
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/148710/

Deposited on: 10 October 2017
Validation of smartphone step count algorithm used in STARFISH smartphone application

Aleksandra Dybus PhD ¹, Lorna Paul PhD ², Sally Wyke PhD ³, Stephen Brewster PhD ⁴, Jason M.R. Gill PhD ⁵, Andrew Ramsay ⁴, Evan Campbell ¹*

¹ School of Medicine, University of Glasgow, UK
² School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK.
³ Institute of Health and Wellbeing, University of Glasgow, UK
⁴ School of Computing Science, University of Glasgow, UK
⁵ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK

* Corresponding Author: Evan Campbell, School of Medicine, University of Glasgow, Tel.: +44 0141 330 7154. Email: Evan.Campbell@glasgow.ac.uk
Abstract

BACKGROUND: Smartphone sensors are underutilised in rehabilitation.

OBJECTIVE: To validate the step count algorithm used in the STARFISH smartphone application.

METHODS: 22 healthy adults (8 male, 14 female) walked on a treadmill for 5 minutes at 0.44, 0.67, 0.90 and 1.33 m·s⁻¹. Each wore an activPAL™ and four Samsung Galaxy S3™ smartphones, with the STARFISH application running, in: 1) a belt carrycase, 2) a trouser or skirt pocket), 3a) a handbag on shoulder for females or 3b) shirt pocket for males and 4) an upper arm strap.

Step counts of the STARFISH application and the activPAL™ were compared at corresponding speeds and Bland-Altman statistics used to assess level of agreement (LOA).

RESULTS: The LOA between the STARFISH application and activPAL™ varied across the four speeds and positions, but improved as speed increased. The LOA ranged from 105–177% at 0.44 m·s⁻¹; 50–98% at 0.67 m·s⁻¹; 19–67% at 0.9 m·s⁻¹ and 8–53% at 1.33 m·s⁻¹. The best LOAs were at 1.33 m·s⁻¹ in the shirt pocket (8%) and upper arm strap (12%) positions.

CONCLUSIONS: Step counts measured by the STARFISH smartphone application are valid in most body positions especially at walking speeds of 0.9 m·s⁻¹ and above.

Key Words

Physical activity; step count; accelerometry; smartphone; walking
1. Introduction

Much of the world’s population remains physically inactive [1] despite numerous physical activity guidelines aimed at promoting physical activity for healthy living [2, 3]. Innovation to increase physical activity is urgently needed and furthermore interventions to increase physical activity require accurate measurement tools.

An accelerometer is an inertial sensor designed to measure physical acceleration along a single axis. Modern Micro Electro Mechanical Sensor (MEMS) accelerometers are widely available in tri-axial packages that can be as small as a few square millimetres, allowing them to be attached to, or embedded within, a wide variety of objects including modern smartphones. Thus mobile phone applications (apps) can use the data from the embedded accelerometers as input for a range of algorithms capable of tracking and storing measurements of the intensity, frequency, pattern and duration of different types of activity [4]. Individuals may carry their phones in a variety of places on their person or in a bag. The algorithms have become more complex to take into account this variation of position, as device placement and hence orientation can affect accuracy [4]. The most common places where phones are worn, or carried, are in a trouser pocket, in a hand bag, in a strap on the upper arm, in a shirt pocket and in a case worn on the hip [5]. There have been calls to utilise the sensors in this ubiquitous technology to aid rehabilitation [6] in the same way tri-axial accelerometers have embraced [7].

STARFISH, a smartphone based application, was designed by our group, as a behavioural change intervention to encourage the user to become more physically active by increasing their daily step count [8]. In STARFISH, which uses the metaphor of a fish tank displayed as the wallpaper on the home and lock screens, groups of four people, receive real time feedback on their own physical activity and that of each member of the group. STARFISH is
unique in that it does not require an external device like other apps, instead it uses the tri-axial accelerometer within the smartphone to record the user’s step count and uploads the data to the STARFISH server. It is also unique as this data is then relayed to the other members of the group so they can see each other’s progress in real time. Unlike other apps STARFISH is evidence based and has been used in two pilot trials with older people [8] and stroke survivors [9] and is currently being used in a randomised control trial in stroke survivors.

The step counting algorithm used in our app has several parameters that can be manipulated by the research team to adjust the step detection process allowing it to be fine-tuned to suit individual walking parameters such as a very asymmetric gait. In the development process healthy adults were used to set default parameters. The STARFISH app also uses the activity recognition framework in the Android Operating System which allows the app to stop recording data when the participant is not “on foot” and is moving by some other means such as driving.

