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Abstract—The fitness landscape of MAX-3-SAT is investigated
for random instances above the satisfiability phase transition.
This study includes a scaling analysis of the time to reach a local
optimum, the number of local optima, the expected probability
of reaching a local optimum as a function of its fitness, the
expected fitness found by local search and the best fitness, the
probability of reaching a global optimum, the size and relative
positions of the global optima, the mean distance between the
local and global optima, the expected fitness as a function of
the Hamming distance from an optimum and their basins of
attraction. These analyses show why the problem becomes hard
for local search algorithms as the system size increases. The
paper also shows how a recently proposed algorithm can exploit
long-range correlations in the fitness landscape to improve on
the state-of-the-art heuristic algorithms.

Index Terms—MAXSAT, fitness landscape, scaling analysis,
long-range correlation.

I. INTRODUCTION

DESIGNING successful heuristic algorithms for hard
combinatorial problems requires an understanding of the

fitness landscape structure. This will be problem and even
instance dependent. Nevertheless, some statistical properties
are common across many instances and even across different
problem classes. In this paper, we empirically study the fitness
landscape of random instances of MAX-3-SAT. There are a
large number of features that are influential in determining
how heuristic search techniques perform. This paper studies
these properties by examining different random instances with
up to a few hundred variables. For this size of problem it is
possible to find all the high-fitness local optima by performing
multiple hill-climbs. Through studying the scaling behaviour
for different problem sizes it is possible to extrapolate many
properties to large instances. Thus, although it is easy to find
all the global optima for small instance sizes, it also becomes
clear why large instances are very challenging.

One notable property we examine is the expected fitness at
a fixed Hamming distance from a local optimum. This reveals
the existence of long-range correlations in expectation. In a
recent paper, a new class of search algorithms, landscape-
guided hopping was introduced which exploits this long-range
correlation and out-performs the state-of-the-art algorithms on
large random instances of MAX-3-SAT [1]. This current paper
is a follow up to that article providing considerably more
details of the landscape properties and a fresh analysis of the
algorithm.

The landscape properties of random MAX-SAT has received
considerable attention from a number of different research
communities [2], [3], [4], [5], [6], [7], [8], [9]. Much of
this research has focused on the satisfiability phase transition
where, as the number of clauses per variables increases, there
is a step change in behaviour (at least, in the limit of large in-
stance size) from almost all random instances being satisfiable
to almost all instances being unsatisfiable. It is believed that
around this phase transition many properties averaged over the
entire ensemble of random problems are analytically tractable,
however, away form the phase transition their properties are
no longer solvable because of complex clustering of local
optima [5], [6], [9], [10]. The phase transition has attracted
considerable attention because, empirically, it is found that
the time taken for exact methods to prove whether an instance
is satisfiable or not appears to grow exponentially in the size
of the system around the phase transition. Thus, this region
corresponds to instances that are deemed to be “hard” for
the satisfiability decision problem. However, the focus of this
paper is on understanding MAX-SAT as an exemplar of a
hard optimisation problem for heuristic search algorithms. For
this, the vicinity of the phase transition is peculiar because
it is possible to develop specialised algorithms which take
account of the fact that a satisfiable solution cannot have
any non-satisfying clauses. Instead, we focus on instances
with a higher clause-to-variable ratio which are typically
unsatisfiable. We consider this regime more representative
of the type of optimisation problems faced by developers
of heuristic optimisation algorithms. Although, empirically
determining that these instances cannot be satisfied is relatively
fast, finding a configuration that satisfies as many clauses
as possible remains difficult—the nature of this difficulty is
explored in this paper.

Analysing the fitness landscape of optimisation problems
has been a vigorous area of research over the last twenty
years. Often the goal has been to try to identify features of
the landscape which are indicative of the problem difficulty for
search algorithms. Examples of measures that have attempted
to capture the local ruggedness of a problem include the
auto-correlation [11], and fitness distance correlations [12],
[13]. However, it was soon realised that it was easy to build
problems where these measures were not correlated with
problem difficulty (see, for example, [14]). Another active pro-
gramme of research has been to look at algebraic properties of
landscapes and particularly elementary landscapes [15], [16],
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which are shared by many well known NP-hard problems.
Unfortunately, these properties do not correlate with problem
difficulty either. MAX-k-SAT does not have an elementary
landscape, although it can be viewed as a superposition of k-
elementary landscapes [17]. One of the themes of this paper is
that to gain a deep insight into a problem requires looking at
a wide range of landscape properties. The measures discussed
above concentrate on local properties of the landscape. This
paper investigates long-range correlations, which we show can
be exploited to find better quality solutions. These long-range
properties are akin to the “big valley” structure of problems,
first observed in TSP [18], [19]. However, the correlations in
the MAX-SAT landscape are more complicated than a simple
big valley. Although, we consider many properties, we have
been selective in the data we present. For example, almost
all the data shown is at a ratio of clauses-to-variables of 8.
There is nothing special about this choice—we have found
the same qualitative behaviour at many different ratios of
clauses-to-variable substantially above the phase transition. In
our opinion, a more comprehensive set of data would tend to
obfuscate rather than elucidate, by overwhelming the reader
(not to mention the writer).

This paper makes an “honest attempt” to extrapolate from
small to large instances. Of course, such extrapolations rely
on an unproven assumption that “nothing funny happens”
as we extrapolate to large systems. We have not seen any
evidence to suggest that this is the case. Nevertheless, all
statements based on extrapolation from small systems come
with a caveat that the scaling behaviour we observe in small
systems is valid for very large systems. Equally, we make
statements about statistical samples assuming that our samples
are representative. Care has been taken to collect enough data
so that the probability of a significant error is small. There
are times when we show the behaviour of a single instance,
since averaging over many instances would lose information.
In such cases, we have not attempted to select an instance
we believe is typical, but rather we have drawn an instance
at random. Since large random instances often have similar
statistical properties, these randomly generated instances are
often “typical” (i.e. representative of a large proportion of
randomly drawn instances). However, as we will see there are
properties, such as the number of configurations in a global
optimum, which can vary tremendously between instances.

Although, the detailed behaviour discussed in this paper is
peculiar to randomly drawn instances of MAX-3-SAT, many
of the qualitative features, such as the proliferation of local
optima and the large-scale correlations, are observed in many
other combinatorial optimisation problems. Thus, we believe
that much of the qualitative behaviour discussed is likely to
be shared by many other hard optimisation problems.

The rest of the paper is organised as follows. In the next
section, we introduce the MAX-SAT problem and describe
one of the most commonly used heuristic solvers, GSAT.
Section III describes properties of global and local optima. In
section IV, we examine the expected fitness of configuration in
Hamming spheres of different radii from a local maximum. We
also consider the probability of returning to a local optimum
starting from a randomly chosen configuration in the Hamming

sphere. In section V, we discuss other MAX-SAT solvers and
in particular a new class of algorithms, Landscape-Guided
Hopping, developed from an understanding of the long-range
correlations. We draw conclusions in section VI. A few details
of the analysis technique are left to the appendices.

II. MAX-SAT
In this section, we describe the MAX-SAT problem and then

specify the set of instances that we shall consider. We finish
the section with a discussion of GSAT, the classic local-search
algorithm for MAX-SAT.

A. Problem Definition

The MAX-SAT problem is closely related to the satisfiabil-
ity decision problem colloquially known as SAT. This problem
involves a set of Boolean variables X = (X1, X2, . . . , Xn)
and a set of disjunctive clauses consisting of a subset of
literals (a literal is either a variable or its negation). For
example, a clause might be X1∨¬X5∨X10. Each clause can
be considered an additional constraint that must be satisfied.
In SAT the question is: “does there exist an assignment
of the variables which satisfies all the clauses?”. Stephen
Cook famously showed that any non-deterministic Turing
machine can be reduced to a SAT instance whose size is a
polynomial of the tape length, thus establishing that SAT is
NP-complete [20]. A special variant of SAT is k-SAT which
consists of clauses containing exactly k literals. There is a
staightforward polynomial reduction of any SAT instance to
a 3-SAT instance. Thus, 3-SAT is NP-complete while 2-SAT
can be solved in polynomial time.

