It is worth noting that the 

creep rupture limit curve obtained for R=2 matches perfectly with the shakedown limit, as for this 

required time to rupture (R=2) the calculated creep rupture stress is greater than the yield stress of 

material (i.e. the revised yield stress is equal to the yield stress of material), causing a failure of the 

component dominated by the plastic yield rather than the creep rupture. In all other cases as expected 

a remarkable creep rupture limit reduction takes place when the reduction of the creep rupture stress 



leads to a lower revised yield stress, due to a lower value of R (i.e. longer allowable time to creep 

rupture).  

Figure 5 and Figure 6 show the creep effect due to load cases at points A and B, which are taken 

from the curve with 0.5R =  in Figure 4. When temperature is high enough creep is dominant (load 

point A), the revised yield stress is lower than the initial yield stress across a big component volume 

(Figure 5). Instead for load point B creep effect is highly reduced, and the reduction of the revised 

yield stress due to the high temperature is limited to a small volume around the hole (Figure 6). In 

order to confirm the obtained LMM creep rupture limit interaction curves in Figure 4, the creep 

rupture limit for R=0.5 is verified through a step-by-step analysis, considering the following cyclic 

load points, A1(0.2,0.65), A2(0.2,0.55), B1(0.6,0.65), B2(0.6,0.55), C1(0.85,0.2), C2(0.8,0.2) shown in 

Figure 7, where cyclic load points A1, B1 and C1 are just outside the creep rupture limit curve for R=5, 

and points A2, B2 and C2 are slightly below the creep rupture limit curve. In order to introduce the 

creep rupture effect in the step-by-step analysis, the revised yield stress by the creep rupture stress is 

used to replace the yield stress. By comparing plastic strain histories for these cyclic load points 

(Figure 7) calculated by the step-by-step analysis, it can be seen that all the cyclic load points exhibit 

a shakedown behaviour when using the original yield stress of the material except for load point C1 

which shows a ratchetting mechanism. Contrary when the creep rupture stress is considered, cyclic 

load points A1, B1 and C1 exhibit a non-shakedown behaviour, and cyclic load points A2, B2, C2 show 

a shakedown mechanism. These significant mechanism changes between cyclic load points A1/B1/C1 

and A2/B2/C2 indicate the applicability of the calculated creep rupture limit interaction curve for 

R=0.5.  

It can also been observed that the creep rupture limit interaction curve for R=0.5 exhibits three 

distinct areas according to the applied constant mechanical load ranges, 0.55
p

y

s

s
 , 0.55 0.75

p

y

s

s
   

and 0.75 0.85
p

y

s

s
  respectively. In the first load range local creep rupture behaviour is dominant, 

instead a global creep rupture is present in the second one. The upper bound of the second mechanical 

load range represents the end of creep rupture effect on the component. In the third load range, where 

0.75 0.85
p

y

s

s
  , the creep rupture does not take any effects due to the relatively low temperature. 

The corresponding creep rupture limit curve is actually determined by a global ratchetting 

mechanism，and results are equal to the shakedown procedure. This threshold is not constant and 

varies with the defined rupture time. An extreme case is represented by the creep rupture limit for 

R=0.1 (Figure 4). In this case the revised yield stress is widely affected by the creep rupture and 

global ratchetting failure occurs only for temperature ratio below 1.0
0

=






 . Figure 8 presents three 



typical failure mechanisms of holed plate corresponding to load points A1, B1 and C1, respectively, by 

showing the plastic strain magnitude contours calculated by the step-by-step analysis using the revised 

yield stress with R=0.5. Local creep rupture occurs for load point A1 which affects strictly a local area 

at high temperature, contrary the global creep rupture mechanism occurs for the cyclic load point B1 

which affects a larger area across the thickness. For the cyclic load point C1, a global ratchetting 

rather than the creep rupture becomes the failure mechanism, which is totally driven by the larger 

mechanical load and lower temperature. 

 

5. Two-pipe structure 

5.1 Finite element model for the two-pipe structure 

In the second example, the component is composed of two pipes with different lengths, which was 

originally created by (Abdalla et al., 2007) as a one dimensional problem made by two bars. Later 

(Martin and Rice, 2009) modified it by replacing the bars by pipes, and an internal pressure to the 

longer pipe was introduced. Both pipes were subjected to an axial force F and the longer one having a 

cycling temperature. This example was also adopted by (Lytwyn et al., 2015) to predict ratchet limit 

and it is useful to investigate different failure mechanisms. This paper further extends the example by 

cycling the temperature over each of the two pipes and considering creep rupture, as shown in Figure 

9. Two thermal load cases are considered in this study; in case (a) the shorter pipe is at constant 

uniform temperature of 0⁰C and the longer one has a cycling uniform temperature between 0⁰C and 

the operating one. Contrary in case (b) the shorter pipe is subjected to that cyclic temperature and the 

longer pipe is set to constant uniform temperature of 0⁰C. In addition to this thermal load, the two-

pipe structure is also subjected to an axial force F, given in Newton [N], and an internal pressure P 

given in [MPa] is applied on the longer pipe, a fixed force over pressure ratio of F/P=10 is considered. 

