

Manlove, D. F. and O'Malley, G. (2005) Student-Project Allocation with Preferences

over Projects. In: Algorithms and Complexity in Durham 2005: Proceedings of the First

ACiD Workshop, Durham, UK, 08-10 Jul 2005, pp. 69-80. ISBN 9781904987109.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/150595/

Deposited on: 25 October 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/150595/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Student-Project Allocation with
Preferences over Projects

David F. Manlove∗,† and Gregg O’Malley∗

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {davidm,gregg}@dcs.gla.ac.uk.

Abstract

We study the problem of allocating students to projects, where both stu-
dents and lecturers have preferences over projects, and both projects and lec-
turers have capacities. In this context we seek a stable matching of students
to projects, which respects these preference and capacity constraints. Here,
the stability definition generalises the corresponding notion in the context of
the classical Hospitals / Residents problem. We show that stable matchings
can have different sizes, and the problem of finding a maximum cardinality
stable matching is NP-hard, though approximable within a factor of 2.

Keywords: Matching problem; Stable matching; NP-hardness; Approximation algorithm

1 Introduction

As part of the senior level of many undergraduate degree courses, students are
required to undertake some form of project work. Typically the available projects
are advertised to the students, and having browsed through the descriptions, each
student (either explicitly or implicitly) forms a preference list over the projects
that he/she finds acceptable. Lecturers may also have preferences over the students
and/or the projects that they offer. There may also be upper bounds on the number
of students that can be assigned to a particular project, and the number of students
that a given lecturer is willing to supervise.

We refer to the problem of assigning students to projects subject to these prefer-
ence lists and capacity constraints as the Student-Project Allocation problem (spa).
Given the large numbers of students that are typically involved in such applica-
tions, there is a growing interest in automating the process of allocating students
to projects using centralised matching schemes that incorporate efficient algorithms
for spa. Examples of such automated systems are in use at the Department of Com-
puter Science, University of York [4, 10, 14], the University of Southampton [3, 8]
and elsewhere [13].

∗Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01.
†Supported by Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship.

1

spa is a generalisation of the classical Hospitals / Residents problem (hr) [5, 6]
which has applications to the annual match of graduating medical students (or res-
idents) to their first hospital posts in a number of countries [12]. In the US, for
example, the National Resident Matching Program (NRMP) deals with the alloca-
tion of some 31,000 medical students annually. The NRMP utilises an algorithm
that essentially solves an extension of hr, forming a stable matching of residents to
hospitals, taking into account hospital capacities, and the preferences of residents
over hospitals and vice versa. Informally, a matching guarantees that no resident is
assigned to more than one hospital, and no hospital is assigned more residents than
its capacity, whilst the concept of stability ensures that no resident and hospital who
are not matched together would rather be assigned to each other than remain with
their current assignees. Such a pair could improve their situations by coming to a
private arrangement outside of the matching, undermining its integrity. It has been
convincingly argued [12] that, when preference lists exist on two sides of a market
(for example involving residents and hospitals, or students and lecturers), the key
property that a matching should satisfy is that of stability.

Stable matchings in the context of spa have been considered previously. In [1],
a model for spa was introduced in which students have preferences over projects,
whilst lecturers have preferences over students. A linear-time algorithm for finding
a stable matching of students to projects in this context was also described. This
algorithm finds the student-optimal stable matching, in which each student obtains
the best project that he/she could obtain in any stable matching. A second linear-
time algorithm [2] finds the lecturer-optimal stable matching, in which each lecturer
obtains the best (in a precise sense) set of students that he/she could obtain in any
stable matching.

In some cases, neither lecturers nor students find it desirable that lecturers should
form preference lists over students. For example, if such lists are derived largely on
the basis of academic merit, then students who have performed poorly in previous
examinations are less likely to be assigned to preferable projects if the projects
are popular, and could therefore struggle to improve their academic performance.
However, often it is the case that lecturers have tangible preferences over the projects
that they offer. For example, a lecturer may strongly prefer to supervise a particular
project if it is closely connected with his/her research. In this paper we consider the
variant of spa in which lecturers rank in strict order of preference the projects that
they offer. Under this condition, implicitly each lecturer is indifferent among those
students who find acceptable a given project that he/she offers.