MAX-SAT is the generalisation of SAT to problems which
are not fully satisfiable. It asks the question whether there
exists an assignment of the variables which satisfies all but
T clauses. MAX-k-SAT is NP-hard for k ≥ 2 (thus MAX-
2-SAT is NP-hard even though 2-SAT is not [21]). We will
treat MAX-SAT as an optimisation problem and in particular
we consider MAX-3-SAT. We use as the objective function
the number of satisfied clauses, which we seek to maximise.
Assuming there are m clauses and denoting the clauses by
gi(X), then the fitness is given by

f(X) =

m∑
i=1

Jgi(X) is satisfiedK

where Jgi(X) is satisfiedK is an indicator function equal to 1
if clause i is satisfied and 0 otherwise (i.e. all the literals in
clause i are false).

Our focus will be on randomly generated instances, where
each clause consists of k randomly chosen variables which are
negated with probability of a half. We require each variable
in a clause to be different and all clauses to be unique. We
denote the number of variables by n, the number of clauses by
m, and the ratio of clauses to variables by α. As mentioned in
the introduction, the ensemble of problem instances undergoes
a phase transition for large n, such that almost all instances
are satisfiable below a critical ratio of clauses to variables of
αc and unsatisfiable above this critical value. The value of
αc depends on k; for k = 3 the critical value is αc ≈ 4.3,
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while for k = 4 the critical value is αc ≈ 9.8. One reason for
concentrating on k = 3 rather than k > 3 is that, for larger k,
we must use considerably larger ratios of clauses-to-variable
to find hard instances than is necessary for MAX-3-SAT. This
would slows down the search algorithm preventing us from
collecting as much data as we could for k = 3.

B. GSAT

This paper focuses on heuristic search algorithms for MAX-
SAT. As a baseline algorithm, we consider the classic GSAT
local-search algorithm [22]. GSAT is a hill-climbing algorithm
which at each step chooses to change the variable that gives the
best fitness improvement. When there are multiple alternatives
it chooses to change one of them selected uniformly at random.
Superficially, GSAT may appear inefficient as it considers
all variables at each step, however, through judicious book-
keeping GSAT can be made so that a single step requires
O(αK2) computations. It is therefore extremely fast (notice
that it does not scale with n) and, in consequence, is very diffi-
cult to beat. Appendix A describes the implementation details
of GSAT including a rather subtle set data structure which
sped up our implementation over any other implementation
that we are aware of.

As well as using GSAT as a baseline algorithm we also used
it to find local optima as part of our empirical investigation
of the fitness landscape. This, however, requires a method to
determine whether a local optimum has been reached. A local
optimum consists of a set of connected configurations all with
the same number of satisfied clauses (fitness), but none with a
neighbour with more satisfied clauses (figure 1 illustrates our
definition of global and local optima). To determine whether
GSAT reaches a local optimum we switch to an exhaustive
search algorithm which maintains a set of configurations at
the current fitness, and a stack of configurations at the current
fitness whose neighbours have not been visited. Initially the set
and stack consist of the initial configuration. The configuration
on the top of the stack is popped and its Hamming neighbours
are searched. If a neighbour has a higher fitness then we know
that we are not at a local optimum. If the neighbour is at the
current fitness, but has not been previously seen (i.e. it is not in
the set), it is added to the stack and set. We continue popping
configurations from the stack until either a fitter configuration
is found or the stack is empty (this is very similar to the best-
first search algorithm for testing connectivity of a graph). For
this exhaustive search all fitness computations can be done
efficiently using the same book-keeping used to implement
GSAT.

One of the limiting constraints in carrying out our analysis is
the memory requirements of exhaustive search. This becomes
prohibitive for large n (above a few hundred at α = 8) and
close to the phase transition when the constant-fitness plateaus
become very large.

III. LANDSCAPE ANALYSIS

In this section, we look at some of the properties of
the fitness landscape for MAX-SAT and in particular we
concentrate on the scaling behaviour of different quantities
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Fig. 1. Schematic illustration of our definition of global and local maxima.
Assuming neighbours in the diagram are connected by edges, then there is
one global maximum at fitness 8 consisting of four connected configurations
(shown by the dark shaded region) and two local maxima of fitness 7
consisting of one and two configurations (shown by the lighter shaded region).
Of course, the Hamming neighbourhood of MAX-SAT has a very different
topology to the one shown here.

as the system size grows. This analysis reveals why problem
instances become difficult for local-search algorithms as they
become large.

A. Density of States

We start by considering the number of configurations at
each fitness level. The mean fitness for any MAX-k-SAT
problem is fav = (1 − 2−k)αn. We can compute the spread
of fitnesses around the mean through random sampling (this
will miss rarely occurring fitness values). Figure 2 shows
the logarithm of the histogram of fitnesses around the mean
fitness scaled by

√
αn for single instances of size 100, 1000

and 10 000. The results are almost identical for all randomly
drawn instances (data not shown). The curves in figure 2 are
approximately quadratic indicating that the distributions are
approximately normally distributed around their mean. The
variance is empirically found to be around 0.1αn. This picture
remains true for different values of α as shown in figure 3.

We can understand the behaviour of the density of states by
assuming that the clauses are independent of each other. In this
case, the fitness is just the sum of αn independent Boolean
random variables, with a probability of 1 − 2−k of being 1
(i.e. the clause is satisfied). By the central limit theorem, we
would expect the distribution of fitnesses to be approximately
normally distributed with mean (1 − 2−k)αn and variance
2−k(1 − 2−k)αn. This is close to the observed behaviour
around the mean fitness. For any particular instance, some
of the clauses will share the same variables, and so their truth
values are correlated. As a consequence, the distribution of
fitnesses will deviate from a normal distribution, particularly
close to its tails. Approximately normal behaviour of the den-
sity of states is observed in other models where the objective
function consists of a number of approximately independent
components. For example, this is true in a large number of
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Fig. 2. Logarithm of histogram of fitnesses computed by sampling 109

random configurations for single instances with α = 8 at n = 100, 1000 and
10 000.
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Fig. 3. Logarithm of histogram of fitnesses computed by sampling 109

random configurations for single instances with n = 100 at α = 4, 6, 8 and
10.

constraint satisfaction problems where the objective function
counts the number of violated constraints. This includes both
easy problems such as onesmax and hard problems such as
graph-colouring.

B. Auto-correlation

We can measure the auto-correlation of a random walk
through the search space, which is often used as a measure of
the ruggedness of the fitness landscape [11]. To compute this,
we consider a random walk starting at an arbitrarily chosen
initial configuration and moving to a Hamming neighbour at
each step. Let f(t) be the fitness at step t, then the auto-
correlation is given by

R(τ) =
1

σ2
E
(
(f(t+ τ)− fav)(f(t)− fav)

)
,

where σ2 is the variance in the fitness for random configu-
rations. We have computed the auto-correlation for the same

three instances used in figure 2. These are shown in figure 4.
We see that, under this scaling, the auto-correlations are
remarkably similar. For large τ the auto-correlation function
appears to drop off approximately exponentially as

R(τ) ∼ e−τ/l,

where l is known as the correlation length [23]. Empirically
l ≈ 0.4 × n. The correlation length is taken to be a measure
of the landscape ruggedness—the smaller l the more rugged
the landscape. We observe that, as n increases, the ruggedness
decreases. That is, if we consider two instances of size n and
n′ we get roughly the same level of ruggedness if we make
n′/n random steps on the instance of size n′ as we would for
a single step on the instance of size n.
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Fig. 4. Auto-correlation for three instances of size n = 100, 1000, 10 000
with α = 8 plotted against the time difference τ/n.

Interestingly the correlation length does not alter signifi-
cantly with α. This is shown in figure 5 (to emphases the ap-
proximate exponential fall off we have plotted the logarithm of
R(t)). The autocorrelation length suggests that the landscape
is relatively smooth with long-range correlations. We will see
the origin of the long-range correlation and evaluate one of its
properties analytically in section IV.

C. Time to Local Optimum

In much of the analysis of MAX-3-SAT, we will study
properties of the local and global optima. We begin this
analysis by considering the time taken by GSAT to reach
a local optimum. To check if a local optimum has been
reached we use the exhaustive search algorithm described
above, however, if we find that we have not reached a local
optimum we carry on GSAT from where we left off. The time
taken to reach a local optimum depends critically on α. For
α � αc the time to reach a local (and usually the global)
optimum is relatively short. However, for α ≈ αc the time to
reach a local optimum increases rapidly. This is illustrated in
figure 6, where we show the mean and median times for GSAT
to reach a local optimum plotted against α for instances of
size n = 50. The large increase around α = 4 is indicative of
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large plateau regions in the solution space. We could compute
this only for small instances as the computation time, and
the memory requirement to check if we have reached a local
optimum, becomes prohibitive around the phase transition (i.e.
for α ≈ αc = 4.3). Interestingly, the big jump in the mean time
taken to reach a local maximum around the phase transition
is not reflected in the autocorrelation function, showing that
the autocorrelation function is a comparatively poor indicator
of the performance of search algorithms.
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Fig. 6. Mean time to reach a local optimum versus the ratio of clauses to
variables, α. Each data point represents the mean over 10 instances and 100
hill-climbs per instance.