At present, however, no validity data exist for the algorithm of this application. Therefore, the aim of this study was to evaluate the validity of the STARFISH app to measure steps taken by comparing it with the step count data from an activPAL™ device. The activPAL™ is valid in measuring step counts in both free living and laboratory conditions and is regarded as one of the gold standard devices in step count monitoring [10-12]. In addition, as device placement may affect the accuracy of the accelerometer within the phone, we sought to compare the validity of the step counts from the accelerometer whilst on different positions on the body.

2. Methods
A convenience sample of 22 healthy adults was recruited from friends and family of the research team; eight were male and 14 female, the mean age was 33.7 years (SD 7.1). After gaining written informed consent demographic information was obtained. An activPAL™ (PAL Technologies, Glasgow, Scotland) was then attached to the midline of the participant’s anterior thigh using a PALstickie (double-sided hypoallergenic hydrogel adhesive pad) and the participant was asked to wear/carry four Samsung Galaxy S3™ mobile phones with the STARFISH application running in the following positions: 1) on the hip in a standard mobile phone carry case attached to a belt, 2) in a pocket (trousers or skirt), 3a) in a mid-sized handbag on their shoulder for females or 3b) in a shirt pocket for males and 4) attached to the upper arm using a strap.

Participants then walked on the treadmill at four different speeds for 5 minutes at each speed. Each participant walked at the following speeds in order from slowest to fastest: 0.44, 0.67, 0.90 and 1.33 m·s⁻¹. These four speeds, range from slow to above average walking for those with long term neurological conditions [13-15]. Participants were informed every minute how much time was left and given a 30 second and 10 second warning before the end of each walking test. Participants were given a 2 minute rest between each speed, during which step count data from the STARFISH app was recorded. After the treadmill session the activPAL™ was removed and data downloaded using activPAL™ Process and Presentation version 7.2.32.

All treadmill sessions took place in the Human Performance Laboratory in the University of Glasgow. Ethical approval was given by the University of Glasgow’s College of Medical, Veterinary & Life Sciences Ethics Committee.

2.1 Statistical analysis
Bland Altman statistics were used to describe the Level Of Agreement (LOA) between the activPALTM step count and the step count of the STARFISH app with the smartphone in each position for each corresponding speed. These were the mean difference between the two measurements and the standard deviation (SD) of this difference and the upper and lower levels of agreement between the two measurements. LOA was expressed as a percentage of the mean activPALTM step count for the corresponding speed. All statistical analysis was carried out using IBM SPSS Statistics version 22 and statistical significance was set at \(p<0.05 \).

3. Results

The smallest mean differences in step count between the STARFISH app and the activPALTM were seen at higher walking speeds, especially 1.33 m\cdot s^{-1}. The LOA between the activPALTM and the STARFISH app step counts also improved as speed increased.

The mean difference between the step count recorded by the activPALTM and the STARFISH app was below 10\% at all positions and speeds apart from in the trouser pocket at 0.67 and 0.9 m\cdot s^{-1} and in the shirt pocket at 0.67 m\cdot s^{-1} (Table 1).

All smartphone positions produced a LOA that was greater than 100\% of the activPALTM mean step count at 0.44 m\cdot s^{-1}. Compared to this lowest speed the LOA improved at all positions at 0.67 m\cdot s^{-1} ranging from 50\% when the smartphone was in the case on the upper arm to 98\% in the case on the hip. The LOA continued to improve across all smartphone positions when the speed was 0.90 m\cdot s^{-1}. The LOA at this speed ranged from 19\% when the smartphone was in both the hand bag and shirt pocket positions to 67\% when the smartphone was in the trouser pocket. The best LOA for each smartphone position was seen at the
highest speed of 1.33 m·s⁻¹: 8% when the smartphone was in the shirt pocket, 12% in the case on the upper arm, 19% in the handbag, 23% in the case on the hip and 53% in the trouser pocket.

4. Discussion

The results show that the step count data derived from the accelerometer of the Samsung Galaxy S3™, when used by the STARFISH app had varying levels of agreement with the step count of the activPAL™ but generally improved with increasing walking speed. The mean difference between the two measurements was only over 10% when the smartphone was in the trouser pocket at 0.67 and 0.9 m·s⁻¹ and in the shirt pocket at 0.67 m·s⁻¹. The LOA between the activPAL™ and the STARFISH app step counts became stronger at higher walking speeds (0.9 m·s⁻¹ and above) and was weakest at the lower speeds; being greater than 100% at 0.44 m·s⁻¹ and ranging from 50-98% at 0.67 m·s⁻¹. These slower two speeds tested (0.44 and 0.67m·s⁻¹) are in the range of stroke survivors with limited community ambulation (0.4 – 0.8 m·s⁻¹) [14]. However the faster walking speeds of 0.9 and 1.33 m·s⁻¹ are comparable to the walking speed of those moderately impaired by Multiple Sclerosis (1.26m·s⁻¹, SD 0.23) or Parkinson’s (1.12 m·s⁻¹, SD 0.20) [13, 15].