Our contribution is as follows. In Section 2 we give a formal definition of the
variant of spa in which lecturers have preferences over projects, which we refer
to as spa-p, formulating an appropriate stability definition in this context. We
show that, in a given instance of spa-p, stable matchings can have different sizes.
In most practical situations we seek to allocate as many students to projects as
possible, and this motivates the problem of finding a maximum cardinality stable
matching (henceforth a maximum stable matching). In Section 3 we show that this
problem is NP-hard, even in the special case that each project and lecturer can
accommodate only one student. However in Section 4, we give an approximation
algorithm for the problem that admits a performance guarantee of 2. This algorithm
also demonstrates that every instance of spa-p admits at least one stable matching.

2

Student preferences Lecturer preferences
s1 : p1 p2 l1 : p1

s2 : p1 l2 : p2

Each project and lecturer has capacity 1

Figure 1: An instance I1 of spa-p.

Finally, Section 5 contains some concluding remarks.
We remark that spa-p is an example of a matching problem in which the members

of two sets of entities (namely the students and lecturers) each have preferences over
the members of a common third entity (namely the projects). As far as we are aware,
spa-p is the first matching problem of this type to be considered in the literature.
The previous formulations of spa to have been considered either do not permit
lecturer preferences [11, 13, 3, 8] (so stability is not relevant in these contexts) or
involve lecturer preferences over students [4, 10, 1, 14, 2].

2 Definition of spa-p

We begin by defining an instance of spa-p, the Student-Project Allocation problem
with preferences over Projects. An instance of spa-p involves a set S of students,
a set P of projects, and a set L of lecturers. Each lecturer lk ∈ L offers a set of
projects, denoted by Pk. We assume that P1, . . . , Pq partitions P , where q = |L|, so
that each project is offered by a unique lecturer. Also, each student si ∈ S has an
acceptable set of projects Ai ⊆ P. Moreover si ranks Ai in strict order of preference.
Similarly lk ranks Pk in strict order of preference. Finally, each project pj ∈ P and
lecturer lk ∈ L has an associated capacity, denoted by cj and dk respectively.

An example spa-p instance with S = {s1, s2}, P = {p1, p2} and L = {l1, l2},
where A1 = {p1, p2}, A2 = {p1}, P1 = {p1} and P2 = {p2}, is shown in Figure 1.

An assignment M is a subset of S×P such that (si, pj) ∈ M implies that pj ∈ Ai

(i.e. si finds pj acceptable). If (si, pj) ∈ M , we say that si is assigned to pj, and pj

is assigned si. For ease of exposition, if si is assigned to pj and lk is the lecturer
who offers pj, we may also say that si is assigned to lk, and lk is assigned si.

For any r ∈ S ∪ P ∪ L, we denote by M(r) the set of assignees of r in M .
If si ∈ S and M(si) = ∅, we say that si is unassigned, otherwise si is assigned.
Similarly, any project pj ∈ P is under-subscribed, full or over-subscribed according
as |M(pj)| is less than, equal to, or greater than cj, respectively. The same three
terms are defined for a lecturer lk ∈ L with respect to lk’s capacity dk. A project
pj ∈ P is said to be non-empty in M if |M(pj)| > 0.

A matching M is an assignment such that |M(si)| ≤ 1 for each si ∈ S, |M(pj)| ≤
cj for each pj ∈ P , and |M(lk)| ≤ dk for each lk ∈ L (i.e. each student is assigned to
at most one project, and no project or lecturer is over-subscribed). For notational
convenience, given a matching M and a student si ∈ S such that M(si) 6= ∅, where
there is no ambiguity the notation M(si) is also used to refer to the single member
of M(si).