This paper will concentrate on the regime α� αc. For the
sake of consistency we give results for α = 8, although the
same qualitative behaviour is observed at other values of α in
this regime. As observed in figure 6, the mean is considerably
higher than the median, indicating that the distribution of times
to reach a local maximum has a long tail. Even away from the
phase transition, the number of steps to reach a local optimum
can vary considerably. Figure 7 shows this distribution plotted

on a semi-log scale to emphasise the rare events. This data
was gathered on a single randomly-chosen problem instance.
We notice that, on rare hill-climbs, it can take a exceedingly
long time to hit a local optimum even at α = 8.
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Fig. 7. Count of occurrences that number of steps to reach a local maximum
occurs in each bin plotted on a logarithmic scale. The data is for a single
instance with n = 100 and α = 8 collected on 100 000 hill-climbs.

Figure 8 shows the mean time to hit a local optimum
versus the problem size, n. The graph shows that the time
increases super-linearly, but still polynomially. The super-
linear increase is due to the growth in the size of the plateau
regions. Plotting the same data on a log-log scale, figure 9,
indicates that the time to reach a local optimum appears to
increase sub-quadratically. The graph shows the best straight
line fit to the data. Using this extrapolation, the mean time
to reach a maximum for a problem of size 10 000 would be
660 000 steps, while the median time is 320 000. Although
some caution is needed in extrapolating from small instances
to large instance, nevertheless, for α = 8 it is fairly clear that
reaching a local optimum is not hugely demanding.

D. Number of Local Optima

What makes large MAX-SAT instances difficult in this
regime (i.e. α > αc) is the large number of local optima. To
investigate this, we ran GSAT until there was no improvement
in 100 steps. To check whether we reached a local optimum,
the exhaustive search algorithm was run. If a fitter configura-
tion is found then the exhaustive search is re-initialised from
this fitter solution. This is repeated until a local optimum is
reached. The full search is repeated from a large number of
randomly chosen starting configurations. Each local maximum
is recorded together with the number of times that it is hit. Of
course, we have no guarantee that we have reached every local
maximum, particularly if a local maximum has a small basin
of attraction. Typically there are some local maxima which
have very small probabilities of being visited. For example, in
one typical instance with n = 50, after 107 hill-climbs, there
were 375 local optima found of which 5 were discovered less
than 10 times. For another randomly chosen instance this time
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Fig. 8. Mean time for GSAT to reach a local optimum versus the problem
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with n = 100, again after 107 hill-climbs, there were 25 126
local optima found of which 13 764 where found less than 10
times and 5150 local optima which were visited only once.
However, those local optima that have been observed only
once are all low fitness local optima (fitness less than or equal
to 774, where the maximum fitness is 782).

Figure 10 shows the mean and minimum number of times
each local optimum was found in 107 attempts. Of course,
there are likely to be local optima that we have not found.
However, note that, for fitnesses greater than 776, we have
visited each local optimum at least 100 times. Thus with high
probability any local optima with a fitness greater than 776,
that we have not found, would have a basin of attraction 100
times smaller than those that we have found. We call high
fitness optima with abnormally small basins of attraction elves.
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Fig. 10. Number of times local optima are hit in an experiment with 107 hill-
climbs for a particular randomly drawn instance with n = 100 and α = 8.
This particular instance has a global optimum with an unusually small basin
of attraction—hence the kink at high fitness. Also note, at fitness 774 we have
visited each local optimum on average around 660 times, but there are 5 local
optima at this fitness that have only been visited once.

Although we cannot rule out the existence of elves empirically,
we strongly doubt their existence as we have not found any
example of elves in a very large number of trials. Furthermore,
as we will see later on, we have strong theoretical reasons
to believe that high fitness optima will have relatively large
basins of attraction (as is also found empirically), so it is
unlikely that there can exist an elf. As a consequence, we
believe that we have found all the global optima for the small
problem instances we report. Of course, as the problem size
increases the number of times we find the fittest observed
optima decreases until we can no longer have confidence that
a global optimum has not been missed.

Although, we can be confident for small instances of
reaching all fit local optima, we are almost surely missing
local optima with fitness f < 775. There exists a number of
imputation techniques for estimating the true number of local
optima at a given fitness level (see, for example, [24], [25]).
A couple of papers have used these methods for estimating
the number of local optima for MAX-SAT, but these have
concentrated on instances close to the phase transition [26],
[27]. We have tried applying a simple probabilistic model to
our data. We assume that the probability of reaching a local
optimum, i, is a random variable, Zi, where all probabilities of
the same fitness, f , come from the same gamma distribution

Zi ∼ γ(z|af , bf ) =
baf z

af−1 e−bf z

Γ(af )
.

The probability that local optimum, i, is visited ni times in
N trials is assumed to be Poisson distributed

P
(
ni|Zi

)
=

(N Zi)
ni e−N Zi

ni!
.

The assumption of a Poisson distribution will be reasonably
accurate given that each run is independent, and the probability
of finishing in any given optimum is small. The choice of



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

a gamma distribution is somewhat arbitrary, although, it is a
common choice for modelling distributions of positive random
variables, which frequently fits empirical data quite well.

Given a list of visiting frequencies for local maxima with
fitness f , (ni|fi = f) the likelihood of the data is given by

P
(
(ni|fi = f)|af , bf

)
=
∏

i∈{i|fi=f}

∞∫
0

P
(
ni|zi

)
γ(zi|af , bf ) dzi.

We could choose af and bf to maximise this likelihood,
however, this fails to take into account those optima that have
not been visited. To correct for this, we include nuf unobserved
local maxima at fitness f in our likelihood estimation, where
nuf is equal to the expected number of unobserved local optima
given af and bf . Details of this calculation are given in
appendix B. This inference technique appears to be quite
accurate provided the expected number of times the local
maxima at fitness f is visited is greater than 1 (this observation
is based on running this inference procedure while holding
out some of the data—results not shown). When the basins of
attraction become smaller than this, the maximum-likelihood
estimation breaks down. This is not too surprising as the
only data we have, to determine the shape of the gamma
distribution, comes from its tail.

Figure 11 shows the mean probability of visiting a local
optimum of fitness f . The dashed lines show the estimation
based on observed local optima (this is just the mean count of
the number of visits as shown in figure 10 divided by N ). The
solid curve shows the estimated values using the maximum-
likelihood estimator of a gamma distribution described above.
This breaks down when the estimated probability goes below
N−1 (where in our case N = 107). We have not shown the
maximum-likelihood estimation below this point (f < 768)
as the algorithm is numerically unstable. Obtaining a reliable
estimation for the number of local optima at low fitness is
extremely difficult and we have made no further attempt to do
so in this paper.

In figure 12, we plot the logarithm of the number of
observed local maxima divided by n, versus the fitness divided
by αn, for three particular instances of size 50, 75 and
100. We performed 107 hill-climbs to find the maxima. For
n = 75 and n = 100 we significantly underestimate the true
number of local optima at lower fitnesses. The plot shows
that these curves are roughly similar for different n. It seems
plausible that these curves could converge to a universal
curve for sufficiently large n. This behaviour is consistent
with the hypothesis that the number of local maxima grows
exponentially with the system size.

The number of local optima also grows with α, although
apparently not exponentially. This is shown in figure 13 where
we have counted the mean number of local optima found in
106 hill-climbs plotted against α. With this number of hill-
climbs, some fraction of the local optima will not be found,
nevertheless, it is clear that the number of local optima grows,
apparently linearly, with α.

As is evident from figure 11, the expected probability of
visiting a local optimum grows as its fitness increases. The
ratio of the mean probabilities of visiting a local optimum
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the maximum-likelihood estimation described in the text. The extrapolation
is just a straight line fit, Pv(f) ∝ 2.49f .

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
f
αn

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
lo

g 1
0(
N

(f
))

n

n=50 measured
n=75 measured
n=100 measured

k=3, α=8, Number of hill-climbs =107

Fig. 12. Plot of the logarithm of the number of local maxima divided by n
versus the fitness divided by αn.