This ratio was adopted by (Lytwyn et al., 2015), demonstrating how it affects the ratchet limit. The 

ratio adopted here is considered to be the worst case scenario due to the severity of hoop stress 

comparing with the axial force. Despite the simple geometry, such an example is complex in terms of 

failure mechanisms and it is an ideal example to investigate the effect of creep rupture.  

The entire model is composed of 1460 20-node solid isoparametric elements, with reduced 

integration scheme. The geometric dimensions adopted are given in Table 2. The two pipes have one 

end constrained in the axial direction and plane condition is applied to the other end allowing the two 

pipes to deform together. The material adopted is Nimonic 80A which has a Young’s modulus of 

219 E GPa= , a Poisson’s ratio 0.3 = , and a coefficient of thermal expansion 5 11.61 10  C  =   . 

It is worth noting that the LMM is capable of considering temperature dependent material properties. 

However in this study the effect of temperature on the Young’s modulus and coefficient of thermal 

expansion is not significant comparing with the effects of temperature on both the yield and creep 



rupture stress. Hence the temperature dependent yield stress of material is used and it is reported in 

Table 3, as well as the temperature dependent creep rupture stresses for different times to rupture 

shown in Table 4. The creep rupture data of Nimonic 80A steel shown in Table 4 are obtained using 

the LM extrapolation procedure for 300 khrs of time to rupture and also 200 khrs when temperature is 

greater than 570⁰C. 

 

5.2 Results and discussions for the two-pipe structure 

Both the shakedown limit and creep rupture limit interaction curves for different times to rupture 

for the two-pipe structure subjected to thermal load case (a) are obtained by the proposed method and 

shown in Figure 10. Axial force F is given in Newton [N], and the cyclic temperature range  in 

degree Celsius [⁰C]. The blue line represents the shakedown limit calculated using the original yield 

stress of the material. Instead the dashed lines represent the creep rupture limits for rupture time of 

100, 200 and 300 khrs, respectively.  

The creep rupture limit for a given rupture time of 100 khrs under cyclic thermal load case (a) 

(Figure 11) is verified by a series of step-by-step analyses, considering three cyclic load points just 

outside the creep rupture limits C1(2000,570), C3(3500,520), B1(4200,300) and three inside 

C2(2000,540), C4(3500,490), B2(4000,300) as shown in Figure 11. In order to confirm the LMM creep 

rupture limit for a given rupture time of 100 khrs by the step-by-step analysis, both the original yield 

stress and the revised yield stress (determined by the minimum of the creep rupture stress and the 

original yield stress of material) are adopted. By comparing plastic strain histories for these cyclic 

load points (Figure 7) calculated by the step-by-step analysis, it can be seen that all cyclic load points 

exhibit shakedown behaviour when adopting the original yield stress except for load point B1, which 

shows a ratchetting mechanism. Instead considering the revised yield stress, cyclic load points C1, C3 

and B1 show a non-shakedown behaviour (Figure 11), the cyclic load points C2, C4 and B2 which are 

just inside the creep rupture limit curve show a shakedown behaviour. These significant mechanism 

changes between cyclic load points C1/C3/B1 and C2/C4/B2 confirm the accuracy of the calculated 

creep rupture limit interaction curve for a given rupture time of 100 khrs. As for the holed plate 

problem, in this example creep effect also depends on the operating temperature, and for temperatures 

below 480⁰C creep does not occurs (Table 4). For this reason both cyclic load points B1 and B2 with a 

temperatures below 480⁰C have identical plastic behaviour using either the yield stress or the revised 

yield stress. 

It can be further identified from Figure 11 that in load case (a) for axial load up to 900N the creep 

rupture limit is very close to the shakedown limit, and the failure initiates in the shorter pipe 

(highlighted in red) due to the dominating cyclic thermal load instead of the constant mechanical load. 

In this case due to the applied cyclic thermal condition, creep takes effect only on the longer pipe, 



which is however still capable of bearing higher load under such a loading conditions comparing with 

the shorter pipe. For this reason creep does not affect the plastic behaviour of the shorter pipe 

significantly for low axial forces and internal pressures, which makes the creep rupture limit close to 

the shakedown limit. Instead for higher axial forces and internal pressures, the failure mechanism 

switches to the longer pipe (highlighted in red), and the difference between the shakedown and creep 

rupture limits is much more significant. In order to further investigate the effect of different high 

temperature condition on the creep rupture, the cyclic thermal load case (b) is also calculated the 

proposed method, and the corresponding shakedown and creep rupture limit interaction curves for 

different allowable times to creep rupture are presented in Figure 12. In this case failure occurs in the 

shorter pipe (highlighted in red) for an axial force up to 3500N, where the failure of the shorter pipe is 

dominated by the creep rupture due to the applied high temperature on it. As expected, comparing 

with the shakedown limit, the applied cyclic thermal load on the shorter pipe causes a significant 

reduction in the creep rupture limits of a two-pipe structure. Instead when axial force is higher than 

3500N and temperature is above 500⁰C failure initiates in the longer pipe due to the larger internal 

pressure on it. 