3

A (student,project) pair (si, pj) ∈ (S × P)\M blocks a matching M , or is a
blocking pair of M , if the following conditions are satisfied:

1. pj ∈ Ai (i.e. si finds pj acceptable).

2. Either si is unassigned in M or si prefers pj to M(si).

3. pj is under-subscribed and either

(a) si ∈ M(lk) and lk prefers pj to M(si), or

(b) si /∈ M(lk) and lk is under-subscribed, or

(c) si /∈ M(lk) and lk is full and lk prefers pj to his worst non-empty project,

where lk is the lecturer who offers pj.

A matching is stable if it admits no blocking pair. We now give some intuition for
the definition of a blocking pair. Suppose that (si, pj) forms a blocking pair with
respect to matching M , and let lk be the lecturer who offers pj.

We assume that si prefers to be assigned to an acceptable project pj rather than
remain unassigned, so Condition 2 indicates how a student could improve relative to
M . We now consider Condition 3. If pj is already full, then lk would not improve by
rejecting a student assigned to pj and taking on si instead (recall that lk is indifferent
among those students who find pj acceptable). Thus pj must be under-subscribed.
Firstly suppose that si was already assigned to a project pr offered by lk. In this case
lk would only let si change projects from pr to pj if he prefers pj to pr – Condition
3(a). Secondly suppose that si was not already assigned to a project offered by lk.
If lk is under-subscribed then both pj and lk have a free place for si – Condition
3(b). Otherwise if lk is full and lk prefers pj to his worst non-empty project pr, then
lk could improve by rejecting a student from pr and taking on si to do pj instead –
Condition 3(c).

It turns out that, with respect to this definition, for a given instance of spa-p,
stable matchings could have different sizes, as the example instance I1 shown in Fig-
ure 1 illustrates. It may be verified that each of the matchings M1 = {(s1, p1)} and
M2 = {(s1, p2), (s2, p1)} is stable in I1. In practical situations, often a key priority
is to match as many students to acceptable projects as possible, so this naturally
leads one to consider the complexity of finding a maximum stable matching, given
a spa-p instance.

3 NP-hardness of finding a maximum stable

matching

Denote by max-spa-p the problem of finding a maximum stable matching, given
an instance of spa-p. In this section we show that max-spa-p is NP-hard. This
follows immediately from the NP-completeness of all-spa-p, which is the problem
of deciding, given an instance of spa-p, whether a stable matching exists in which
all students are assigned.

In order to show that all-spa-p is NP-complete, we use a reduction from a
problem relating to matchings in graphs. A matching M in a graph G is said to be

4

maximal if no proper superset of M is a matching in G. Define min-mm (respectively
exact-mm) to be the problem of deciding, given a graph G and integer K, whether
G admits a maximal matching of size at most (respectively exactly) K. min-mm
is NP-complete, even for subdivision graphs [9] (given a graph G, the subdivision
graph of G, denoted by S(G), is obtained by subdividing each edge {u, w} of G in
order to obtain two edges {u, v} and {v, w} of S(G), where v is a new vertex). We
now show that exact-mm is NP-complete for the same class of graphs.

Lemma 1. exact-mm is NP-complete, even for subdivision graphs.

Proof. Clearly exact-mm belongs to NP. To show NP-hardness, we reduce from
min-mm restricted to subdivision graphs, which is NP-complete as mentioned above.
Let G (a subdivision graph of some graph G′) and K (a positive integer) be an
instance of min-mm. Without loss of generality we may assume that K ≤ β(G),
where β(G) denotes the size of a maximum matching of G. Suppose that G admits
a maximal matching M , where |M | = k ≤ K. If k = K, we are done. Otherwise
suppose that k < K. We note that maximal matchings satisfy the interpolation
property [7] (i.e. G has a maximal matching of size j, for k ≤ j ≤ β(G)) and hence
G has a maximal matching of size K. The converse is clear.

We now use the NP-completeness of exact-mm to establish the same result for
all-spa-p.

Theorem 2. all-spa-p is NP-complete.

