Reduced-order aeroelastic models for dynamics of maneuvering flexible aircraft

Hesse, H. and Palacios, R. (2014) Reduced-order aeroelastic models for dynamics of maneuvering flexible aircraft. AIAA Journal, 52(8), pp. 1717-1732. (doi:10.2514/1.J052684)

Full text not currently available from Enlighten.

Abstract

This paper investigates the model reduction, using balanced realizations, of the unsteady aerodynamics of maneuvering flexible aircraft. The aeroelastic response of the vehicle, which may be subject to large wing deformations at trimmed flight, is captured by coupling a displacement-based flexible-body dynamics formulation with an aerodynamic model based on the unsteady vortex lattice method. Consistent linearization of the aeroelastic problem allows the projection of the structural degrees of freedom on a few vibration modes of the unconstrained vehicle but preserves all couplings between the rigid and elastic motions and permits the vehicle flight dynamics to have arbitrarily large angular velocities. The high-order aerodynamic system, which defines the mapping between the small number of generalized coordinates and unsteady aerodynamic loads, is then reduced using the balanced truncation method. Numerical studies on a representative high-altitude, long-endurance aircraft show a very substantial reduction in model size, by up to three orders of magnitude, that leads to model orders (and computational cost) similar to those in conventional frequency-based methods but with higher modeling fidelity to compute maneuver and gust loads. Closed-loop results for a cantilever wing finally demonstrate the application of this approach in the synthesis of a robust stability augmentation system.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Hesse, Dr Henrik
Authors: Hesse, H., and Palacios, R.
College/School:College of Science and Engineering > School of Engineering > Aerospace Sciences
Journal Name:AIAA Journal
Publisher:American Institute of Aeronautics and Astronautics, Inc.
ISSN:0001-1452
ISSN (Online):1533-385X
Published Online:21 March 2014

University Staff: Request a correction | Enlighten Editors: Update this record