4 5 6 7 8 9 10
α

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f l
oc

al
 o

pt
im

a

n=50, k=3

Fig. 13. Mean number of local optima found in 106 hill-climbs averaged
over 100 instances versus the clause-to-variable ratio, α.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

of fitness f + 1, to visiting a local optimum of fitness f , is
equal to around 2.1 for n = 50, 2.47 for n = 75, and 2.49
for n = 100. A consequence of this is that there is clearly
a strong bias towards high fitness local maxima. Figure 14
shows the proportion of local optima at each fitness value,
and the probability of finding a local optimum using GSAT.
Note that figure 14 shows the empirically measured proportion
of local optima at each fitness level and thus underestimates
the true proportion of local optima at low fitness.
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Fig. 14. Histograms showing the proportion of local optima at each fitness
value and the probability of finding a local optimum of each fitness, for one
instance.

E. Reaching the Global Optima

From the perspective of finding fit solutions, it is clearly a
desirable property of MAX-SAT that the fitter local optima
have, in expectation, larger basins of attraction. However,
the gap between the expected fitness found and the fitness
of the globally optimal solutions grows with the problem
size, n. This is illustrated in figure 15, where we show the
maximum fitness and the mean fitness of the local maxima
found by GSAT averaged over an ensemble of randomly drawn
instances—note that the fitnesses have been scaled by 1/(αn)
so the gap between the expected fitness found by GSAT
and the maximum fitness appears constant for large n. For
a single instance, the fitness of the maxima found by GSAT
will fluctuate on every run. Figure 16 shows the variance in
the fitnesses found by different runs of GSAT divided by αn
plotted against the reciprocal of the problem size (we used
exhaustive search to ensure that we reached a local maximum
on each run). The plot is consistent with the variance in fitness
growing linearly with the system size n. That is the size of
the fluctuations (given by the standard deviation) scales as√
n. In figure 15, we have also plotted one standard deviation

around the average, estimated by extrapolating the empirically
measured variance to large n. We see that instances become
hard as n becomes large since the gap between the expected
fitness of a local optimum found by GSAT and the globally
optimal fitness grows linearly with n, while the standard

deviation grows only as
√
n. Thus, the chance of finding a

global optimum decreases as n increases.
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Fig. 15. Plot of the expected maximum fitness and the average fitness found
by GSAT versus 1/n. This is calculated by performing 105 hill-climbs on
400 randomly generated instances of the problem. We have computed the
standard deviation in the fitness found by GSAT and show the mean plus and
minus 1 standard deviation extrapolated for all n by the dotted lines.
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Fig. 16. Plot of the variance of f/(αn) found by GSAT averaged over 400
instances against 1/n.

In figure 17, the logarithm of the probability of finding a
globally optimal solution is plotted against n. The straight-line
fit is consistent with the premise that the probability of finding
a global maximum decreases exponentially with the size of the
system. Using the straight-line fit in figure 17 to extrapolate
to large n, we find the probability of GSAT finding a global
optimum for an instance of size 10 000 would be around
10−76. Although the value obtained from such an extrapolation
is likely to be inaccurate, nevertheless, it provides a strong
indication that the strategy of using multiple runs of GSAT
takes exponential time (in the instance size).
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F. Number of Global Optima

Figure 18 shows a histogram of the number of global optima
for 10 000 random MAX-3-SAT instances with n = 100 and
α = 8. We observe that there is quite a wide spread in the
number of the global optima. The expected number of global
optima raises from 2.7 for n = 40 to around 4.0 for n = 200.
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Fig. 18. Histogram of the number of global optima for 10 000 random
MAX-3-SAT instances with n = 100 and α = 8.

Note that we define each optimum to be a connected set
of configurations at the same fitness with no fitter neighbours
(see figure 1). Figure 19 shows a histogram of the number
of configurations in each global optimum measured in 10 000
randomly generated problems. The tail of the distribution has
been truncated in figure 19; there are 468 global optima with
more than 200 configurations. The largest global optimum in
these 10 000 instances has 2136 configurations.

In figure 20 the same data used in figure 19 is plotted on
log-log axes. We see, for large nf , that P(nf ) falls off close
to 1/nf . This is an extremely fat-tailed distribution for which
there is no mean. It is interesting to observe that although
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Fig. 19. Histogram of the number of configurations in each global optimum
for 10 000 randomly generated problems with n = 100 and α = 8. The
histogram has been truncated with 468 global optima having more than 200
configurations and where the maximum is 2136.

these instances are in many ways statistically similar, at least,
in regard to the size of the global maxima the instances can
have dramatically different properties.
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Fig. 20. Distribution of the size of global optima plot on a log-log axis.
To plot this, the data in figure 19 has been put into bins of increasing size.
The dashed line is a straight line fit corresponding to a distribution with a tail
falling off as 0.7n−1.35

c .

The distance between global optima also varies from in-
stance to instance. Figure 21 shows schematically the sizes
of the global optima and the mean and minimum Hamming
distances between the optima for one particular instance with
3 global optima. Figure 22 shows a histogram of Hamming
distances between all configurations that make up the global
optima for this particular instance.

In figure 23 we show a histogram of the Hamming distances
between configurations at the global optimal fitness, averaged
over 1000 instances, with n = 100 and α = 8. The peak at
low values is produced predominantly by the configurations
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Fig. 21. Pictorial representation of the distance between the global optima in
a particular instance of a problem with n = 100 and α = 8. The number of
configurations in the three global optima are 2, 16 and 25 while the average
Hamming distance between global optima are 20.2, 17.2 and 8.1 with the
minimum Hamming distance being 18, 13 and 4.
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Fig. 22. Histogram of Hamming distances between configurations at the
global optimal fitness for the same instance as shown in figure 21.

in the same global optimum, although there are also global
optima with a minimum Hamming separation of 2. Notice that
there is a wide spread of Hamming distance with some global
optima having a Hamming distance greater than n/2. This may
appear counter-intuitive as it shows that there are instances
where there exist entirely unrelated ways of optimally solving
these problems. However, there are 2k − 1 = 7 different ways
in which each clause can be satisfied. Since the instances
are constructed from random clauses, each variable occurs
in roughly the same number of clauses, with the variables
being negated roughly half the time. In a fit configuration,
the truth value of the variables are chosen with respect to
each other so that a large number of clauses are satisfied, but
this careful balance can be achieved in many different ways.
Thus, it is not too difficult to understand why there can be
global optima which are a considerable Hamming distance
apart. For more structured MAX-SAT problems, the balance
of variables in each clause may be decidedly different so that
good solutions may be more correlated. An early observation
about SAT and MAX-SAT was that most instances were found
to be easy to solve. Later it was found that random instances
seem particularly hard [2]. A consequence of the structure
of random instances of MAX-SAT is that a slight change to
the set of clauses, although only resulting in a small change
in the fitness for each configuration, can totally change the
ranking of the local optima, and so may swap the position of
the global optima to a quite different part of the search space.

This sensitivity makes it very difficult to construct a heuristic
for finding a global optimum.
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Fig. 23. Histogram of Hamming distances between configurations at the
global optimal fitness for 1000 instances of MAX-3-SAT with n = 100 and
α = 8.

G. Distance between Optima

We have seen that, for large instances, GSAT will, with
overwhelming probability, finish in a local optimum with a
fitness considerably lower than the maximum fitness. This
might not prevent an algorithm from finding a globally optimal
solution, provided the global optimum was close to most good
local optima. If this was the case, it might be possible to
develop an algorithm which quickly moved from one local
optimum to a fitter one. However, we show here that this
hope is fruitless. Figure 24 shows the mean Hamming distance
from a configuration in a local optimum to the nearest global
optimum. These results are averaged over all local optima
found in 100 instances.
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optimum from a local optimum of fitness f .



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

We can collapse the curves in figure 24 onto a universal
curve by rescaling the axes and fitting a single correction to
scaling parameter. This is shown in figure 25 and demonstrates
that the distance from a local optimum to a global optimum
scales linearly with the problem size. The Hamming distance
between an optimum of fitness fmax−1 to fmax clearly grows
with increased n, although it is difficult to be sure how this
Hamming gap grows. The answer to this question depends on
extrapolating the curve in figure 25 to the y-axis. A plausible
extrapolation would be that this gap was around 0.1n, although
it is not inconceivable that it extrapolates to zero indicating
that the Hamming distance would be o(n) and ω(1). As the
number of configurations in a Hamming-ball of radius h grows
as
(
n
h

)
= eΘ(h) (for h > n/2), the expected time to move from

a sub-optimal local maximum to an optimal local maximum
by searching the neighbourhood would (extrapolating from this
data) appear to increase super-polynomially.
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Fig. 25. Rescaled version of figure 24 showing that the curves collapse on
to each other. To get a decent collapse we included a “correction to scaling”
term (−3.7/n2), where the parameter was chosen to fit the data.