Proof. Clearly all-spa-p belongs to NP. To show NP-hardness, we transform from
exact-mm restricted to subdivision graphs, which is NP-complete by Lemma 1.
Hence let G (a subdivision graph of some graph G′) and K (a positive integer) be
an instance of exact-mm. Then G is a bipartite graph, so that G = (U,W,E), where
without loss of generality all vertices in U have degree 2. Suppose that n1 = |U |
and n2 = |W |. Again, without loss of generality assume that K ≤ min{n1, n2}. Let
U = {u1, u2, . . . , un1} and W = {w1, w2, . . . , wn2}. For each ui ∈ U , let wji

and wki

be the two neighbours of ui in G, where ji < ki.
We construct an instance I of all-spa-p as follows: let U ∪U ′ ∪ V be the set of

students, where U ′ = {u′1, u′2, . . . , u′n1
} and V = {v1, v2, . . . , vn2−K}; let P ∪Q∪R∪S

be the set of projects, where P = {p1, p2, . . . , pn2}, Q = {q1, q2, . . . , qn2}, R =
{r1, r2, . . . , rn1} and S = {s1, s2, . . . , sn1−K}; and let W∪X∪Y be the set of lecturers,
where X = {x1, x2, . . . , xn1}, and Y = {y1, y2, . . . , yn1−K}. Each project and lecturer
has capacity 1. The preference lists in I are shown in Figure 2. These preference
lists also indicate the acceptable projects for each student, and the projects offered
by each lecturer. In a given preference list, projects within square brackets are listed
in arbitrary strict order at the point where the symbol appears. We claim that G
has a maximal matching of size K if and only if I admits a stable matching in which
all students are assigned.

For, suppose that G has a maximal matching M , where |M | = K. We construct
a matching M ′ in I as follows. For each edge {ui, wj} in M , if j = ji, then we
add (ui, pji

) and (u′i, ri) to M ′. If j = ki, then we add (u′i, pki
) and (ui, ri) to M ′.

There remain n2 − K lecturers in W who are under-subscribed in M ′. Denote
these lecturers by wtj (1 ≤ j ≤ n2 − K). Add (vj, qtj) to M ′ (1 ≤ j ≤ n2 − K).

5

Student preferences:

ui : ri pji

pki
[S] (1 ≤ i ≤ n1)

u′i : ri pki
(1 ≤ i ≤ n1)

vi : [Q] (1 ≤ i ≤ n2 −K)

Lecturer preferences:

wj : pj qj (1 ≤ j ≤ n2)
xj : rj (1 ≤ j ≤ n1)
yj : sj (1 ≤ j ≤ n1 −K)

Figure 2: Preference lists for the constructed instance of all-spa-p.

Similarly there remain 2(n1 − K) students in U ∪ U ′ who are unassigned in M ′.
Denote these students by uzi

, u′zi
(1 ≤ i ≤ n1−K). Add (uzi

, si) and (u′zi
, rzi

) to M ′

(1 ≤ i ≤ n1 −K). Clearly M ′ is a matching in I in which all students are assigned.
No project in Q ∪ R ∪ S can be involved in a blocking pair of M ′, since each

member of W ∪ R ∪ S is full in M ′. Hence no student in U ′ ∪ V can be involved
in a blocking pair of M ′, since every student is assigned in M ′. Finally, no pair
(ui, pj) /∈ M ′ blocks M ′, where ui ∈ U and pj ∈ P . For if this occurs, then
(ui, sl) ∈ M ′ for some sl ∈ S, and pj is under-subscribed. Thus no edge of M is
incident to ui or wj in G. Hence M ∪ {{ui, wj}} is a matching in G, contradicting
the maximality of M . Thus M ′ is stable.