During the creep rupture limit calculation, convergence issue was emerged for high temperature 

loading points, which make the creep rupture limit load multiplier fluctuating even after numerous 

increments. During this iterative analysis, the convergence of the algorithm is supposed to reduce the 

creep rupture limit multiplier at each iteration, which leads to a same reduction in the applied 

temperature. However this temperature reduction will increase the creep rupture stress and the revised 

yield stress, which in turn increases the creep rupture limit multiplier in the next iteration. This will 

inevitably cause a fluctuation on the calculated creep rupture limit multiplier as shown in Figure 13. 

Furthermore, in this two-pipe structure the temperature has no gradient through the pipe thickness and 

is scaled uniformly across the entire structure. This implies that the algorithm is largely sensitive to 

the temperature changes, enhancing the creep limit multiplier oscillation. To solve this convergence 

problem, during each iteration a new scaling factor is calculated using the mean of previous creep 

rupture limit multipliers determined by the last two iterations, and it is used to scale temperature, and 

the associated thermal stress field. In this way the oscillating behaviour is damped and with few 

iterations convergence is reached as shown in Figure 13a. In order to ensure the convergence speed 

and avoid an excessive damping due to the introduction of such a scheme, this numerical treatment is 

only applied when the oscillations are observed. The actual convergence condition after this treatment 

is presented in Figure 13, which shows a large oscillating behaviour of the creep rupture limit 

multiplier, revised yield stress and scaled temperature during the first 10 iterations. However, after 10 

iterations, the oscillating behaviour is damped and the creep rupture limit multiplier converges after 

15 iterations. 

 



6. Conclusions 

This paper presents a robust but accurate method for creep rupture stress calculation based on 

limited creep rupture experimental data in the creep rupture limit assessment, which is developed 

within the Linear Matching Method framework. Three distinct approaches including linear 

interpolation, polynomial interpolation and Larson Miller parameter are considered for interpolation 

and extrapolation of creep rupture stresses. It has been identified by an initial investigation using 

fictional rupture stress data that the LM approach is the most robust and reliable in interpolating and 

extrapolating creep rupture stress among these three methods, especially when fewer rupture stress 

experimental data points are available.  

The numerical example of a 3D holed plate is used for benchmarking purposes. The creep rupture 

limits obtained by the propose approach match with the results from previously published work. It can 

also been observed that the creep rupture limit interaction curve exhibits three distinct mechanisms, 

depending on the magnitude of the applied constant mechanical load. The three observed mechanisms 

are local creep rupture, global creep rupture and global ratchetting mechanism.  

A second numerical example investigates creep rupture limits of a two-pipe structure considering 

two loading cases. Both shakedown limit and creep rupture limits for different rupture times are 

calculated for these two loading cases, which show a remarkable distinction in the creep rupture limit 

interaction diagram. In the first case for an axial load up to 900N the failure starts from the shorter 

pipe due to a reverse plastic mechanism. For a higher axial load the failure is always located at the 

longer pipe exhibiting a global creep rupture mechanisms. In the second case where the cyclic thermal 

load is applied to the shorter pipe, the difference between shakedown limit and creep rupture limit is 

remarkable, and the failure mechanism is located at the shorter pipe for axial load up to 3500N. This 

example demonstrates how creep rupture can affect the same structure in different ways due to the 

different temperature load conditions. 

The initial convergence problem due to the fluctuation of the revised yield stress and scaled 

temperature is solved by introducing a damping factor during the scaling process when a fluctuation 

of the creep rupture limit multiplier takes place. The further convergence study shows that with the 

proposed numerical scheme the oscillating behaviour is damped within the limited number of 

iterations and the creep rupture limit multiplier converges quickly. The accuracy of the obtained creep 

rupture limits is also verified by the detailed step-by-step analyses, which are further used to 

investigate the interaction between the different failure mechanisms.   
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Figure 1 a) Interpolation of experimental creep rupture data with three methods b) Close view of 

creep rupture interpolation at lower temperatures 
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Figure 2 Finite element model of holed plate 
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Figure 3 a) Convergence of creep rupture limit for different interpolation techniques, b) and c) 

Revised yield stress contour obtained by linear interpolation and Larson Miller method [MPa], 

respectively 