IV. LANDSCAPE CORRELATIONS

The evidence presented thus far provides compelling rea-
sons for believing that the landscape is difficult for a hill-
climber to navigate. However, as we saw in the auto-
correlation there exist significant long-range correlations in
the landscape. This is a consequence of the structure of the
objective (fitness) function. On average, each variable occurs
in just k × α clauses, with an equal probability of a clause
depending on the variable or on its negation. The change in
fitness due to flipping a variable will therefore be equal to the
sum of the clauses that are satisfied only by that variable minus
the sum of clauses that are unsatisfied, but are made satisfied
by flipping the variable. Typically, this change in fitness is
quite small. As a consequence, the configurations around a fit
configuration also tend to be fit.

A. Expected Fitness in Hamming Sphere
We can analytically compute the mean fitness in a Ham-

ming sphere around any configuration from knowledge of the

number of satisfied literals in each clause. Let us denote the
variables by X = (X1, X2, . . . , Xn) and the clauses by
gi(X) where i = 1, 2, . . . , m = αn. We partition the clauses
(for a given configuration X) into equivalence classes, Sl,
depending on the number of satisfied literals in the clause.
Thus, we write gi(X) ∈ Sl if clause i has l satisfied literals.
Clearly l can take values 0 to k (the number of literals in
each clause). We denote the indicator function using square
brackets JpredicateK, which is equal to 1 if the predicate is
true and 0 otherwise. We denote the size of the equivalence
classes (i.e. the number of clauses with l satisfied literals) by

sl(X) =

m∑
i=1

Jgi(X) ∈ SlK .

Since the fitness, f(X), of a configuration is equal to the
number of satisfied clauses we have

f(X) =

m∑
i=1

k∑
l=1

Jgi(X) ∈ SlK = m−
m∑
i=1

Jgi(X) ∈ S0K

= m− s0(X).

To compute the expected fitness in a Hamming sphere of
radius h we average over all configurations X ′ with Hamming
distance d(X ′,X) = h from the configuration of interest, X .
We denote the set of configurations in this Hamming sphere
by

Xh(X) =
{
X ′ ∈ {T, F}n|d(X ′,X) = h

}
.

We note that |Xh(X)| =
(
n
h

)
. The expected fitness in the

Hamming sphere is

fh(X) = E
(
f(X ′)|d(X ′,X) = h

)
= m− ch(X),

where ch(X) is the expected number of unsatisfied clauses
(or cost) at a Hamming distance h from configuration X ,

ch(X) = E
(
s0(X ′)|d(X ′,X) = h

)
=

1(
n
h

) ∑
X′∈Xh(X)

m∑
i=1

Jgi(X ′) ∈ S0K .

The number of unsatisfied literals in any clause must be in the
set {0, 1 . . . , k} so that

k∑
l=0

Jgi(X) ∈ SlK = 1.

Putting this into the equation for ch(X) we obtain

ch(X) =
1(
n
h

) k∑
l=0

m∑
i=1

∑
X′∈Xh(X)

Jgi(X ′) ∈ S0K Jgi(X) ∈ SlK ,

where we have reordered the summations (which we are
clearly allowed to do as they are all over finite ranges). Now
we observe that∑
X′∈Xh(X)

Jgi(X ′) ∈ S0K Jgi(X) ∈ SlK =
(n− k
h− l

)
Jgi(X) ∈ SlK ,

since, for the indicator functions to be true, we have to flip
the l satisfied variables in clause i and leave the unsatisfied
variables unchanged. This means we have to flip h−l variables
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that are not in clause i (there are n− k such variables). Thus,
there are n − k choose h − l ways to flip these variables.
Substituting this result into our expression for ch(X) we find

fh(X) = m− 1(
n
h

) k∑
l=0

m∑
i=1

(
n− k
h− l

)
Jgi(X) ∈ SlK

= m− 1(
n
h

) k∑
l=0

(
n− k
h− l

)
sl(X).

This is easy to compute given sl(X) for l = 0, 1, . . . , k.
Obtaining the expected variance in the same Hamming sphere
is much more complicated than the mean fitness as it depends
on the similarity between clauses. We can, however, obtain a
simple approximation for the variance—details are given in
appendix C.

In passing, we note that Grover [15] defined a difference
operator for a neighbourhood N (X) as

∇2f(X) =
1

|N (X)|
∑

X′∈N (X)

(
f(X ′)− f(X)

)
,

and defined a landscape to be elementary if it satisfies the
wave-like equation

∇2f(X) = λf(X),

for some λ. For a Hamming neighbourhood ∇2f(X) =
f1(X)− f(X), where for MAX-SAT, f1(X) is equal to

f1(X) = m− 1

n

(
(n− k)s0(X) + s1(X)

)
=
km

n
+

(n− k)

n
f(X)− s1(X)

n
,

so that

∇2f(X) =
k

n
(m− f(X))− s1(X)

n
.

The dependence of this on s1(X), which differs from con-
figuration to configuration, prevents MAX-SAT from being an
elementary landscape. However, MAX-k-SAT has been shown
to be a superposition of k-elementary landscapes, so it has
some intriguing algebraic properties [17].

Figure 26 shows a bar chart of the number of clauses with
l satisfied literals (l = 0, 1, 2 and 3), for a configuration in
the global optimum with the largest basin of attraction for a
particular instance. Similar qualitative features are observed
for all fit configurations.

In figure 27, we show the expected fitness of a configuration
in a Hamming sphere of radius h from the configuration, X ,
with sl(X) given in figure 26. The behaviour of the curve at
large Hamming distances is predominantly determined by the
number of configurations where all the literals are satisfied
(i.e. s3(X))—this number is not terribly consistent between
optima of the same fitness.

The qualitative shape of the curve is similar for all n,
although the standard deviation in the fitness is of order

√
n.

In figure 28 we show the expected fitness for an instance
with n = 10 000 and α = 8 around a good solution found
using landscape guided hopping described in section V-B. The
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Fig. 26. Number of clauses with l satisfied literals is shown for one of the
optimal configurations of a MAX-3-SAT problem with n = 100 and α = 8.
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Fig. 27. Expected fitness of configurations in a Hamming sphere of radius
h around the same configuration shown in figure 26. The dotted curves show
one standard deviation around the mean. Note that the average fitness (shown
by the horizontal dashed line) is at (1− 2−k)αn = 700.
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Fig. 28. Expected fitness of configurations in a Hamming sphere of radius
h around a high-fitness configuration in a problem with n = 10 000 and
α = 8. The number of clauses with l satisfied literals are s0(X) = 1 830,
s1(X) = 36 842, s2(X) = 31 086 and s3(X) = 10 242.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

solution is extremely unlikely to be a global optimum and may
not be a local optimum.

If we scale the fitness by the system size we observe that the
line for the average fitness is very similar to that of figure 27,
although, the relative variance is clearly much smaller. Fig-
ure 29 shows the expected fitness for each Hamming sphere
for the most frequently visited optima at each fitness where
an optimum was found. At each fitness level, we chose the
most frequently visited optimum. We note the same qualitative
behaviour in all the curves, although there is some slight
variation. A few of the curves cross each other, and differ
markedly for large Hamming distances.
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Fig. 29. Expected fitness in a Hamming sphere for the most frequently
visited optima at each fitness where an optimum was found. This is for the
same instance as that shown in figure 27.

These curves show the existence of large-scale correlations
in the fitness landscape. That is, the presence of a local opti-
mum changes the expected fitness of configurations away from
the mean fitness at all Hamming distances. Despite this large-
scale structure, local-search algorithms still fail to reliably find
a global optimum. The reason for this is that the landscape
is sufficiently rugged that it is not possible to exploit the
long-range correlation using local fitness information alone.
Figure 30 shows a density plot of the local optima as a function
of their fitness and their Hamming distance from the most
frequently visited global optimum. There is a small correlation
between the quality of the local optima and the closeness
to this global optimum, however, the vast majority of local
optima are around n/2.

