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Gleason-Busch theorem for sequential measurements

Kieran Flatt,∗ Stephen M. Barnett, and Sarah Croke
School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

Gleason’s theorem is a statement that, given some reasonable assumptions, the Born rule used
to calculate probabilities in quantum mechanics is essentially unique. We show that Gleason’s
theorem contains within it also the structure of sequential measurements, and along with this the
state update rule. We give a small set of axioms, which are physically motivated and analogous to
those in Busch’s proof of Gleason’s theorem, from which the familiar Kraus operator form follows.
An axiomatic approach has practical relevance as well as fundamental interest, in making clear
those assumptions which underlie the security of quantum communication protocols. The two time
formalism is seen to arise naturally.

I. INTRODUCTION

The Born rule is fundamental to quantum mechanics,
giving a prescription for alternatively predicting or in-
terpreting measurement statistics. It is perhaps natural
to wonder, therefore, whether the structure of quantum
mechanics allows any other rule for calculating probabil-
ities, and it can be shown that it does not. Gleason [1]
showed that, within quantum theory (that is, assuming
that measurements are described by projectors, and given
some reasonable assumptions that any probability mea-
sure must obey) every probability allowed by quantum
mechanics is calculated by a trace rule:

P(i) = Tr(ρ̂P̂i). (1)

Busch [2] generalized Gleason’s theorem in two important
ways: Gleason’s original proof applied only to systems of
dimension 3 or more, and also assumed that measure-
ments were described by projectors. Busch’s proof as-
sumed only that measurements were described by posi-
tive operators, thus including the more general POVM
(positive operator-valued measure, also known as POM
or probability operator measure) formalism [3]. This was
later generalised further: Busch’s proof applies to com-
plete measurements, for which the operators sum to the
identity, a restriction which was relaxed in [4]. This gen-
eralisation means that probability rules may be derived
rather directly for cases involving post-selection, and for
retrodiction, for example.

In this work we are concerned with sequential mea-
surements: in quantum mechanics measurement causes
disturbance, and the state of the system must be up-
dated post-measurement. This state update rule is given
for projective measurements by the von Neumann pro-
jection postulate [5] or Lüders rule [6]:

ρ̂→ P̂iρ̂P̂i

Tr(ρ̂P̂i)
, (2)

∗ k.flatt.1@research.gla.ac.uk

or more generally by the Kraus operator formalism [7]:

ρ̂→
∑
k Âikρ̂Â

†
ik

Tr(ρ̂
∑
k Â
†
ikÂik)

. (3)

The description of measurement via positive operators is
thus only part of the story, for a complete description
of measurement we require both a means of calculating
measurement statistics, and of expressing the change in
state. The Busch-Gleason theorem, which takes as an
assumption that measurements are described by positive
operators, thus does not immediately lend itself to se-
quential measurement. We show nevertheless that a joint
probability measure on pairs of measurements may be
derived via an extension of Gleason’s theorem, which re-
covers the usual Kraus form for sequential measurement.

The structure of transformations in quantum theory is,
of course, well understood: all physically allowed trans-
formations are described by so-called completely positive
maps. These have several equivalent representations: the
Kraus form [7], and the Choi-Jamiolkowski isomorphisms
[8, 9], each of which may be derived from the usual struc-
ture of quantum mechanics on Hilbert space (see e.g.
[10]). The advantage of an axiomatic approach is to make
clear exactly on which assumptions this structure relies,
an approach of both fundamental interest, and of practi-
cal relevance. In the era of quantum communication and
security it is crucial to know which aspects of quantum
theory are required for security of such schemes, both to
feed into security proofs and to reassure users.

There is by now in the literature a long tradition of
axiomatic approaches to both the description of mea-
surement in quantum theory [2, 11–13], and indeed to
derive the structure of quantum theory from simple prin-
ciples [14–17]. We note in particular that previous work
has addressed a similar scenario to that of interest here:
Cassinelli and Zanghi [12] derived the Lüders rule for
state update through consideration of conditional prob-
abilities via Gleason type arguments. This is however
not readily generalised to more general measurements,
those which are not described by projectors. More re-
cently Shrapnel et al [13], starting from an assumption
that transformations are described by completely positive
maps also used an axiomatic approach similar to Busch
and Gleason to derive a probability measure which en-
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compasses both the Born rule and state update rule. Mo-
tivated by recent work on indefinite causal order in quan-
tum mechanics [18–21], Shrapnel et al’s work derives the
most general rule resulting in a probability measure on
the set of completely positive maps. In the present work,
by contrast, we show that sequential measurements cor-
respond to completely positive maps and derive the most
general form of these, from a few simple axioms.

