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Connection between electrical conductivity and diffusion coefficient of a conductive porous 

material filled with electrolyte.

Abstract. The paper focuses on the cross-property connection between the effective electrical 

conductivity and the overall mass transfer coefficient of a two phase material. The two properties 

are expressed in terms of the tortuosity parameter which generalized to the case of a material with 

two conductive phases. Elimination of this parameter yields the cross-property connection. The 

theoretical derivation is verified by comparison with computer simulation.

Keywords: cross-property, electrical conductivity, mass transfer, tortuosity.

1. Introduction.

The practical implementation of homogenization schemes to calculate the overall properties of 

heterogeneous materials often requires information that is not available. The accurate predictions 

are based on the knowledge of the properties of constituents, relative volume functions, and 

parameters characterizing the мицроструцтуре. While material properties of the constituents and 

their volume fractions are generally known, information about morphology of the material may be 

incomplete or inappropriate. This information, however, may be reconstructed by measuring the 

set of properties different from ones of interest and using cross-property connections.

Existence of cross-property connections has been recognized first from the observations of 

qualitative nature. For instance, geophysicists noticed that cracks in rocks increase both the elastic 

compliance and the fluid permeability; in fracture mechanics, attempts have been made to relate 

the loss of elastic stiffness of a deteriorating microstructure to lifetime predictions. Quantitative 

theoretical results on cross-property connections started to appear in 1950’s. In works of Wyllie 

and Rose (1950), Klinkenberg (1951), and Wyllie and Spangler (1952) method of evaluation of 

hydraulic conductivity of porous rock through electrical conductivity measurements has been 

developed. Pores were filled with electrolyte and the solid skeleton of the porous material was 

considered as a perfect electrical insulator impenetrable for the liquid. Bristow (1960) derived 

explicit connection between elastic constants and electrical conductivity for a material containing 

multiple randomly crack orientated cracks. Levin (1967) interrelated the effective bulk modulus 
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and the effective thermal expansion coefficient of a two phase isotropic composite. Prager (1969) 

constructed Hashin-Shtrikman-based bounds for the effective magnetic permeability (or electrical 

conductivity) in terms of the effective thermal conductivity of a two-phase isotropic material. 

Later, many results have been obtained on correlation between linear elastic and conductive 

(thermal or electrical) properties of heterogeneous materials. Cross-property bounds have been 

obtained by Milton (1984) and Gibiansky and Torquato (1995, 1996 a,b); explicit approximate 

connections have been derived by Sevostianov and Kachanov (2002) (see also Sevostianov, 2003; 

and review Sevostianov and Kachanov, 2009). Exact connections between normal compliance and 

spreading resistance of two contacting surfaces have been developed by Barber (2003), 

Sevostianov and Kachanov (2004) and Sevostianov (2010). Connections between electrical 

conductivity and fluid permeability of a porous material have been developed by Torquato (1990) 

and Avellaneda and Torquato (1991) under assumption that the solid skeleton does not conduct 

electricity and the physical properties are refer to the porous space filled with electrolyte (such a 

situation is typical, for example, for geophysical applications). Generally speaking, cross-property 

connections can be developed if microstructural parameters controlling two physical properties 

are either the same or similar (see review of Sevostianov and Kachanov, 2009).

Another possibility appears when the properties of interest are governed by supplemental 

parameters, like in the case of elastic properties and electrical conductivity of saturated rock, 

where the latter is determined by microgeometry of the porous space and elastic properties are 

controlled by the morphology of the solid phase. Berryman and Milton (1988) derived variational 

cross-property bound for such a case. Sevostianov and Shrestha (2010), using results of 

Sevostianova et al (2010), derived connections between fluid permeability of a porous material 

and electrical conductivity through the solid skeleton. They developed variational bounds and 

explicit closed-form connection between the two physical properties. Their results were 

numerically verified by Garsia and Sevostianov (2012)

In the present paper, we consider a porous material with electrically conductive skeleton. The 

pores are assumed to be filled with electrically conductive liquid. Diffusion of a substance of 

interests is possible in the liquid as well as in the skeleton. The paper focuses on the problem of 

the evaluation of the overall mass transfer coefficient of such a material from the electrical 

conductivity measurements. The derivation is based on the elimination of the microstructural 
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parameter – tortuosity of the porous space – that governs both the properties. Analytical derivations 

are compared with FEM calculations.