A problem instance would satisfies the big-valley hypothesis
if the closer a local optimum is to the global optimum the
fitter the optimum [18], [19]. In MAX-3-SAT we often have
multiple global optima, which, as shown in figure 23, can be
a considerable distance apart. Furthermore, although there is
a slight tendency for fit local optima to be close to a global
optimum, there are plenty of fit local optima at a considerable
distance from a global optimum, and unfit local optima close to
a global optimum. Thus, these instances do not have a classic
big-valley structure.
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Fig. 30. Density plot of local optimum configurations as a function of
their fitness and Hamming distance from the most frequently visited global
optimum. We also plot the mean fitness in a Hamming sphere from the same
global optimum. The shading of the point shows the number of configurations
at that fitness and Hamming distance. Note the exponential scale on the
density. We only show those local optimum configurations found using 107

hill-climbs, so we are likely to have missed many low-fitness optima.

B. Basins of Attraction

We can empirically measure the “basin of attraction” of
a local optimum by repeatedly flipping a fixed number of
variables and running GSAT until it reaches a local optimum.
We then see if this is the same local optimum from which we
started. We can thus measure the return probability starting
from a configuration in a given Hamming sphere. Note that
since GSAT is stochastic the basin of attraction is a proba-
bilistic concept even at the level of individual configurations.
Figure 31 shows the return probability for the most frequently
visited global optimum. We observe that we have above a 50%
chance of reaching the global maximum if we start within a
Hamming distance of around 30. Figure 32 shows the return
probability for one of the local optima with the smallest found
fitness for the same instance as that shown in figure 31. This
local optimum was found only once in 107 hill-climbs.

In principle, given the return probability, pr(h), it is
straightforward to compute the probability of finding the local
optimum starting from a random initial position. This is given
by

P
(
finding local optimum

)
=

1

2n

n∑
h=0

(
n

h

)
pr(h),

since the probability of starting in a Hamming sphere of
radius h is 2−n

(
n
h

)
. Unfortunately, for return probabilities

that fall off rapidly, this sum is dominated by the tail of the
distribution which is effectively truncated when we measure
pr(h) empirically. Using the empirically measured values of
pr(h) thus severely underestimates the probability of reaching
an optimum for optima with small basins of attraction. We can
obtain a better estimate of the probability for finding a local
maximum by approximating the tail of pr(h) by the best-fit
exponential. Using this estimate we find the probability of find-
ing the local maximum shown in figure 32 is approximately
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Fig. 31. Return probability starting from a Hamming sphere of radius h
versus h. This is for the most probable global optimum solution of and
instance with n = 100 and α = 8. It has a probability of being visited of
0.029. The empirical probability is computed by running 10 000 hill-climbs
starting at randomly chosen configurations in each Hamming sphere.
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Fig. 32. Return probability starting from a Hamming sphere of radius h
versus h. This is for a local optimum with the smallest fitness that we found.
The local optimum was found once in 10−7 hill-climbs.

1.3 × 10−9. Given that we only sampled 107 times it would
appear that we were lucky to find a maximum with such a
small basin of attraction. However, there are presumably so
many such maxima that we are exceedingly likely to find at
least one.

V. MAX-SAT SOLVERS

We have so far considered GSAT. In this section, we
discuss an improved algorithm, WALKSAT, and a new class of
heuristic search, Landscape Guided Hopping (LGH), inspired
by the large-scale structure of the landscape.

A. WALKSAT
WALKSAT is a modification of GSAT which incorporates a

stochastic step [28]. With a probability p either a GSAT move

is made or else a walk move is made. In the walk move, an
unsatisfied clause is chosen uniformly at random and one of
the variables, again chosen uniformly at random, is flipped.
Empirical studies show that the optimal probability of making
a walk move, p, is around 0.5 throughout the run. In the results
shown we have used p = 0.5.

WALKSAT is surprisingly effective. Over 20 local search
algorithms have been implemented in the MAX-SAT solver
framework UBCSAT [29]. On large random problem in-
stances, with large α, we found GWSAT (a fast implementa-
tion of WALKSAT) consistently outperformed all other local
search algorithms. Running for a short time, IROTS [30]—a
Tabu search-based algorithm—obtained high-quality solutions
unusually quickly, however, it runs out of steam and was out-
performed by WALKSAT given sufficient time. Furthermore,
WALKSAT is reported to perform at least as well, if not better,
than GAs [31], PSO [32], ACO [33], and EDAs [34]. Note that
WALKSAT will not get trapped in a local optimum due to its
walk steps. As a consequence, we found GSAT more useful
for investigating properties of the fitness landscape, since local
maxima are well defined using this algorithm. We compare the
performance of WALKSAT and GSAT in the next section.

B. Landscape-Guided Hopping

Here we analyse a new approach to solving hard optimi-
sation problems we call landscape-guided hopping (LGH).
This approach was first proposed in [1]. Landscape-guided
hopping uses a population of independent hill-climbers to find
fit solutions. These good solutions are then used to hop to a
new part of the fitness landscape. This involves a very large
move in the fitness landscape in terms of Hamming distance.
The motivation for making this move is the existence of long-
range correlation in the mean fitness as discussed in section IV.

We consider the simplest form of landscape-guided hopping
where we choose the configuration which has the closest
average distance to the set of solutions found by neigh-
bour search. We call this algorithm average landscape-guided
hopping (ALGH). Denoting the set of solutions found by
neighbourhood search as A then we hop to a configuration

X ′ = argmin
X∈{F,T}n

1

|A|
∑
X∈A

d(X,X ′),

where d(X,X ′) is the Hamming distance between X , X ′.
Since the configurations are binary vectors, X ′ can be found
simply by choosing the most commonly occurring value for
each variable in the strings (that is, if Xi is true in the set A
more often than false then we set X ′i to be true; otherwise we
set X ′i to false).

A more sophisticated version of landscape-guided hopping
is to cluster the solutions and hop to the centroids of the
clusters—we call this clustered landscape-guided hopping
(CLGH). This algorithm was used heavily in [1]. We can get a
slight advantage using CLGH if we run the algorithm multiple
times as we can reuse the initial search of the population. The
clustering provides some diversity in the starting position for
WALKSAT. However, the performance gain is marginal, so
we concentrate in this paper on the simpler ALGH algorithm.
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In both forms of landscape-guided hopping, the fitness of
X ′ is typically considerably lower than that of any of the
solutions found by neighbourhood search. However, after ap-
plying local search the fitness rapidly improves and overtakes
local search. In the results shown below we have used GSAT
on a population of 100 individuals run for 10 000 iterations
before applying landscape-guided hopping. Afterwards we
apply WALKSAT. In the initial phase, the progress is 100
times slower for the population than a single GSAT solver
since we have to perform local search independently on every
member.

Figure 33 shows GSAT, WALKSAT and ALGH run on a
randomly generated instance with n = 10 000 and α = 8.
For WALKSAT and ALGH after hopping (where we use
WALKSAT), we show the best fitness found so far rather than
the current fitness (although, we have shown the drop in fitness
caused by hopping). The fitness rapidly improves from the
fitness of random solutions at (1 − 2−k)αn = 70 000 to a
fitness around 78000. GSAT reaches a fitness of 78043 after
1776779 iterations and remains at that fitness until iteration
9907640 where it reaches 78044. WALKSAT is initially slower
than GSAT, but continues to improve. For landscape-guided
hopping, we show the average fitness of the population for
the first 10 000 steps (since this is a population of 100
the total number of functions evaluations is 106). Averaging
causes a loss in the fitness, but there is a remarkably rapid
recovery where landscape-guided search overtakes GSAT and
WALKSAT. This improvement is maintained.
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Fig. 33. Example of running GSAT, WALKSAT and ALGH on a randomly
drawn instance with n = 10 000 and α = 8. The insert shows the same
figure but with the ordinate (y-axis) rescaled to show more clearly the region
of high fitness.

In the initial phase of landscape-guided search, the popula-
tion of hill-climbers slowly correlates as the fitter local optima
tend to be correlated as illustrated in figure 30. Figure 34
shows the mean Hamming distance between independent
configurations found by GSAT as a function of the number of
iterations. The landscape-guided hopping algorithms exploit
this correlation to hop to a part of the fitness landscape with
higher-quality solutions.

To properly evaluate optimisation algorithms, we must look
at the performance over a number of runs. In figure 35 we
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Fig. 34. The mean Hamming distance divided by n for a population of
independent GSAT solvers for the same problem as that used in figure 33.
The error bars are small than the thickness of the line and are not shown.

show a histogram of the fitnesses found by GSAT, WALKSAT
and ALGH run for 1.25, 2.5, 5 and 10× 106 function evalua-
tions. ALGH used an initial population of 100 GSAT solvers
run for 10 000 iterations—these values were chosen through
initial experimentation as they seem to give satisfactory results.
The remainder of the run used WALKSAT. The run times
were not significantly different for any of the algorithms.
Each algorithm was run 4000 times and a histogram of the
best results found is plotted. GSAT is initially better than
WALKSAT, although WALKSAT begins to catch up after
around 1 000 000 steps. ALGH, after averaging, rapidly beats
both GSAT and WALKSAT. This advantage is maintained as
we continue to run the algorithms.

