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Abstract—The high variability in traffic demands, the
advanced networking services at various layers (e.g., load-
balancers), and the steady penetration of SDN technology
and virtualization make the crucial network troubleshooting
tasks ever more challenging over multi-tenant environments.
Service degradation is first realized by the users and, as being
the only one having visibility to many relevant information
(e.g., connection details) required for accurate and timely
problem resolution, the infrastructure layer is often forced
upon continuous monitoring resulting in wasteful resource
management, not to mention the long time frames. In this paper,
we propose an End-host-Driven Troubleshooting architecture
(EDT), where users are able to share the application-specific
connection details with the infrastructure to accelerate the
identification of root causes of performance degradation, and to
avoid the need for always-on, resource-intensive, and network-
wide monitoring. Utilizing EDT, we provide some essential tools
for real end-to-end trace routing (PTR), identifying packet
losses, and carry out hop-by-hop latency measurements (HEL).
In contrast to existing proposals, PTR traces the practical
production traffic without the need of crafted probe packets by
means of careful tagging mechanisms and additional ephemeral
capturing flow rules. Besides involving negligible data plane
deterioration, in certain cases PTR can drastically reduce the
time needed to find a traversed path compared to existing
solutions. Finally, by means of individual network functions,
HEL measures the latency of each link along the found path
without involving the controller into the calculation, hence
resulting in significant reduction of control plane overhead.

Keywords—Network measurement, SDN, NFV, troubleshoot

I. INTRODUCTION

Modern enterprises heavily depend on the smooth oper-
ation of their infrastructures, therefore service availability
is paramount in not just maintaining existing customers,
but also winning over new ones in a highly competitive
market. Any level of service degradation reduces costumer
confidence and results in loss of revenue [1]. Thus, when
an issue arises, accurate and timely diagnosis and problem
resolution are crucial to reduce the possible negative effects
on business. However, troubleshooting tasks, especially lo-
calizing the faulty elements unambiguously, are becoming
more challenging due to the advanced networking services
in various layers (e.g., load-balancers, caches, accelerators),
and the continuously increasing number of traffic demands
of todays applications (e.g., processing and storage services
running in a data center (DC)). Furthermore, the increasingly
popular SDN paradigm with the inherent exposition of new

levels of abstraction just makes the whole process even
harder. Service degradation is first realized by the appli-
cation layer, and in many cases the users are the first to
alert the operator to a service outage [1]. Since all related
communication details (e.g., used TCP ports) required for
accurate and effective intervention are only available at the
application layer, initial inspections are usually conducted
by the end-hosts, however since they have no access or
even visibility to the underlying infrastructure, they can
only become aware of some aggregated measurements data
obtained by, for instance, ping or traceroute. Besides the
fact that these solutions are barely suitable for an SDN
network [2], the data they provide is neither sufficient to
spot the roots of the problem [3], nor does it reveal whether
the problem resides within their domain. In contrast, even
if the infrastructure does have the visibility and access
to some information, the timely realization of a possible
service degradation would require an always-on, resource-
intensive, and network-wide monitoring. However, if the
infrastructure was aware of “what-to-look-for-when”, instead
of “recognise-everything-at-anytime”, it would not just ease
and accelerate the identification of the root causes, it would
also involve much less resources due to the highly reduced
monitoring time frame.

In this paper, we make the first step towards this di-
rection by presenting an End-host-Driven Troubleshooting
(EDT) architecture. In EDT, when a service level degradation
occurs, a diagnosis is initiated by the end-hosts based on the
relevant application level information, but carried out by the
infrastructure using low-level tools. Utilizing our proposed
architecture, we provide some essential tools for real end-
to-end trace routing, identifying packet losses and carry out
hop-by-hop end-to-end latency (HEL) measurements in SDN
networks, all initiated by users. In contrast to existing trace
route proposals, our Practical Trace Route (PTR) application
not just requires no specially-crafted probe packets, but also
enables to locate packet loss at the same time. To this end,
PTR traces the practical production traffic by careful tagging
mechanisms and additional ephemeral capturing flow rules
that, as it will be shown, does only introduce negligible
data plane performance deterioration. Furthermore, in certain
cases, it can drastically reduce the time needed to find a
path compared to existing solutions. Finally, in order to
investigate which switching appliance contributed the most
to an increased latency, we built HEL on top of ping-based
network functions (NFs) deployed along the path calculated
by PTR. The idea behind HEL is that the small NFs can



Fig. 1: A hypothetical service provider’s network offering
cloud and access gateway services.

individually measure the latencies of the links between the
switches without involving the controller into the calculation,
hence resulting in significant reduction of control plane
overhead.

The rest of the paper is organized as follows: In Sec. II,
the proposed architecture and typical use cases are presented,
and in Sec. III we introduce HEL. In Sec. IV, we present our
practical trace route mechanism in detail, while in Sec. V, we
evaluate its impact on performance and the time it requires
to trace a path. Finally, in Sec. VI we conclude the paper.

II. PROPOSED ARCHITECTURE

A. Environment

Since EDT can be realized in any SDN network (here,
we concentrate on OpenFlow exclusively), we considered a
hypothetical service provider who offers an access gateway
that aggregates subscribers located behind customer end-
points to the Internet and provides cloud services running
in its private data center (see Fig. 1). In particular, the data
center consists of 4 racks (Rack 1, 2, 3, and 4, respectively)
and 2 spine switches (S1 and S2) that are connected to the
gateway. On the other hand, its gateway service consists
of, for brevity, one switch as the provider endpoint (PE)
supplying wired and wireless Internet access to User 1 and
User 2, respectively. To meet the desired quality of service,
e.g., minimize latency [4], forwarding inside the domain is
based on shortest paths [5] and managed by a centralized
controller. The solid red thick line between one of the servers
in Rack1 and the gateway marks a heavy load on that path
causing some congestion and delays.