Work on generalised probabilistic theories (we note in
particular [14, 15]) takes as a starting point that prob-
abilities may be expressed as an inner product of a vec-
tor describing the measurement and one describing the
preparation. Transformations are described by operators
on these vectors, and a key point, in common with the
present work, is a proof that such transformations must
further be linear operators on the space. A theory is then
defined by the structure of the vector spaces describing
states and measurements. Similarly, a common thread
through the present work is that probabilities may be
expressed as inner products, it is simply a case of defin-
ing the appropriate space in each case.

II. SEQUENTIAL MEASUREMENTS

We begin by summarising Busch’s proof of Gleason’s
theorem, before discussing the extension to sequential
measurements. Busch [2] assumes that measurement out-
comes are associated with positive semi-definite opera-
tors Ê such that Ê ≤ Î (referred to therein as effects).
He then seeks the most general probability measure on
this set of operators, ν(Ê), which satisfies the following
propositions:

(P1) 0 ≤ ν(Ê) ≤ 1.

(P2) ν(Î) = 1.

(P3) ν(Ê + F̂ + . . .) = ν(Ê) + ν(F̂ ) + . . .

The proof proceeds by showing that the additivity propo-
sition (P3) on effects may always be extended to linearity
on all Hermitian operators: that is, for each such ν, we
can define an extension which acts not only on positive
operators, but on all Hermitian operators, and which is
linear. The allowed ν are all real, according to propo-
sition (P1), and noting that the set of Hermitian oper-
ators forms a real vector space, it therefore follows that
each such function, by definition, is a vector in the dual
space [22]. Thus every measure on effects may be associ-

ated with a Hermitian operator ρ̂: ν(Ê) = Tr(ρ̂Ê), using

the Hilbert-Schmidt inner product (Â, B̂) = Tr(Â†B̂).
Propositions (P1) and (P2) further constrain ρ̂ to be pos-
itive and trace one respectively.

We note at this point that the choice of Hilbert-
Schmidt inner product is not unique, we can in principle
choose any bi-linear form. The most general probability
rule is thus given by v(Ê) = Tr(L(ρ̂)Ê) for some linear

FIG. 1. A measurement procedure can be visualised using this
flowchart. A preparation procedure, here labelled S, will out-
put a quantum system, which according to the Gleason-Busch
theorem can be described by a density matrix ρ̂. The first
measurement is associated with a set of effects Êi, while the
second measurement is associated with effects {F̂j}. Alter-
natively the whole procedure comprising both measurements
is itself a measurement, and is represented by a set of effects
{Êij}.

superoperator L. Of course this doesn’t give us any ad-
ditional generality: the requirement now is that L(ρ̂) be
a positive operator, and via the substitution L(ρ̂) → ρ̂
we recover the previous formulation. Indeed attempts
to generalize quantum theory have resulted in theories
with a non-standard choice of inner product [23, 24], later
shown to be equivalent to standard quantum theory as
long as the set of vectors which are allowed to represent
states is updated accordingly [25–27]. We return however
to the nonuniqueness of the inner product in the present
context later.

In the sequential measurement case, we consider a
setup like that shown in Figure 1, in which a single sys-
tem undergoes two successive measurements. Following
Busch, we take as a definition that measurements are
represented by effects, positive operators Â defined on
a Hilbert space, and include entanglement by allowing
for measurements to be performed on subspaces of those
(i.e. Â⊗ B̂ is an allowed effect). This is what is brought
over from standard quantum mechanics; what is derived
is the probabilistic structure. Although we note there is
much recent interest in causally neutral formulations of
quantum theory [19, 21] and non-fixed causal orderings
[18, 20], for simplicity we consider here a fixed causal
order: the measurements we consider are performed se-
quentially, and on the same system. Under the assump-
tions of the Gleason-Busch theorem, measurements are
described by positive operators: we thus associate to the
first measurement a set of positive operators {Êi}, to the

second measurement the set {F̂j}. The combination of
measurements, of course, is itself a measurement proce-
dure; we associate to this procedure the operators {Êij}.
Our task is to derive a relationship between these three
sets of operators.
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We first note that, due to our choice of causal order, the
statistics of the first measurement alone are independent
of whether the second measurement is performed or not,
and may be reconstructed by coarse-graining over the
second measurement. Thus for any Êij representing the
joint measurement procedure we must have

