RBR E3 ubiquitin ligases: new structures, new insights, new questions

Spratt, D. E., Walden, H. and Shaw, G. S. (2014) RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochemical Journal, 458(3), pp. 421-437. (doi: 10.1042/BJ20140006) (PMID:24576094) (PMCID:PMC3940038)

[img]
Preview
Text
149935.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. INTRODUCTION

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Walden, Professor Helen
Authors: Spratt, D. E., Walden, H., and Shaw, G. S.
College/School:College of Medical Veterinary and Life Sciences > Institute of Molecular Cell and Systems Biology
Journal Name:Biochemical Journal
Publisher:Portland Press Ltd.
ISSN:0264-6021
ISSN (Online):1470-8728
Published Online:28 February 2014
Copyright Holders:Copyright © 2014 The Authors
First Published:First published in Biochemical Journal 458(3):421-437
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record