To get some idea of how close the results might be to
the global optima we note that using the extrapolation in
figure 15 the expected mean fitness found by GSAT is 77868.
For this instance, GSAT reaches a mean fitness value of
78010 after 5 × 106 steps, and a fitness of 78013 after 107

iterations. The discrepancy could be due to an extrapolation
error or simply the variation between instances. The expected
maximum fitness predicted by extrapolation from figure 15 is
78177. The maximum fitness found by ALGH is 78166. In
a much longer run we were able to find a solution with a
fitness value of 78200; thus, the best solution we have found
after 107 steps is still some way off the optimum for this
instance. What is clear, however, is that ALGH substantially
out-performs the state-of-the-art, WALKSAT. The mean fitness
of the solutions found by ALGH in the runs shown in figure 35
was 78123. We run WALKSAT ten times longer (that is for
108 steps) and obtained on a sample of 20 such runs a mean
fitness of 78112. Although, we carried out this analysis on a
single instance, for instances this size, the beavioiur observed
in figure 35 is typical. On all random instances we tried, of
this size and greater, we found ALGH gave better performance
that WALKSAT run for ten times as long.

VI. CONCLUSION

The picture of how MAX-3-SAT becomes difficult is known
to be qualitatively similar to a large number of other hard
optimisation problems. The analysis presented in this paper
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Fig. 35. Histograms of the fitness found by GSAT, WALKSAT, ALGH on
a single randomly drawn instance with n = 10 000 and α = 8. The four
diagrams show different number of function evaluations.

fills in the details. We see that there is an exponential growth
in the number of local optima. Although, fitter maxima tend
to have larger basins of attraction, this bias is not sufficient to
out-weigh the raise in the number of local optima. The fitness
gap between a typical local optimum found by GSAT and the
global optima increases with n. The fluctuations between runs
grow as

√
n so the chances of reaching a global optimum

decrease. The Hamming distance between local and global
optima also seem to grow with n, so finding a fit local optimum
does not provide significant information about the location of
a global optimum.

WALKSAT improves on GSAT by making the search more
stochastic. This seems to allow WALKSAT to discover fitter
local optima with larger basins of attraction. Finally, we can
take advantage of the correlation between fit configurations.
This correlation follows from the fact that the average fitness
around any configuration will change slowly with the distance
from that configuration. We can use this to make large,
beneficial hops across the search space by moving to the
closest configuration to a set of fit solutions. This averaging
is a rather crude way to hop over the search space, and there
may well be better ways to exploit knowledge of the average
large-scale structure.

As we previously observed, changing a single clause will
only cause a small change in the fitness values, but can change
the ordering of the optima, thus switching the position of
the global optima a long distance in the search space. A
heuristic, such as landscape guided hopping that is fairly robust
is unlikely to be sensitive to a small change in the fitness
values. Thus, although it clearly helps the search to move to a
part of the search space with high-quality solutions, it seems
highly unlikely that it systematically moves close to a global
optimum. Of course, if P 6= NP and random instances of
MAX-SAT are truly hard instances as is commonly assumed,
then we cannot expect any efficient algorithm to guide the
search towards a global optimum.

Although, the qualitative behaviour we observe in MAX-3-
SAT is likely to be generic to a large number of optimisation
problems, there will also be differences that are key to devel-
oping a successful search strategy. For example, we studied
MAX-3-SAT away from the phase transition. Close to the
phase transition the landscape contains large plateau regions
making it much harder to find local optima. Also, MAX-SAT
is peculiar in that local neighbourhood search algorithms such
as GSAT are so fast. That is, the time taken to make a single
step does not grow with the instance size. This is likely to be
one of the reasons that GSAT and WALKSAT are so hard to
beat. For many problems it is not unusual that computing the
difference in fitness between two neighbouring configurations
is substantially faster than computing the fitness of a random
configuration. This is one reason why neighbourhood search
and hybridised search algorithms are often so effective. Nev-
ertheless, MAX-SAT is at the extreme end of the spectrum in
terms of the low cost of neighbourhood search. Another aspect
of MAX-SAT, that makes it easy to work with, but may not be
so common, is that the configurations are binary strings with
all strings being viable solutions. For the random MAX-SAT
instances, all configurations are equal likely to be a global
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optimum. This makes MAX-SAT easy to work with. Many
operations such as finding the closest configuration to a set
of configurations (necessary to implement landscape guided
hopping) are particularly easy to perform for MAX-SAT. Yet
another feature of MAX-3-SAT is that the rate of growth of
the number of local optima is rather small, allowing us to
reliably find all the global optima for instances with several
hundred variables. All these features made MAX-3-SAT an
easy problem for collecting the data presented in this paper.

To summarise the thesis of this paper: combinatorial optimi-
sation problems are hugely diverse at the level of variables and
their interactions. Despite this, there are surprising similarities
of the landscapes on larger scales (see for example [35], [36].
For example, many problems become hard through the prolif-
eration of local optima. This similarity in the behaviour over
large Hamming distances is reminiscent of what physicists
term universality where many long-range properties seem to be
independent of the detailed short-range interactions. It is this
commonality which provides the hope that search strategies
are likely to have applicability to a wide variety of problems.
However, there are important ways in which the long-range
landscape structures of combinatorial optimisation problems
can differ. It is our belief that the dimensions in which these
differences occur are small enough to be catalogued. They
include the ruggedness of the landscape, the speed of local
search, the number of local optima, size of plateau regions,
correlation between local optima, and the symmetries of the
search space. Capturing these features requires a holistic study
of the fitness landscape that looks at a number of different
measurements. This paper attempts to provide such a study as
a reference point. The next step to mapping out the difference
that can affect the design and effectiveness of heuristic search
strategies is to perform similar studies on other problems. We
leave that task for future papers.

APPENDIX

A. Implementing GSAT

We can implement GSAT so that each step takes on average
Θ(k2α) updates. To do so, we must maintain a count of the
number of satisfied variables in each clause and the change in
fitness caused by flipping each variable. A variable occurs on
average in k α clauses. When a variable is flipped we have to
change the count of the number of satisfied variables in each
clause. We also have to change the cost for flipping variables
for all the variables that occur in the clauses that have been
changed by the variable flip. Since there are k − 1 variables
in a clause, other than the variable being flipped, we have
potentially to change the flip cost of, on average, (k − 1)k α
variables. It is a tedious but straightforward exercise to perform
the book-keeping described above.

A less trivial part of the implementation is to be able to
choose which variable to flip given a list of flip costs. Since
there are n variables, searching this list would dominate the
run time. There are two types of variables that need to be
maintained, improving moves and neutral moves. Typically,
the total number of improving moves throughout a run will
be less than 2−kαn. Since the run time to reach a local

optimum grows super-linearly, the vast majority of moves will
not involve a fitness improvement. Therefore, the improving
moves do not have to be implemented efficiently. The more
challenging issue is to maintain a set of fitness-neutral moves.
In particular we want to be able to add elements, delete
elements and choose a random element in constant time.
Binary trees or hash tables do not allow this; however, there
is a simple, although not well known, data structure that does
this. We call this a bounded set.

The bounded set implementation works provided that 1) the
number of objects that could be put into the set are both known
when the set is created, and 2) they can be stored in memory.
In our case, our list of neutral moves can only involve the n
variables—thus this easily fits in memory. We implement the
bounded set using two arrays. The first, index, array is a fixed-
size array of size n which is used to point to elements in the
second array. The second, member, array contains the elements
in the set. We also keep a counter of the number of elements
in the set. If the elements are not in the set, we assign a value
of −1 to those elements in the index array. In figure 36 we
show a set of up to 10 possible elements containing elements
5, 7, 2 and 8.
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Fig. 36. Illustration of the two arrays used to implement a bounded set
containing elements 5, 7, 2 and 8. The top, index, array holds the indices of
elements in the bottom, member, array.

To add an element, say 3, to the set we put it into the
next available position (position 4) in the member array and
update the element at position 3 in the index array to 4. We
finally increment the set size. To remove an element, 5 say
(assuming the array is as shown in figure 36), we check its
position using the index array and find it is in position 0. We
then move the last element, 8, in the member array into this
position (updating the position of element 8 in the index array),
decrement the element count, and set the 5th element in the
index array to −1. To find a random element we just select a
random number from 0 to the size of the set and choose the
element in that position in the member array.