ν(Êi) =
∑
j

ν(Êij) = ν(
∑
j

Êij). (4)

ν, which represents the preparation procedure, must of
course be independent of Êi, Êij . The above implies that

ν(Êi −
∑
j Êij) = 0. The only effect Â consistent with

ν(Â) = 0 for all ν satisfying P1-P3 is the zero operator.
Thus we conclude that

Êi =
∑
j

Êij . (5)

We will formalise this notion (the physical notion of
causality) is formalised in the additional postulate A2
below. In the second measurement, each outcome is rep-
resented by an effect F̂j . For each F̂j and each outcome i

of the first measurement, there is a distinct effect Êij de-
scribing the joint measurement. Thus, for each i we can
define a map F̂j → Êij = Ti(F̂j). Further, for each i and

for any given measure ν(Êij) on the joint measurement
procedure, we require that the statistics of the second
measurement can be derived from some (sub-normalised)

measure over F̂j . That is,

P(i, j) = µiν(F̂j) (6)

where the notation µiν indicates that the measure de-
pends on both ν and i. To be clear, we assume that ν
satisfies propositions P1 - P3 and our additional assump-
tions on the joint measure µiν are:

(A0) µiν(F̂j) = ν(Êij) = ν(Ti(F̂j))

(A1) 0 ≤ µiν(F̂j) ≤ ν(Êi) < 1.

(A2) µiν(Î) = ν(Êi).

(A3) µiν(F̂j + F̂k + . . .) = µiν(F̂j) + µiν(F̂k) + . . .

These additional postulates are analogous to those used
by Busch, modified to allow for the idea of conditionality.
The probability rule is derived from these alongside our
above definition of a measurement as a Hilbert space op-
erator, inherent in which is the subspace structure, and
assuming a fixed causal order. We first note that accord-
ing to the arguments given by Busch [2] we can extend
any µiν satisfying the additivity property (A3) to full lin-
earity on all positive operators:

µiν(αF̂j + βF̂k + . . .) = αµiν(F̂j) + βµiν(F̂k) + . . . (7)

where α, β ≥ 0. Thus it follows from proposition (P0′)
that

ν(Ti(αF̂j + βF̂k + . . .)) = αν(Ti(F̂j)) + βν(Ti(F̂k)) + . . .

= ν(αTi(F̂j) + βTi(F̂k)) + . . .
(8)

where in the last line we have used linearity of ν, which
follows from Busch’s original proof. Finally, as we require
this hold for all ν, we obtain

Ti(αF̂j + βF̂k + . . .) = αTi(F̂j) + βTi(F̂k)) + . . . (9)

We can readily extend linearity on positive operators
to linearity on all Hermitian operators [2, 14, 15], from
which we obtain that Ti is a linear operator on the
(real) vector space of Hermitian operators. Thus we find
that the most general joint measure P(i, j) satisfying the
propositions (A0) and (A3) is of the form

P(i, j) = µiν(F̂j) = Tr
(
ρ̂Ti
(
F̂j

))
(10)

for some linear transformation Ti. Note that the presence
of an intermediate measurement is accomodated mathe-
matically through exactly the non-uniqueness of inner
product discussed earlier.

