
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/151468/

Deposited on: 21 November 2017
Body Language without a Body: Nonverbal Communication in Technology Mediated Settings

Alessandro Vinciarelli
University of Glasgow - School of Computing Science - Glasgow, United Kingdom
Alessandro.Vinciarelli@glasgow.ac.uk

ABSTRACT
Cognitive and psychological processes underlying social interaction are built around face-to-face interactions, the only possible and available communication setting during the long evolutionary process that has resulted into Homo Sapiens. As the fraction of interactions that take place in technology mediated settings keeps increasing, it is important to investigate how the cognitive and psychological processes mentioned above - ultimately grounded into neural structures - act in and react to the new interaction settings. In particular, it is important to investigate whether nonverbal communication - one of the main channels through which people convey socially and psychologically relevant information - still plays a role in settings where natural nonverbal cues (facial expressions, vocalizations, gestures, etc.) are no longer available. Addressing such an issue has important implications not only for what concerns the understanding of cognition and psychology, but also for what concerns the design of interaction technology and the analysis of phenomena like cyberbullism and viral diffusion of content that play an important role in nowadays society.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;

KEYWORDS
Social Signal Processing, Nonverbal Communication

ACM Reference Format:

1 INTRODUCTION
Human-human and human-machine interactions involve nonverbal communication, i.e., the use of nonverbal cues (facial expressions, vocalisations, gestures, etc.) that add layers of meaning to the words being uttered [5]. In particular, nonverbal cues convey information about social and psychological aspects of an interaction, including attitude, stance, emotional states, conflict, social verticality, roles, etc. Typically, psychologists group nonverbal cues into five major classes, typically called the codes [6]:

- Physical Appearance: attractiveness, clothes, ornaments, body shape, etc.;
- Face and Head: facial expressions, head nods, head shakes, gaze, etc.;
- Gestures and Posture: orientation of the body with respect to others, self-touching, arm folding, spontaneous hand movements, etc.;
- Vocal: prosody, intonation, vocalizations (laughter, crying, filers), pauses, voice quality, etc.;
- Space and Environment: mutual distances, spatial formations, patterns of movement in public spaces, etc.

An important aspect of the taxonomy above is that it revolves around face-to-face interactions, namely settings in which the people interacting with one another are physically co-located and, hence, can communicate through cues that can be perceived with their senses, in particular sight and hearing. This is not surprising given that nonverbal communication is a natural phenomenon and it is the result of a long evolutionary process during which the only possible interactions where face-to-face [1]. In other words, nonverbal communication developed to be functional in the only communication scenario available and possible in evolutionary times, namely the interaction with physically co-located others.

Nowadays, face-to-face interactions still play a crucial role in everyday life and they are well known to be the basis for a correct development of an individual, especially when it comes to the ability to establish meaningful interactions with others [2], the acquisition of the skills necessary to "read" the mind of others [1], and the very development of those areas in the brain that are known to regulate the behaviour during interactions [8]. However, an increasingly significant fraction of human-human interactions take now place in technology mediated settings, i.e., with the help of technologies aimed at allowing people that are not physically co-located to interact with one another.

One of the main aspects of communication technologies is that they inhibit, partially or totally, the use of nonverbal cues [12]. For example, the phone allows one to use speech, but no cue that can be perceived through the eyes can be adopted (e.g., facial expressions and gestures). Similarly, online textual chats allow one to roughly reproduce the dynamics of a conversation, but none of the natural nonverbal cues listed above can be used (emojis are an attempt to reproduce them and their success shows how important and necessary nonverbal communication is). Finally, social media do not involve any nonverbal cue, but still allow the use of a wide spectrum of nonverbal messages such as, e.g., images, likes, connections, etc.

The natural question that arises in the scenario outlined so far is whether nonverbal communication in technology mediated settings...
is still possible and, if yes, whether it works in the same way as it
does in face-to-face settings. In other words, the question is whether
human brain - wired for face-to-face interaction - processes the
signals exchanged in technology mediated settings in the same
way as it processes the social signals that are exchanged between
physically co-located interactants. Besides being interesting from
a psychological and cognitive sciences point of view, the question
has important implications for technology. The reason is that it
can provide important indications for the design of new interac-
tion technologies and, furthermore, it can contribute to explain
phenomena observed in technology mediated settings such as, e.g.,
cyberbullying, virality, etc.

Some early works addressing the questions above show, e.g., that
roughly 25% of the time during phone calls is spent for nonverbal
communication, thus confirming that people are ready to spend
one quarter of their time in nonverbal cues when it is not possible -
like in the case of face-to-face interactions - to speak and display
nonverbal cues at the same time [9]. Similarly, other works show
that the pictures that people like on internet convey a personality
impression, not differently from those that people display in face-
to-face interactions [7, 13]. Finally, the typing patterns that people
manifest in online textual chats are so specific of an individual,
that they can be used for person recognition, not differently from
speech patterns, facial appearance or fingerprints [3].

The works above - and the others that the literature presents
- provide initial indications, but several questions remain to be
addressed (the list is not exhaustive):

- Is there a nonverbal component in communications that take
 place in technology mediated settings that do not allow the
 use of any natural nonverbal cue (e.g., social media)?
- Is it possible to identify codes like those that have been iden-
tified for nonverbal communication in face-to-face settings?
- Is it possible to link nonverbal cues observed in technology
 mediated settings (if any) to interactional functions and goals
 (e.g., to convey an attitude or to send a relational message)?
- Is it possible to improve technology mediated communica-
tion through the use of appropriate nonverbal cues (if any
 available in a particular setting)?

Overall, the question is whether Social Signal Processing (SSP) [10,
11] - the computing domain aimed at modelling, analysis and syn-
thesis of nonverbal communication in human-human and human-
machine interactions - can be transferred to domains where natural
nonverbal cues cannot be used. If this will be possible, there will be
two main advantages: The first is that it will be possible to benefit
from the entire body of methodology that has been developed in
SSP for face-to-face settings. The second, is that the possibility of
transferring SSP to new interaction settings can possibly confirm
that these latter - from a cognitive and psychological point of view
- work like the face-to-face ones.

REFERENCES
UK, 2011.
Conversationally-inspired stylistic features for authorship attribution in in-
stant messaging. In Proceedings of the ACM International Conference on Multi-
Allyn and Bacon, 1995.
[7] C. Segalin, A. Perina, M. Cristani, and A. Vinciarelli. The pictures we like are our
image: continuous mapping of favorite pictures into self-assessed and attributed
2016.
[9] A. Vinciarelli, P. Chatziioannou, and A. Esposito. When the words are not
everything: the use of laughter, fillers, back-channel, silence, and overlapping
M. Schroeder. Bridging the gap between social animal and unsocial machine:
A survey of social signal processing. IEEE Transactions on Affective Computing,
the next frontier for social signal processing. IEEE Systems, Man, and Cybernetics
[13] X. Xiong, M. Filippone, and A. Vinciarelli. Looking good with Flickr faves:
Gaussian processes for finding difference makers in personality impressions. In
Proceedings of the ACM International Conference on Multimedia, pages 412–415,
2016.