2. Tortuosity as a microstructural parameter in the context of mass transfer and 

electrical conductivity: the concept and the history of terminology.

The electrical and mass transport performances of any porous material are strongly dependent on 

their three-dimensional (3D) microstructures, which include the porosity, pore sizes and shapes 

and connectivity of the porous space. These microstructural parameters can be collectively 

described as the “tortuosity of the porous space” (see, for example, Chen et al, 2013). 

The term tortuosity, to the best of our knowledge, has been first introduced by Thomson and 

Tait (1879) in the context of curvature of a non-plane curve (see Sections 7- 9 of their book). 

Noting  the angle between the osculating planes at two points at a distance from one another  s

along the curve, they defined tortuosity  of a curve as a derivative 

(2.1)
ds
d

TT
 

(we use subscript “T-T” to identify definition of Thomson and Tait). In the beginning of XX 

century term tortuosity was adopted in medicine to describe (qualitatively) spatial curvature of 

blood vessels (see, for example Edington (1901) or Cairney (1924). Later, Carman (1939) 

suggested to use this term to describe curvilinear character of porous space in the context of 

hydraulic conductivity. Carman defined it as the ratio of the effective length ( ) of the fluid flow eL

path to the apparent length ( ) of a specimen:aL

(2.2)aeC LL

(subscript C stays for definition of Carman). 

Due to obvious uncertainty of this definition and difficulties associated with its practical 

implications, Wyllie and Rose (1950), Winsauer et al (1951), and Cornell and Katz (1953) 

suggested to use different kind of tortuosity  related to the resistivity factor  (sometimes this  F

factor is also called electrical formation factor or electrical retardation factor):

  , (2.3) effkkF 0
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where  is the bulk (effective) electrical conductivity of the porous material completely effk

saturated by electrolyte,  is the conductivity of the electrolyte, and  is the ratio of the apparent 0k 

cross-sectional area of the conducting electrolyte to the total cross-sectional area of the specimen. 

This ratio, however, varies from one cross-section to another and it is unclear, which value is 

appropriate – maximum, minimum, average or anything else (see Sevostianova et al, 2010).

Perkins et al (1956) suggested an experimental procedure to estimate tortuosity  and showed 

that, for completely saturated sandstone, the resistivity factor, tortuosity and porosity  are p

interrelated by   

, (2.4)effkkpF 02  

It means, in particular, that parameter  in (2.3), porosity, and tortuosity are interrelated by 

(2.5) p

Remark. An important consequence of the tortuosity definition according to (2.4) is its tensor 

character. Indeed, since electrical conductivity is a symmetric second rank tensor, it immediately 

follows from (2.4) that tortuosity is also a symmetric second rank tensor such that

(2.6)  pkk eff
jkijjkij

10 


For isotropic materials , and the tortuosity can be considered as a scalar.ijij  

Note, that definition of tortuosity via electrical conductivity does not clarify the 

micromechanical meaning of this parameter (it is still unclear, how it can be evaluated from, say, 

photomicrographs of a porous material), however, it allows one to easily obtain variational bounds 

for tortuosity using known results for conductivity. Namely, Hashin-Shtrikman bound for 

conductivity of a porous material is (Hashin and Shtrikman,1962)

. (2.7)20
1

3
2


p

Fk
k

p
p eff




It immediately yields the corresponding bound for tortuosity:

(2.8)
2

112 p


Similarly, Beran’s bound for conductivity has the following form (Beran 1965, 1968)

(2.9)
Fk

k
p

p eff 1
21

2
0 

 




5

This inequality involves the microstructural parameter  expressed in terms of three-point 

correlation function as follows:

(2.10) 
     







 
 

 dsdrdP
rs

,s,rS
pp

limlim  2

1

1

3
0 12

9

where  is the three-point spatial correlation function and  is Legendre  ,s,rS3     213 2
2  P

polynomial of order 2. Inequality (2.9) yields the corresponding relation for tortuosity:

(2.11)



2

112 p


Definition (2.3) was adopted (with slight modification) by Helmer et al (1995) to describe mass 

transfer in tumor:

(2.12)eff
H DD0

where  is the effective mass transfer coefficient  of the material and  is the mass transfer effD 0D

coefficient of the conducting phase (the second phase is assumed to be impenetrable). Namely 

definition (2.12) is presently used in the biomedical applications for analysis of the properties of 

tumor. This definition is slightly inconsistent with (2.4) -  in (2.12) is actually a retardation H

factor rather than tortuosity, as discussed by Clennell (1997).