We have not yet addressed propositions (A1) and (A2),
and we return to these now. It is perhaps clearest to ex-
plicitly write the operators ρ̂, F̂j as vectors in the space of
Hermitian operators on Hilbert space. We use Liouville
space notation (see e.g. [28, 29]), in which

|i〉〈j| ↔ |ij†〉〉. (11)

In this notation, any operator Â =
∑
ij aij |i〉〈j| is there-

fore represented by a Liouville space vector

|A〉〉 =
∑
ij

aij |ij†〉〉. (12)

Further, the inner product Tr(Â†B̂) is expressed:

Tr(Â†B̂) =
∑
ij

a∗ijbij = 〈〈A|B〉〉, (13)

and thus our probability rule, Eqn. (10) may be written:

P(i, j) = 〈〈ρ|Ti|Fj〉〉 (14)

where Ti is an operator on Liouville space. Denoting the
Hilbert space on which ρ̂ , F̂j are defined respectively as
Hin, Hout, Ti is thus a linear operator

Ti : Hout ⊗H†out → Hin ⊗H†in. (15)

We use the subscripts “in” and “out” in the remainder
of the paper to distinguish between those indices asso-
ciated with the states ρ̂, and those associated with the
measurement F̂j respectively, wherever this is required
for clarity.
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Alternatively, we can write

P(i, j) = Tr(Ti|Fj〉〉〈〈ρ|). (16)

In the same way as we can consider ρ̂ alternatively to be
an operator in Hilbert space or a Liouville space vector,
it is convenient to consider Ti to be a vector on the space

Hin ⊗ H†in ⊗ Hout ⊗ H†out. In what follows, we can then
interpret this as an operator on various spaces, as appro-
priate. We first note that we require this probability to
be a real number. Each of ρ̂, F̂j are positive operators,
and thus may be expressed as positive linear combina-
tions of pure states. Thus, without loss of generality, we
can consider pure states only, ρ̂ = |ψ〉〈ψ|, F̂j = |mj〉〈mj |
and denote

|Fj〉〉〈〈ρ| = |mjm
†
j〉〉〈〈ψψ

†|
↔ (|ψ〉in ⊗ |mj〉out)(〈ψ|in ⊗ 〈mj |out) (17)

We thus find that if we interpret Ti as an operator on
Hin ⊗ Hout, the requirement that probabilities be real
implies that it be a Hermitian operator on this space.
Explicitly, define T ′i to be that operator on Hin ⊗ Hout

such that

P(i, j) = Tr(Ti|mjm
†
j〉〉〈〈ψψ

†|)
= Tr(T ′i |ψ〉in ⊗ |mj〉out〈ψ|in ⊗ 〈mj |out), (18)

which implies that that the matrix elements satisfy

〈〈jini†in|T
′
i |loutk

†
out〉〉 = 〈〈iinj†in|Ti|koutl

†
out〉〉. (19)

We then require T ′i to be a Hermitian operator. This in-
terpretation is precisely the Jamiolkowski form of a map
[9, 19], and is seen to arise naturally in this approach.

It remains to impose positivity and normalisation of
our joint probability. It is clear from the discussion so
far that positivity requires that Ti, when interpreted as
above, have a positive expectation value for all product
states in Hin ⊗Hout. We require also the more stringent
constraint of complete positivity: if Ti acts only on a
subsystem (A) of a larger system (AB), all probability
measures on the joint system must remain positive:

〈〈ρAB |TAi ⊗ IB |FjAB〉〉 ≥ 0. (20)

The requirement of complete positivity follows from the
structure of effects and the requirement of positivity of
probabilities (A1). Specifically, the assumption that all

positive operators Ê ≤ Î are allowed effects, along with
an assumption that all measures are possible in principle
imposes the requirement Eqn. (20).

As before, without loss of generality, we consider ρ̂ and
F̂j to be pure states. We further write |ψ〉 in the Schmidt
basis:

|ψ〉 =
∑
i

λi|i〉A|i〉B (21)

where λi > 0. In this basis we denote

|mj〉 =
∑
ik

c
(j)
ik |i〉A|k〉B . (22)

Thus

|ρAB〉〉 =
∑
ik

λiλk|iAiBk†Ak
†
B〉〉

|FjAB〉〉 =
∑
iklm

c
(j)
ik c

(j)∗
lm |iAkBl

†
Am
†
B〉〉 (23)

Putting all this together and simplifying gives:

〈〈ρAB |TAi ⊗ IB |FjAB〉〉

=
∑

iklmnp

λiλkc
(j)
lmc

(j)∗
np 〈〈iAiBk

†
Ak
†
B |T

A
i ⊗ IB |lAmBn

†
Ap
†
B〉〉

=
∑

iklmnp

λiλkc
(j)
lmc

(j)∗
np 〈〈iAk

†
A|T

A
i |lAn

†
A〉〉〈〈iBk

†
B |mBp

†
B〉〉

=
∑

iklmnp

λiλkc
(j)
lmc

(j)∗
np 〈〈iAk

†
A|T

A
i |lAn

†
A〉〉δimδkp

=
∑
ikln

λiλkc
(j)
li c

(j)∗
nk 〈〈iink

†
in|Ti|loutn

†
out〉〉, (24)

where in the last line we have dropped the label A, which
is no longer needed, and introduced subscripts denoting
input and output spaces for clarity. The structure of this
final line indicates that it would be fruitful to consider
the representation of Ti on the space Hin⊗H†out. We thus

define T̃i to be that operator on this space such that

〈〈iinl†out|T̃i|kinn
†
out〉〉 = 〈〈iink†in|Ti|loutn

†
out〉〉, (25)

where, for convenience, we have extended the concept of
Liouville space vector in the natural way to include cases
in which the “bra” and “ket” vectors may be on different
spaces. Thus we obtain

〈〈ρAB |TAi ⊗ IB |FjAB〉〉

=

(∑
il

λic
(j)
li 〈〈iinl

†
out|

)
T̃i

(∑
kn

λkc
(j)∗
nk |kinn

†
out〉〉

)
.

(26)

Finally, denoting

|Φj〉〉 =
∑
kn

λkc
(j)∗
nk |kinn

†
out〉〉 (27)

we see that our probability rule has the rather compact
form

P(i, j) = 〈〈ρAB |TAi ⊗ IB |FjAB〉〉 = 〈〈Φj |T̃i|Φj〉〉. (28)

Thus |Φj〉〉 is a state on the spaceHin⊗H†out, and the dis-
cussion above shows that, in general, this need not be a
product state. Thus we require that Ti, when interpreted

as an operator on this space (i.e. T̃i), be a positive oper-
ator. This is the Choi form of a map [8, 19], and again,
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is seen to arise rather naturally in this approach. As T̃i
is a positive operator, it has an eigendecomposition

T̃i =
∑
k

|αik〉〉〈〈αik| (29)

where |αik〉〉 =
∑
lm α

(ik)
lm |linm

†
out〉〉 is not normalised.

Thus any joint probability satisfying the propositions has
the form

P(i, j) =
∑
k

|〈〈αik|Φj〉〉|2

=
∑
k

∣∣∣∣∣
(∑
lm

α
(ik)∗
lm 〈〈linm†out|

)

×

(∑
np

λnc
(j)∗
pn |ninp

†
out〉〉

)∣∣∣∣∣
2

=
∑
k

∣∣∣∣∣∑
np

λnc
(j)∗
pn 〈p|outÂik|n〉in

∣∣∣∣∣
2

, (30)

where Âik =
∑
lm α

(ik)∗
lm |m〉out〈l|in. Note that the combi-

nation of preparation and measurement is described by
a so-called entangled two-time state [30, 31]. A two time
state may be used to describe pre- and post-selection,
and is comprised of a state vector describing the prepa-
ration, and one describing a later measurement [32–34];

in the language of Hilbert spaces, a vector on Hout⊗H̃†in.
Non-product states arise in exactly the way we have seen
here, through pre- and post-selections which are entan-
gled with another system.

For the product state case, in which the coefficients
cpn are independent of n, we have ρ̂ =

∑
ij λiλj |i〉〈j|,

F̂j =
∑
mn c

(j)
m c

(j)∗
n |m〉〈n|, and we obtain the familiar

sequential measurement rule:

P(i, j) =
∑
k

∣∣∣∣∣∑
np

λnc
(j)∗
p 〈p|outÂik|n〉in

∣∣∣∣∣
2

= Tr

(
F̂j
∑
k

Âikρ̂Â
†
ik

)
. (31)

Finally, we return to normalisation of the measure:
proposition (P2′) is satisfied if

Tr(ρÊi) = Tr(
∑
k

Âikρ̂Â
†
ik) = Tr(ρ̂

∑
k

Â†ikÂik). (32)

We thus require
∑
k Â
†
ikÂik = Êi.