Conversely, suppose that M ′ is a stable matching in I in which all students are
assigned. For each rj ∈ R, it follows that rj is assigned either uj or u′j, for otherwise
(uj, rj) blocks M ′, a contradiction. Hence

M = {{ui, wj} ∈ E : (ui, pj) ∈ M ′ ∨ (u′i, pj) ∈ M ′}

is a matching in G. Now each student in V is assigned in M ′ to a project in Q, so
n2 −K projects in Q are full in M ′. Hence at most K projects in P are full in M ′,
since each lecturer in W has capacity 1. Now in M ′, at most n1 −K students in U
are assigned to projects in S. As already observed, exactly n1 students in U ∪U ′ are
assigned in M ′ to projects in R. Hence at least K students in U ∪ U ′ are assigned
in M ′ to projects in P , so that |M | = K.

Suppose that M is not maximal. Then there is some edge {ui, wj} in G such
that no edge of M is incident to ui or wj. Thus (u′i, ri) ∈ M ′, so that (ui, sl) ∈ M ′

for some sl ∈ S. Also either wj is under-subscribed, or (vk, qj) ∈ M ′ for some
vk ∈ V . Hence (ui, pj) blocks M ′, for pj is under-subscribed. This contradiction to
the stability of M ′ implies that M is indeed maximal.

The following corollary is an immediate consequence of Theorem 2.

Corollary 3. max-spa-p is NP-hard, even if each project and lecturer has capacity 1.

4 Approximation algorithm

The NP-hardness of max-spa-p naturally leads to the question of the approxima-
bility of this problem. In this section we present an approximation algorithm for
max-spa-p that has a performance guarantee of 2.

6

M = ∅;
while (some student si is unassigned and si has a non-empty list) {

pj = first project on si’s list;
lk = lecturer who offers pj ;
/* si applies to pj */
if (pj is full)

delete pj from si’s list;
else {

M = M ∪ {(si, pj)};
/* si is provisionally assigned to pj and to lk */
if (lk is over-subscribed) {

pz = lk’s worst non-empty project;
sr = some student in M(pz);
M = M\{(sr, pz)};
delete pz from sr’s list;

}
if (lk is full) {

pz = lk’s worst non-empty project;
for (each successor pt of pz on lk’s list)

for (each student sr who finds pt acceptable)
delete pt from sr’s list;

}
}

}

Figure 3: Approximation algorithm spa-p-approx for max-spa-p.

Consider the algorithm spa-p-approx, as shown in Figure 3, which is an extension
of the resident-oriented Gale/Shapley algorithm for the Hospitals/Residents problem
[6, Section 1.6.3]. Our algorithm involves a sequence of apply operations, in which
an unassigned student si with a non-empty list applies to the first project pj on his
list. If pj is full, then si is rejected, and must apply to the next project in his list, if
such a project exists. If pj is under-subscribed, then si is provisionally assigned to
pj. If, as a result of this assignment, lecturer lk becomes over-subscribed (where lk
offers pj), then lk rejects an arbitrary student sr from his worst non-empty project
pz, and pz is deleted from sr’s list. If lk is full (irrespective of whether lk was over-
subscribed earlier in the same loop iteration), we set pz to be lk’s worst non-empty
project. For each successor pt of pz on lk’s list, we delete pt from the preference list
of every student who finds pt acceptable.

We will show that algorithm spa-p-approx produces a stable matching at least
half the size of optimal. Firstly, using the following three lemmas, we prove that
the algorithm returns a stable matching.

Lemma 4. spa-p-approx returns a matching.

Proof. Clearly the while loop terminates. For, at the beginning of some loop iter-
ation, let si be a student who is free and has a non-empty list, and let pj be the
first project on si’s list. If si does not become provisionally assigned to pj during
the same loop iteration, then pj is removed from si’s list. Hence eventually, we are

7

guaranteed that each student is either assigned to some project or has an empty list.
Let M be the assignment relation upon termination of spa-p-approx. It is immedi-
ate that each student is assigned to at most one project in M , whilst no project or
lecturer is over-subscribed in M .

Lemma 5. Suppose that some project pt is deleted from a student sr’s list during
an execution of spa-p-approx. Then (sr, pt) cannot block a matching output by spa-
p-approx.