Pride (1994) has shown that electrical tortuosity (2.3) is one of four fundamental properties 

of a porous medium that are measurable, and rigorously interrelated (the others are porosity, steady 

hydrodynamic permeability and the electrical length-scale lambda). This rigorous definition does 

not involve the concept of an effective path length (2.2). Steady-state tortuosity represents an 

average of transport through all available flow pathways. The details of pore structure are only 

resolved if we consider unsteady transport processes. 

Application of tortuosity concept to different phenomena has been discussed in detail by 

Clennell (1997). He pointed out that tortuosity means different things to different people. He 

distinguished between geometrical tortuosity (objective characteristic of the pore structure). The 

second class of tortuosity measures are 'retardation factors' extracted from the transport properties 

of the porous medium. Electrical tortuosity (2.3), and the diffusional tortuosity (2.12) are 

examples. Third, he considers tortuosity parameters that enter into some simplifications of a real 

pore space, such as a network model. Finally, he mentioned tortuosity as an adjustable parameter 

in empirical models. He pointed out that, different tortuosities can be compared if one converts the 
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transport to an overall flux, and compares the efficiency of the transport in the specimen with an 

idealized case that has maximum efficiency. Due to that, it is possible to prove that the electrical 

tortuosity (2.3) and diffusional tortuosity (2.12) are identical in the steady state, i.e.

(2.13)HF 

In the present work we use this result to establish explicit cross-property connection between 

the said properties. The existing results has been developed under assumption that one of the 

phases is electrically insulating (note that the definitions of (2.3) and (2.12) assume that one of the 

phases is conductive and one is insulating). The concept of the tortuosity is not strictly defined for 

the systems in which both the phases are electrically conductive and open for diffusion. To extend 

the concept of tortuosity to this case, we use the replacement relations approach recently developed 

by Chen et al. (2017a). 

3. Two phase material with conductive constituents: replacement relations for electrical 

conductivity.

In this section we extend the applicability of the tortuosity parameter to the case, when both the 

phases are electrically conductive and penetrable for diffusion. For this goal, we consider the 

problem of the change in overall electric properties of a material upon the changing properties of 

one of its phases (replacement relations) (see Figure 1). For elastic properties, this problem was 

first addressed by Gassmann (1951) who derived relation expressing bulk and shear moduli of 

fully saturated rock in terms of the elastic properties of dry rock. Further development of 

Gassmann’s equation was done in the works of Han and Batzle (2004) and Ciz and Shapiro (2007). 

Sevostianov and Kachanov (2007), formulated the replacement relations in terms of property 

contribution tensors. Their results are valid for anisotropic materials (including anisotropic 

constituents) and can be rewritten for other physical properties as well. For the thermal 

conductivity problem, replacement relations have been first formulated by Zimmerman (1989) for 

isotropic air and water saturated rock. It was generalized to the case of anisotropic two-phase 

material by Chen et al (2017 a) as: 

(3.1)    11
0

1
010






  rrrrrr inseff 
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where  is the volume fraction of phase “1”,  and  are electrical resistivities of two phases,  0r 1r

 is overall resistivity of the composite, and  is the resistivity of the comparison two phase effr insr

material that has the same morphology and , but . The replacement relation (3.1) has the 0r 1r

same form for any homogenization method (assuming that the properties of materials with 

insulating and conducting inhomogeneities are calculated with the same method, of course). 

In the case of the isotropic mixture of two isotropic phases, expression (3.1) can be rewritten 

in the form:

(3.2)
10

1

00 kk
k

kk
k

kk
k

ins

ins

eff

eff










where  is overall conductivity of the composite with both phases being conductive and having effk

conductivities  and  (Fig 2a), and  is the overall conductivity of the  comparison 0k 1k insk

composite having the same morphology with one phase of conductivity  and another phase 0k

being a perfect insulator. 

Similar replacement relation can be derived for the mass transfer (diffusion) coefficient as well. 