WALKSAT can be run as efficiently as GSAT. The only
modification needed is to keep a bounded set of the unsatisfied
clauses.

B. Estimating the Number of Optima

In estimating the number of local optima, we treat each set
of optima at a given fitness separately. To simplify the notation
we drop the subscripts indicating the fitness, for example, we
denote the parameters of the Gamma distribution by a and
b rather than af and bf . Recall from section III-D that we
shall assume that the probability of visiting an optimum, i, is
gamma distributed, and the likelihood of visiting the optimum
in N trails is Poisson distributed. To compute the likelihood
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of visiting a local optimum, at fitness f , ni times we integrate
over the unknown probability, Zi, of visiting the local optimum

P
(
ni|a, b

)
=

∞∫
0

P
(
ni|zi

)
γ(zi|a, b) dzi

=
ba

(b+N)a+ni

Nni

ni!

Γ(a+ ni)

Γ(a)
.

Given a list of the number of times each local optimum at
fitness f is visited (ni|fi = f), the log-likelihood is given by

L = log

 ∏
ni|fi=f

P
(
(ni)|a, b

)
= nt

(
n̄ log(N) + a log(b)− (a+ n̄) log(b+N)

− log(Γ(a))
)

+
∑
i

(Γ(a+ ni)− log(ni!))

where nt is the total number of local optima at fitness f , and
n̄ =

∑
i ni/n

t is the mean number of times a local optimum
at this fitness is visited. To maximise the likelihood we set
the derivative of L with respect to a and b to zero. After
rearranging we find

a =
n̄

eψ(a)− 1
nt

∑
i ψ(a+ni) − 1

, b =
Na

n̄

where ψ(x) is the digamma function which is defined as
ψ(x) = d log(Γ(x))/ dx. Notice that we have a self-
consistency equation for a, which, can be easily solved by
bisection. The function

f(a) =
n̄

eψ(a)− 1
nt

∑
i ψ(a+ni) − 1

has the property f(0) = 0 and f ′(0) = 0, while for large a

f(a) ∼ a+
σ2 − n̄

2n̄
±O

(
1

a

)
where σ = 1

nt

∑
i n

2
i − n̄2. Thus, there must be a solution for

finite a > 0 provided σ2 > n̄ since the function f(a) starts
out smaller than a for some sufficiently small a, but finishes
larger than a. For σ2 ≤ n̄, the maximum-likelihood solution
occurs when a→∞ which corresponds to γ(xi|a, b) being a
delta function at xi = n̄. This agrees with our intuition that,
in this case, we can explain all the fluctuations in the number
of times an optimum is visited through the Poisson process,
and thus the maximum-likelihood distribution occurs when all
the optima have the same probabilities of being found.

To obtain an accurate model of the distribution of prob-
abilities of finding an optimum, we should also include the
optima that we have not observed. Of course, we do not know
this. However, we can estimate this number for a given set of
parameters, a, b and nt The expectation of not finding a local
optimum is given by

(
b

b+N

)a
. The expected number, nu, of

local optima that are not observed are thus given by

nu = nt
(

b

b+N

)a
= nt

(
a

a+ n̄

)a
We have nt = nu + no where no are the number of observed
local optima. We can find nu by starting from nt = no

and computing the expectation of nu. This is then used to
update nt. Eventually this converges although the convergence
is rather slow and benefits from using Aitken’s δ2-process [37,
Section 5.3]. Empirically it is found that if the probability of
being visited in N trials falls below 1 then the likelihood is
optimised by a = 0 and nu = ∞. This is clearly a quirk
of the probabilistic model we are using and reflects the fact
that there is not enough data to make a reasonable fit. If we
just extrapolate the expected probability of visiting a local
maximum, we see from figure 11 that to visit a local maximum
at a fitness of 757 at least once would require around 1011

samples which is computationally infeasible. Thus, obtaining
a reliable estimate of the number of local optima at low fitness
is extremely challenging.

C. Fitness Variance in Hamming Sphere

Computing the variance in the fitness of the configurations
in a Hamming sphere depends on the structure of the clauses,
and, in particular, which pairs of clauses share common vari-
ables. An exact computation of the variance, though possible
becomes quite complicated. However, for randomly drawn
instances where each clause is independent, we can obtain
a reasonable approximation by assuming the probability of
two clauses being satisfied is equal to the product of either
being satisfied. This is true only in expectation for random
configurations; however, it provides a reasonable estimate to
the variance found in typical instances.

The variance is given by

σ2 = Eh
(
s2

0(X ′)
)
− Eh

(
s0(X ′)

)2
where we have used the shorthand

Eh
(
q(X ′)

)
= E

(
q(X ′)|d(X ′,X) = h

)
=

1(
n
h

) ∑
X′∈Xh(X)

q(X ′)

for an arbitrary function q. Now

s2
0(X ′) =

(
m∑
i=1

Jgi(X) ∈ S0K

)2

=

m∑
i=1

Jgi(X) ∈ S0K

+

m∑
i 6=j=1

Jgi(X) ∈ S0K Jgj(X) ∈ S0K

where we use the fact that since an indicator function equals
either 0 or 1, the square of the indicator function is equal to
itself. Thus σ2 = σ2

1 + σ2
2 , where

σ2
1 =

m∑
i=1

(
Eh
(
Jgi(X ′) ∈ S0K

)
− Eh

(
Jgi(X ′) ∈ S0K

)2)
σ2

2 =

m∑
i 6=j=1

(
E
(
Jgi(X ′) ∈ S0K Jgj(X ′) ∈ S0K

)
− E

(
Jgi(X ′) ∈ S0K

)
Eh
(
Jgj(X ′) ∈ S0K

))
.
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(Note σ2
1 and σ2

2 are not themselves variances—σ2
2 can and

often is negative). As we showed in section IV-A

Eh
(
Jgi(X ′) ∈ S0K

)
=

k∑
l=0

pl Jgi(X) ∈ SlK

where pl =
(
n−k
h−l
)/(

n
h

)
. Since any clause is in just one

equivalence class Sl then

Eh
(
Jgi(X ′) ∈ S0K

)2
=

k∑
l=0

p2
l Jgi(X) ∈ SlK .

Thus σ2
1 is equal to

σ2
1 =

k∑
l=0

(pl − p2
l )sl(X).

Since clauses are drawn independently, we would expect,
for a random configuration, X , that the probability that two
clauses, i and j, are both satisfied is in expectation

Eh
(
Jgi(X) ∈ S0K Jgj(X) ∈ S0K

)
=

Eh
(
Jgi(X) ∈ S0K

)
Eh
(
Jgj(X) ∈ S0K

)
so that σ2

2 cancel. This is only true when averaged over
all possible clauses—it is not true for any particular pair
of clauses. However, due to the large number of pairs of
clauses it provides a acceptable approximation for typical
randomly drawn instances. However, the configurations X we
consider are not randomly drawn configurations, but are fit
configurations so that the argument that they are independent
of the clauses is flawed. This leads to a small but systematic
discrepancy in the prediction of the variance. In figure 37, we
compare the empirically measured variance in the fitnesses
of configurations in a Hamming sphere of radius h from a
global optimum configuration and the approximation assuming
σ2

2 = 0.
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Fig. 37. Comparison of the variance in a Hamming sphere of radius h
from a global optimum configuration measured empirically and using the
approximation σ2

2 = 0.

Although there is clearly a systematic error with the theoret-
ical approximation, it translate into an almost negligible error

when we consider the standard deviation. We illustrate this in
figure 38, where we show both the mean fitness and the mean
fitness ±1 standard deviation computed using the formula
above and measured empirically. As we observe ,the approx-
imation (i.e. assuming σ2

2 = 0) provides a perfectly adequate
estimate of the size of the fluctuations. In figure 28, where we
show the fluctuations for an instance of size n = 10 000, the
discrepancy between the empirically measured fluctuations and
the theoretical approximation are smaller than the thickness of
the line.
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Fig. 38. Expected fitness in a Hamming-sphere of radius h. The mean
fitness and the mean fitness plus and minus 1 standard deviation are shown.
The empirical results are computed by sampling 106 configurations in each
possible Hamming sphere.

As a final observation, we note that pl is of order 1, while
sl(X) is of order n, thus σ2

2 is of order n and the fluctuations
are of order

√
n.
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