Proof. Let E be an execution of the algorithm during which pt is deleted from sr’s
list. By Lemma 4, let M be the matching output at the termination of E. Suppose
for a contradiction that (sr, pt) blocks M . We consider three cases.

Case 1: pt was deleted from sr’s list as a result of pt being full during E. Since
(sr, pt) blocks M , pt is under-subscribed in M . Hence pt changed from being full
during E to being under-subscribed, which can only occur as a result of some lecturer
lk being over-subscribed during E, where pt was lk’s worst non-empty project at that
point. Thus lk is full in M , and lk’s worst non-empty project is either pt or better.
Hence (sr, pt) does not block M in this case.

Case 2: pt was deleted from sr’s list as a result of lk being over-subscribed during
E. Then just before the deletion occurred, pt was lk’s worst non-empty project. Now
lk is full in M , and lk’s worst non-empty project is either pt or better. Hence (sr, pt)
does not block M in this case.

Case 3: pt was deleted from sr’s list as a result of lk being full during E. Then
lk is full in M , and lk prefers his/her worst non-empty project to pt. Hence (sr, pt)
does not block M in this case.

Lemma 6. spa-p-approx returns a stable matching.

Proof. Let E be an execution of the algorithm, and by Lemma 4, let M be the
matching output upon termination of E. Suppose that (si, pj) blocks M . By Lemma
5, pj is not deleted from si’s list during E. Hence si’s list is non-empty upon
termination of E. If si is unassigned in M then the while loop would not have
terminated, a contradiction. Hence si is assigned in M and prefers pj to pr = M(si).
But when si applied to pr, pr was the first project on si’s list, a contradiction. Hence
M is stable.

It follows by Lemma 6 that spa-p-approx is an approximation algorithm for max-
spa-p. Moreover a further consequence of this lemma is that every instance of spa-p
admits at least one stable matching. The next result shows that spa-p-approx has
a performance guarantee of 2.

Theorem 7. spa-p-approx is an approximation algorithm for max-spa-p with a
performance guarantee of 2.

Proof. Let I be an instance of spa-p and let M be a stable matching of maximum size
in I. By Lemma 6, let M ′ be a stable matching output by spa-p-approx as applied
to I, and suppose for a contradiction that |M ′| < |M |/2. Let X (respectively Y)
be those students who are assigned in M but not M ′ (respectively M ′ but not M),
and let Z be those students who are assigned in both M and M ′. Then

|X| = |M | − |Z| > 2|M ′| − |Z| = 2|Y |+ |Z| ≥ |M ′|. (1)

8

Student preferences Lecturer preferences
s2i−1 : p2i−1 p2i (1 ≤ i ≤ n) lj : p2j−1 p2j (1 ≤ j ≤ n)
s2i : p2i−1 (1 ≤ i ≤ n)

Each project has capacity 1
Each lecturer has capacity 2

Figure 4: An instance I2 of spa-p.

Now suppose that the students in X are collectively assigned in M to projects
P ′ = {p1, . . . , ps} offered by lecturers l1, . . . lt. Suppose that P ′

1, . . . , P
′
t is a partition

of P ′ such that lecturer lk (1 ≤ k ≤ t) offers the projects in P ′
k. Similarly let

S1, . . . , St be a partition of X such that each student in Sk is assigned in M to a
project in P ′

k (1 ≤ k ≤ t).
Now let k be given (1 ≤ k ≤ t) and let pj be any project in P ′

k. Then there is
some student si ∈ Sk who is assigned to pj in M but unassigned in M ′. Hence in
M ′, either (i) pj is full, or (ii) lk is full (or both), for otherwise (si, pj) blocks M ′. It
follows that, in M ′, either (a) all projects in P ′

k are full, or (b) lk is full (or both).
Hence

|M ′| ≥
t∑

k=1

min

dk,
∑

pj∈P ′
k

cj

 . (2)

Since no project or lecturer is over-subscribed in M , it follows that, for each k

(1 ≤ k ≤ t),
∑

pj∈P ′
k

cj ≥ |Sk| and dk ≥ |Sk|. Hence Inequality 2 implies that |M ′| ≥

t∑
k=1

|Sk| = |X|, which is a contradiction to Inequality 1. Thus |M ′| ≥ |M |/2 as

required.