This study used methods similar to previous activity monitor validation studies with participants walking at speeds of 0.45, 0.67, 0.90 and 1.33m·s⁻¹ [11, 16, 17]. The results of this study were similar to those validating other devices against accelerometers as agreement was stronger at speeds of 0.9 m·s⁻¹ and above [16, 17].

Previously positions in which the phones were not ‘attached’ to the body were found to be less accurate in the measurement of physical activity [4] however more recent evidence
suggests that carrying a phone in a handbag or pocket produces valid step count data [18]. Our results from the handbag position confirm this, even at the lower speeds. This is of relevance as a cross-sectional study found that in real living situations 60% of women carry their phone in their bag and 60% of men carry their phone in their pocket [5]. However, from our results, placement of the phone in the trouser pocket produced the largest mean difference and the largest LOA, especially at lower speeds which may be due to variances in trousers worn.

Consumer available physical activity monitors generally underestimate step counts [12] especially at lower speeds [19, 20] which is common in tri-axial accelerometers [21]. As smartphone step counting applications use the tri-axial accelerometer within the device the accuracy of these varies but also become worse at lower speeds [22]. Our results were in line with this as the LOA became stronger with the slightly faster speeds. As this is a validation trial the results found will be used to further increase the accuracy of the step count algorithm at slower speeds.

Low-cost step counting apps such as these could be implemented in routine clinical practice to increase physical activity in many population groups however it is critical that these apps are rigorously and systematically evaluated. Furthermore this, or a similar app, may in the future, be used to collect more accurate epidemiological physical activity data at scale and replace flawed self-report physical activity measures that are heavily relied upon in national reports such as the Scottish Health Survey in Scotland [23].

This study shows that the accelerometer data collected by the STARFISH app via the Samsung Galaxy S3™ accelerometer is valid in most body positions especially at walking speeds of 0.90 m·s⁻¹ and above. More work is required to increase the validity of measuring physical activity at lower speeds.
4. Acknowledgements

The authors would like to thank the participants. This study was funded by Chest Heart Stroke Scotland.
References

Table 1. Mean step counts and Bland Altman statistics for STARFISH step counts at different smartphone positions.

<table>
<thead>
<tr>
<th>Speed (ms⁻¹)</th>
<th>activPAL Step count (SD)</th>
<th>Trouser pocket Mean diff (SD) %</th>
<th>Case on hip Mean diff (SD) %</th>
<th>Hand bag</th>
<th>Shirt pocket Mean diff (SD) %</th>
<th>Case Upper arm Mean diff (SD) %</th>
<th>LLOA, ULOA (%)</th>
<th>LOA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>335 (90)</td>
<td>310 (170)</td>
<td>306 (98)</td>
<td>376 (122)</td>
<td>356 (57)</td>
<td>316 (133)</td>
<td>-81, 96</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7 (45)</td>
<td>-9 (34)</td>
<td>10 (31)</td>
<td>10 (27)</td>
<td>-6 (38)</td>
<td>-9, 75</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td>441 (43)</td>
<td>377 (103)</td>
<td>433 (118)</td>
<td>527 (71)</td>
<td>468 (52)</td>
<td>444 (50)</td>
<td>-29, 58</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15 (22)</td>
<td>-4 (25)</td>
<td>8 (15)</td>
<td>19 (15)</td>
<td>0 (13)</td>
<td>-11, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>527 (45)</td>
<td>467 (97)</td>
<td>521 (61)</td>
<td>549 (48)</td>
<td>513 (50)</td>
<td>506 (47)</td>
<td>-20, 47</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11 (14)</td>
<td>-1 (5)</td>
<td>-3 (4)</td>
<td>0 (4)</td>
<td>-4 (6)</td>
<td>-9, 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>609 (45)</td>
<td>576 (79)</td>
<td>605 (57)</td>
<td>633 (52)</td>
<td>600 (47)</td>
<td>607 (46)</td>
<td>-19, 34</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5 (10)</td>
<td>-1 (4)</td>
<td>3 (4)</td>
<td>0 (1)</td>
<td>0 (2)</td>
<td>-4, 4</td>
<td></td>
</tr>
</tbody>
</table>

Bland Altman statistics: the mean difference between the STARFISH step count and the activPAL™ step count and the upper and lower LOA at each position and speed.

Abbreviations: SD: standard deviation; diff: difference; ULOA: upper level of agreement; LLOA: lower level of agreement; LOA: level of agreement.