Indeed, following Knyazeva et al (2015), let us consider a reference volume  of a material with V

the isotropic diffusion coefficient  containing inhomogeneity with diffusion coefficient  0D 1D

occupying domain . We assume that both inhomogeneity and the surrounding material VV <<1

satisfies the linear Fick’s law connecting concentration gradient with the mass transfer rate (molar 

flux). The homogeneous boundary conditions (Hill, 1963) are assumed: the "remotely applied" 

concentration gradient, or molar flux, is uniform in the absence of the inhomogeneity. Let, for 

example the molar flux  be prescribed at the boundary of . Then, the average over 0J V

 concentration gradient  of the diffusant is related to  by10= VVV  c 0J

(3.3).= 0
1

0 JHI 



  DR

V V
VDc

where tensor  can be called the diffusion resistance contribution tensor. For a spheroidal DRH

inhomogeneity, in the absence of segregation at the interface,

(3.4)
 

     
  
















 nnnnIH
0011

10

0010

10

0 2
1

fDDD
DD

fDDD
DD

D
DR
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shape factor  is expressed in terms of the spheroid aspect ratio  as follows0f 

 (3.5) 
 12

1
2

2

0







 gf

with 

(3.6)  
 

 


























1shapeprolate,
1

1
ln

12

1

1shapeoblate,
1

arctan
1

1

2

2

2

2

2













g

We can rewrite expression (3.4) as 

(3.7)     nnnnIIH 000
01

011
1 21 ffD

DD
DDDR 






If phase 1 is impenetrable for a diffusant ( ),01 D

(3.8)     nnnnIH 000
1

21 ffDDR
imp 



Subtracting (3.8) from (3.7)

(3.9)   
1

00

011
1

11
















DDDD
DD

AA

ADR
imp

DR HH

In the case of the isotropic mixture of two isotropic phases, expression (3.9) yields the 

following replacement relation for diffusion coefficients (that has the same form as (3.2)):

(3.10)
10

1

00 DD
D

DD
D

DD
D

imp

imp

eff

eff










where  is effective mass transfer coefficient of the composite with both phases being effD

penetrable for diffusant and having coefficients  and  (Fig 1a), and  is the effective 0D 1D impD

diffusion coefficient of the composite having the same microstructure and , while the second 0D

phase is impenetrable for the diffusant (Fig 2b). Expression (3.10) completely coincides with (3.2). 

As discussed by Chen et al (2017 b), replacement relation have the same shape in all the 

homogenization schemes based on the concept of effective field – Mori-Tanaka-Benveniste, 

Kanaun-Levin, Maxwell, etc. 
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Note, that the replacement relations (3.2) and (3.10) are approximate - they turn to be exact 

only in the case when one of the phases is represented by isolated ellipsoidal inhomogeneities. 

This approximation, however, shows good accuracy for rather irregular microstructures, as shown 

by application of its more complex elastic analogy - Gassmann’s equation - in geophysics 

(Berryman, 1999; Avseth et al, 2006).

4. Connection between electric conductivity and diffusion coefficient.

In this Section we derive the connection between electric conductivity and diffusion coefficient of 

an isotropic two-phase material when both phases are electrically conductive and penetrable for a 

diffusant (to evaluate the overall diffusion coefficient from the electric conductivity 

measurements). For this goal we express both properties using replacement relations (3.2) and 

(3.10) and tortuosity parameter that is common for both the properties.

We start with equations (2.3) and (2.4) that express retardation factor for conductivity as

. Substitution of this expression into (3.2) yieldseffkkF 0

(4.1)
10

1

0

1
1

1
kk

k
Fkk

k

eff

eff







 

Thus the resistivity factor (retardation factor for conductivity)  is expressed in terms of effective F

conductivity of the composite  and conductivities of its two phases,  and  aseffk 0k 1k

(4.2)
  
   effeff

eff

kkkkkk
kkkk

F





0110

0101




In the same manner, combining (3.10) with (2.12), we can write for the effective mass transfer 

coefficient

(4.3)
10

1

0

1
1

1
DD

D
DD

D

Heff

eff







 

Taking into account (2.13), we can obtain, after some algebra, from (4.2) and (4.3)

(4.4)
 

   110

10
0 1 BDDDB

DDBD
DD A

eff 







where
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(4.5)
  
   effeff

eff

kkkkkk
kkkk

FB





0110

0101




Figure 2 illustrates behavior of function  for different values of  and .B effk 1k

Expressions (4.4) and (4.5) constitute the cross-property connection between overall diffusion 

coefficient and electrical conductivity of a two phase isotropic material where both the phases are 

electrically conductive and penetrable for a diffusant. Since this cross-property connection is based 

on approximate replacement relations (3.2) and (3.10), their accuracy must be verified. In the next 

section we do it using finite elements method.