We thus obtain the usual Kraus form of a map from
a simple extension of the Gleason-Busch theorem: given
the assumption that measurements are described by ef-
fects, that is positive operators Ê ≤ Î, along with some
reasonable assumptions (A0-A3), every joint probability
over sequential measurements is of the form

P(i, j) = 〈〈Φj |T̃i|Φj〉〉 (33)

where |Φ〉〉 is a two-time vector (defined on the Hilbert

space Hin ⊗ H†out) representing the measurement and

preparation, and T̃i is a positive operator on this space.
Where |Φj〉〉 is a product state, this reduces to the famil-
iar Kraus form

P(i, j) = Tr

(
F̂j
∑
k

Âikρ̂Â
†
ik

)
. (34)

It is readily verified that these probabilities sum to one,
as desired:

∑
i,j

P(i, j) = Tr

∑
j

F̂j
∑
i,k

Âikρ̂Â
†
ik


= Tr

(∑
i

ρ̂
∑
k

Â†ikÂik

)
= Tr

(∑
i

ρ̂Êi

)
= 1.

(35)

From this we can further derive conditional probabilities:

P(j|i) =
P(i, j)

P (i)

=
Tr
(
F̂j
∑
k Âikρ̂Â

†
ik

)
Tr
(
ρ̂
∑
k Â
†
ikÂik

)
= Tr

 ∑
k Âikρ̂Â

†
ik

Tr
(
ρ̂
∑
k Â
†
ikÂik

) F̂j
 . (36)

from which we recover the Kraus update rule:

ρ̂→ ρ̂i =

∑
k Âikρ̂Â

†
ik

Tr
(
ρ̂
∑
k Â
†
ikÂik

) . (37)

To summarise, from the assumption that measure-
ments are associated with effects (positive operators

Ê ≤ Î) along with some reasonable propositions that
measures and joint measures should obey, we find that
pre- and post-selections are described by two-time states;
intermediate measurements are associated with positive
operators on the vector space of two-time states, or al-
ternatively with positive Choi states; and that the state
update rule is given by the familiar Kraus form. Up to
the particular choice of description (Choi-Jamiolkowski
isomorphism / Kraus operator form), this is thus the
unique way to define joint probabilities over sequential
measurements in quantum mechanics.

Herein we have considered just two sequential mea-
surements however our result could be easily generalised
to longer chains. One would argue for the prepara-
tion and first measurement, represented as the vector∑
k Âik ⊗ Â†ik|ρ〉〉 as representing an individual prepa-

ration procedure. The two measurements in the above
procedure would then represent the second and third
measurements in the new scenario, and then find the
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expected three-measurement probability rule using the
same method.

We note that a key component of our approach is a
proof that intermediate measurements are described by
transformations of effects, and that these must be linear.
Other proofs of the most general form of transformation
[7–10, 35] take linearity as an assumption. Indeed strange
and seemingly unphysical things become possible if we al-
low non-linear evolution in quantum mechanics [36–39].
In our approach the requirement of linearity (and in-
deed, that an intermediate measurement corresponds to
a transformation on effects) follows from the requirement
that the statistics of sequential measurements be derived
from a measure on the second measurement. We note
that we did not assume that the intermediate measure-
ment was associated with a transformation, we simply
observed that for each i there exists a mapping between
any set of operators describing the joint measurement
procedure, and that describing the second measurement
alone.

III. PHYSICAL MEANING OF THE AXIOMS

The axioms (A0 - A3) may be considered rather ab-
stractly, as desired properties of probability measures, or
can be motivated through physical considerations. Fol-
lowing Hardy [14], we suppose that probabilities are mea-
sureable in the following sense: if we repeat an experi-
ment a large number of times N, the fraction of runs in
which we observe a particular event i tends to a constant
Ni