To demonstrate that the analysis given in the proof of Theorem 7 is tight, it is
straightforward to construct an instance of spa-p such that the algorithm spa-p-
approx could produce a stable matching that is half the size of optimal. For, consider
the instance of spa-p shown in Figure 4, where S = {s1, . . . , s2n}, P = {p1, . . . , p2n}
and L = {l1, . . . , ln}. The matching M = {(s2i−1, p2i), (s2i, p2i−1) : 1 ≤ i ≤ n} is
the unique maximum stable matching, of size 2n. On the other hand, during an
execution of spa-p-approx, if the students apply to projects in increasing indicial
order, we obtain the stable matching M ′ = {(s2i−1, p2i−1) : 1 ≤ i ≤ n}, of size n.

5 Concluding remarks

In this paper we have considered a model for the Student-Project Allocation problem
(spa) in which both students and lecturers have preferences over projects. As noted
in Section 1, a spa model in which lecturers have preferences over students has also
been studied [1, 2]. It remains to investigate algorithmic issues for a more general
preference model for the lecturers, involving preferences over (student,project) pairs.
Some detailed initial observations regarding this case are made in [2].

9

For the spa-p model, involving lecturer preferences over projects, this paper
showed that the problem of finding a maximum stable matching is NP-hard, though
admits an approximation algorithm, spa-p-approx, with a performance guarantee of
2. In practice, spa-p-approx is likely to construct a stable matching whose size is
closer to optimal than a factor of 1

2
, nevertheless the question remains as to whether

there exists an approximation algorithm for max-spa-p that has a performance
guarantee less than 2.

Acknowledgement

We would like to thank Rob Irving and an anonymous referee for helpful comments
on previous drafts.

References

[1] D.J. Abraham, R.W. Irving, and D.F. Manlove. The Student-Project Alloca-
tion Problem. In Proceedings of ISAAC 2003: the 14th Annual International
Symposium on Algorithms and Computation, volume 2906 of Lecture Notes in
Computer Science, pages 474–484. Springer-Verlag, 2003.

[2] D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the
Student-Project allocation problem. Submitted to Journal of Discrete Algo-
rithms, 2004.

[3] A.A. Anwar and A.S. Bahaj. Student project allocation using integer program-
ming. IEEE Transactions on Education, 46(3):359–367, 2003.

[4] J. Dye. A constraint logic programming approach to the stable marriage prob-
lem and its application to student-project allocation. BSc Honours project
report, University of York, Department of Computer Science, 2001.

[5] D. Gale and L.S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

[6] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, 1989.

[7] F. Harary. Maximum versus minimum invariants for graphs. Journal of Graph
Theory, 7:275–284, 1983.

[8] P.R. Harper, V. de Senna, I.T. Vieira, and A.K. Shahani. A genetic algo-
rithm for the project assignment problem. Computers and Operations Research,
32:1255–1265, 2005.

[9] J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal
on Discrete Mathematics, 6:375–387, 1993.

[10] D. Kazakov. Co-ordination of student-project allocation. Manuscript, Univer-
sity of York, Department of Computer Science, 2002.

10

[11] L.G. Proll. A simple method of assigning projects to students. Operational
Research Quarterly, 23(2):195–201, 1972.

[12] A.E. Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. Journal of Political Economy, 92(6):991–1016,
1984.

[13] C.Y. Teo and D.J. Ho. A systematic approach to the implementation of final
year project in an electrical engineering undergraduate course. IEEE Transac-
tions on Education, 41(1):25–30, 1998.

[14] M. Thorn. A constraint programming approach to the student-project alloca-
tion problem. BSc Honours project report, University of York, Department of
Computer Science, 2003.

11