5. Computer simulation. 

To verify expression (4.4), we model the material microstructure using interpenetrating spheres 

that are randomly located in a reference volume. We start with sphere packing in a unit cell (UC) 

following procedure described by Drach et al (2016). The main challenge is the surface re-meshing 

required to remove overlapping regions and achieve a consistent error-free surface mesh suitable 

for 3D meshing. It has been done using voxelization method described by Nooruddin and Turk 

(2003). The idea of the method is to create a regular array (corresponding to a 2D projection of the 

model) of parallel (voxel-size spaced) rays going through the 3D model and determine the 

intersection between rays and model polygons. The voxel representation of the model is then 

constructed based on the determined intersections. Once the voxelization is completed we can 

reconstruct the surface mesh. For this goal, we used Marching Cubes algorithm (Lorensen and 

Cline, 1987) implemented in Matlab function called “isosurface.m” that extracts a polygonal mesh 

of an isosurface from voxels (cuberille grid). In order to generate equal element size structure and 

produce smoothed model we utilize smoothing method (Taubin, 1995). The final structure is 

presented in the Figure 3a. The surface mesh was imported into commercial FEA software MSC 

Marc/Mentat for preparation of the model and subsequent analysis. The UC is auto meshed with 

non-linear tetrahedral 3D elements (see Figure 3b). In FEM analysis, we considered 

microstructures with volume fractions of phases varying from 30% to 70%. 

After generating the volume mesh material properties have been assigned to the phases. 

We used the ratio  and varied  from 2 to 10. Two types of boundary conditions 5.110 kk 01 DD

are considered to find non-zero components of the tensors of effective properties  and : effD effk
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uniform gradients of diffusant concentration and electric potential on the faces of the reference 

volume, respectively. The non-zero components of the effective mass transfer tensors are found 

from the set of three loading cases: concentration gradient along global coordinate axes , , 1x 2x

and . In the similar way effective conductivity tensors are found from the set of the following 3x

cases: electric potential gradient along , , and  coordinate axes.  Once the boundary 1x 2x 3x

conditions are prescribed, FEM simulations are performed, and the result files are processed using 

a custom Python script to determine  and  tensors utilizing Fick’s and Ohm’s laws effD effk

respectively and to analyze the possibility of cross-property connection between effective electric 

conductivity and mass transfer coefficient of a two phase material. Figure 3 illustrates comparison 

of effective diffusion coefficient obtained from FEA calculations and from cross-property 

connection (4.4) using FEA calculations for electrical conductivity. For reader’s convenience, we 

also give the results in the form of Table in the Appendix. It is seen that the even at  501 DD

(while ) the accuracy of the cross-property connection is better than 8% for the entire 5.110 kk

range of .

6. Discussion and conclusion.

We developed a cross-property connection between effective electric conductivity and diffusion 

coefficient of a two phase material with both phases being electrically conductive and penetrable 

for the mass transfer. The results are aligned with the general cross-property connections approach 

originally developed by Sevostianov and Kachanov, 2002 (see their review of 2009). It is based 

on the quantitative analysis of the microstructural factors governing different physical properties 

of materials. Electrical and mass transport properties of a material with interpenetrating phases are 

governed by phase tortuosities - parameter that was originally developed for the cases when only 

one of the phases is electrically conductive. We used the replacement relations for conductivity 

and mass transfer and extended the tortuosity concept for the case when both phases are conductive 

and penetrable. 

This work was inspired by needs in biomedical engineering related to quantification in the 

areas of cancer diagnostics and therapy. There is a number of qualitative and phenomenological 

results in this area – variation of dielectric properties due to cancer has been reported by Peyman 

et al (2015), correlation between conductivity and prognosis factor in invasive breast cancer has 
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been observed by Kim et al (2016), methods of image analysis for estimation of tortuosity 

parameters has been used by Baish et al (1996), Bullitt et al (2003, 2005, 2006). Most of the results, 

however, have descriptive rather than predictive power. The obtained cross-property connection 

challenges the existing paradigm and aim at changing the situation.