N , which we interpret as a probability pi = Ni

N . Addi-
tivity then follows rather naturally from counting events

pi + pj =
Ni+Nj

N , while clearly 0 ≤ Ni ≤ N .
For the sequential measurement case, we have in-

troduced a rather inocuous “zeroth” proposition (P0′),
which corresponds to an assumption of non-contextuality
at the level of the description of measurement. Non-
contextuality means that the value assigned to a physi-
cal quantity is independent of the context in which that
quantity is measured: that is, independent of anything
else which may be measured with it [3]. Gleason’s theo-
rem is generally taken as proof that a non-contextual hid-
den variable model reproducing the predictions of quan-
tum theory is not possible [2, 40]. At the level of op-
erators in Gleason’s theorem, non-contextuality means
that if an effect Ê is a member of two different sets, the
probability associated with Ê is independent of which
set we are considering. Physically, this means that if Ê
represents a measurement outcome in two different mea-
surements, the probability of seeing this outcome is in-
dependent of which measurement is actually performed.
Non-contextuality in this sense is implicitly assumed in
the Gleason-Busch theorem, in the assumption that each
measure is a function on Ê (see also [11] for a discussion
of non-contextuality in this context).

In the present work, we assume non-contextuality in
the mapping from physical measurement apparatus to

mathematical description: that is, if a particular mea-
surement outcome may be associated with an opera-
tor Ê, then for every physical experiment containing
the corresponding apparatus, the probability of obtain-
ing this outcome may be expressed as some measure
ν(Ê). For the first measurement, the assumption of non-
contextuality means that the description of measurement
is independent of any post-processing, from which we ob-
tain the requirement Êi =

∑
j Êij . For the second mea-

surement, non-contextuality means that every measure
is a linear function of the operators {F̂j}, leading to our
proposition (P0′). In essence, this is what is meant by
the assumption that the measurement is described by op-
erators {F̂j}, however as this is the key assumption it is
worth being rather explicit about the physical meaning.

IV. DISCUSSION

In this work we have shown that the Gleason-Busch
theorem is rich enough to contain the structure not only
of single measurement statistics, but also of sequential
measurements. We note that we do not at any point as-
sume explicitly that intermediate measurements are as-
sociated with transformations, or that these transforma-
tions be linear, rather this emerges as a consequence of
the above considerations. We have given a small set of
reasonable, physically motivated axioms, from which the
structure of sequential measurements follows.

The Gleason-Busch theorem [1, 2] shows that if mea-
surements are described by effects, the Born rule is the
most general probability rule allowed. More recently,
Shrapnel et al [13] derived the most general frame func-
tion on completely positive maps, with a view to un-
derstanding recent work on non-fixed causal order. Our
work provides a link between the two, starting from a
minimal set of axioms to show that the most general se-
quential measurement rule consistent with these axioms
corresponds to a completely positive map.

We note that we have not explicitly assumed convex
linearity on preparations: we do not assume anything
about the relationship between ν and µiν . The linearity
of the resulting probability rule in both preparation and
measurement emerges as a consequence of the axioms.
An alternative approach could argue that mixtures of
preparations are allowed, and any probability rule should
be linear in these. This further has the advantage of
treating preparations and measurements symmetrically.
Our aim in the present work was however to provide a
set of axioms as close as possible in spirit to the Gleason-
Busch theorem, and to assume as little as possible about
preparations.

We finally note that we have not assumed in our se-
quential measurement axioms that the joint probability
rule is linear in the effects describing the first measure-
ment. Indeed, it turns out that this is not the case: seek-
ing a rule linear in both sets of effects would be much
more restrictive. This is, of course, not contrary to the
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Gleason-Busch theorem in its original form, which refers
only to statistics and says nothing about state update.
The choice of causal order dictates that it is the effects
describing the second, and final measurement in which
the joint probability rule must be linear.

The formulation arrived at herein, similar to that
of Silva et al [34], with the explicit role of pre- and
post-selection lends itself in particular to calculations
of relevance to quantum cryptography, in which post-
measurement information is often made available. We
explore these applications elsewhere.

We finish with a comment on the importance of an
axiomatic approach to quantum communications. Clas-
sical cryptosystems are, of course, rather effective. The
practical significance of quantum cryptographic protocols
as a technological development has been the subject of

some debate (see e.g. [41, 42] and references therein).
The oft-cited advantage of quantum key distribution, for
example, is that security is contingent only on the laws
of quantum mechanics being correct, and not on com-
putational assumptions. For skeptics this begs the ques-
tion: how confident are we in the correctness of quantum
mechanics? An axiomatic approach illuminates exactly
what assumptions underlie security proofs.
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