Another important implication of the obtained result is in the monitoring of the tumor therapy 

process. As pointed out by Bullit et al (2006), “effective monitoring of tumor therapy poses a major 

clinical problem. If a tumor previously sensitive to a drug later becomes resistant, the therapeutic 

regimen should be changed rapidly. Unfortunately, there is presently no reliable, noninvasive 

means of monitoring therapeutic efficacy”. Quantitative description of the improvement of vessel 

tortuosity abnormalities during the therapy is still the open question - the existing methods of the 

evaluation of tortuosity from photomicrographs or ultrasound, acoustic, or MRI images 

(Sevostianova et al 2010, Shelton et al, 2015; Rao et al, 2016) do not provide sufficient accuracy. 

Results obtained in the present paper allows one to solve this problem if the tortuosity is understood 

according to (2.12).
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Figure captions

Figure 1. Sketch of the two materials of the same morphology having insulating (a) and conductive 

(b) skeletons and filled with the same electrolyte.

Figure 2. Dependence of factor  entering cross-property connection (4.4) on the volume fraction B

of phase for different values of  and .effk 1k

Figure 3. Example of a two phase material with equal volume fraction : a) geometry; b) 3D  

meshed structure.

Figure 4. Effective mass transfer coefficients obtained by direct FEA calculations (symbols) and 

calculated from effective electric conductivities using cross-property connection (4.4) (lines). 

. Solid line and diamonds: ; dashed line and circles ; dot-3201 kk 201 DD 501 DD

dashed line and triangles: . 1001 DD



19

Appendix.

Table A1. Comparison of  calculated directly by FEM (Direct) with ones obtained using 0DDeff

cross-property connection (4.4) and calculated data for  ((4.4)). Error is given in %. effk

3201 kk

201 DD 501 DD 1001 DD

Direct (4.4) Error Direct (4.4) Error Direct (4.4) Error
0.290 1.243 1.232 0.875 1.737 1.765 -1.621 2.296 2.499 -8.843

0.294 1.247 1.235 0.946 1.758 1.772 -0.758 2.315 2.498 -7.911

0.294 1.248 1.236 0.946 1.760 1.773 -0.758 2.324 2.501 -7.637

0.346 1.293 1.281 0.916 1.899 1.911 -0.611 2.420 2.708 -11.890

0.350 1.298 1.285 1.038 1.930 1.918 0.629 2.558 2.704 -5.735

0.355 1.303 1.289 1.069 1.946 1.927 0.946 2.655 2.714 -2.226

0.389 1.335 1.319 1.220 2.079 2.018 2.897 2.844 2.853 -0.313

0.396 1.341 1.326 1.154 2.085 2.043 2.044 3.031 2.901 4.302

0.416 1.361 1.344 1.250 2.172 2.099 3.372 3.157 2.991 5.264

0.434 1.378 1.360 1.284 2.239 2.153 3.835 3.135 3.082 1.678

0.461 1.404 1.385 1.374 2.345 2.235 4.687 3.579 3.229 9.787

0.463 1.407 1.387 1.428 2.362 2.239 5.212 3.658 3.228 11.757

0.498 1.441 1.421 1.378 2.487 2.363 4.986 3.777 3.466 8.226

0.501 1.445 1.423 1.496 2.517 2.366 6.011 3.813 3.485 8.614

0.506 1.450 1.428 1.537 2.533 2.379 6.098 3.973 3.470 12.666

0.537 1.483 1.458 1.668 2.684 2.485 7.382 4.408 3.787 14.080

0.541 1.484 1.462 1.521 2.695 2.491 7.574 4.418 3.745 15.244

0.566 1.513 1.486 1.777 2.822 2.586 8.348 4.622 3.882 16.007

0.584 1.532 1.505 1.772 2.902 2.661 8.292 4.990 4.243 14.972

0.604 1.553 1.525 1.800 2.991 2.741 8.354 5.064 4.320 14.701

0.611 1.560 1.533 1.733 3.014 2.776 7.904 5.127 4.592 10.431

0.645 1.596 1.568 1.758 3.171 2.919 7.942 5.467 4.609 15.691

0.650 1.601 1.573 1.768 3.197 2.941 8.001 5.507 4.799 12.865

0.654 1.607 1.577 1.862 3.237 2.955 8.710 5.672 4.884 13.891

0.706 1.662 1.635 1.617 3.455 3.225 6.652 6.246 5.364 14.134

0.706 1.662 1.635 1.617 3.455 3.225 6.652 6.256 5.394 13.779

0.710 1.666 1.639 1.664 3.485 3.240 7.031 6.267 5.378 14.181
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