B. Typical Operational Problems

Next, we sketch up three scenarios: first, assume that
Tenant A runs latency-sensitive e-commerce or banking
application [6], [7]. Such applications usually have several
distributed components (e.g., storage (S), front-end (F)) that

require low-latency communication paths to reduce applica-
tion response times. However, due to the high background
traffic going through one of the links in common with
the path Tenant A’s traffic traverses, Tenant A realizes that
retrieving the data (from Rack 3 at IP address 10.3.1.14)
necessary to provide to the users communicating with the
front-end (residing in Rack 1 at IP address 10.1.2.3) takes
more time than usual. Second, those overloaded links also
affect Tenant B’s securely accessible web service (available
at HTTPS port 443) locally found in Rack 4 at IP address
10.4.2.1. For brevity, we neglect to indicate its public IP
address translated at the gateway. Suppose that one of its
users (User 1, whose Internet access is also supplied by the
same provider) also suffers from the increased response time.
Last but not least, consider User 2 (a regular subscriber),
whose multiplayer online gaming experience is also degraded
by high latency, however his traffic completely avoids the
overloaded links meaning that the problem resides outside
the domain.

C. End-host-Driven Troubleshooting

EDT can be an extension to any SDN controller and
based on a REST API (denoted by EDT Module in Fig. 1)
it allows users to share application-specific information with
the infrastructure to help narrowing the problem space. Next,
we briefly walk through the whole process considering one
of the latency-related problems mentioned above. Since from
an operational point of view each of them is similar, we
concentrate here on Tenant A’s case. Nevertheless, note that
in Fig. 1 the arrow types and their colors correspond to one of
the scenarios, i.e., the requests and the related traffic flows
are marked by thin and thick, respectively, green dashed
arrows for Tenant A, orange solid arrows for Tenant B, and
dotted blue arrows for User 2, respectively. When Tenant A
experiences an increased latency between two applications,
she initiates a measurement by sharing the corresponding
communication details with the infrastructure in the granular-
ity of 5-tuples (src ip, src port, dst ip, dst port, eth type).
Consequently, the infrastructure traces down the path the
applications’ traffic traverse by PTR (see in Sec. IV), then
initiates a hop-by-hop latency measurement (see in Sec. III)
to find out which forwarding element contributes the most
to the delay. Once the measurement has been carried out the
service provider is able to investigate further the root cause.

D. Customisable Privacy

Note that the infrastructure can decide how much infor-
mation it sends back as responses to the users. In particular, it
might share the hop-by-hop latency with the tenants without
revealing the actual nodes along the paths; or in case of
User 2, the infrastructure can notify him to look for an
alternative multiplayer service to connect to, as his traffic
does not suffer high latency inside the domain. On the
other hand, a similar privacy strategy applies for the reverse
direction as well. For instance, in case of Tenant B, he is not
forced to share any further (application-) specific information
about his user or its data being sent through the encrypted
channel, hence preserving the users’ and his own privacy.



III. MEASURING LATENCY IN SDN

A. Related Work

NetFlow [8] and sFlow [9] collect flow data using their
agents deployed on the switches. Besides their differences
as the former mirrors all packets and restricted to IP, while
sFlow only samples a certain amount of packets and can
monitor all layers, they both require hardware modifications
for their agents. On the other hand, SLAM [10] and the
solution in [11] are based on specially crafted probe packets
inserted into the network at some point by the controller. The
aim of using probe packets is: i) put arbitrary information
into the payload (e.g., timestamp), and ii) according to
its header, install matching flow rules into the switches to
send them back to the controller for further processing.
The main disadvantages of these solutions are that they
require post-processing of several notification packets and
they need to consider the propagation and processing delays
of the corresponding switches w.r.t. their unequal distances
(in terms of latency) from the controller, not to mention their
actual processing loads. In [12], temporary flow rules are
installed into the switches to send all or a sample of the
production traffic to the controller to calculate the latency.
However, when there are a lot of flows in the network, it
consumes a large control plane bandwidth.

B. Hop-by-Hop End-to-End Latency (HEL)

In contrast to the above-mentioned solutions, our HEL
relies on simple ping modules as a measurement routine,
running on top of the switching devices as a lightweight
isolated network function. This approach has numerous
advantages: since the measuring packets (i.e., ICMP pack-
ets) are generated, timestamped, and received at the same
node, the controller per se is completely excluded from the
measurement process resulting in significant reduction of
control plane overhead. Thus, compared to a fully controller-
based measurement, the precise delay could be obtained
easily instead of taking into account other continuously
changing parameters (e.g., control channel latency, actual
load). Moreover, since ping packets could not just be sent
from-NF-to-NF, but from-NF-to-end-host, HEL can measure
the latencies of the first and last links as well without
requiring the users to run any specific application. Note that
from an applicability aspect, due to the evolution of SDN
switches, it is possible to run such a lightweight isolated NF
on many switching appliances (such as WhiteBox switches)
or even on top of a simple wireless router (OpenWRT).

IV. TRACING PATHS IN SDN

A. Related Work

A quintessential requirement of running HEL is clearly
the accurate identification of the traversed path. Since tra-
ditional applications, such as traceroute, are restricted to
IP and ICMP protocols, operators need to rely on more
sophisticated tools in an SDN domain. To this end, we are
given basically two main approaches. While generic flow
monitoring relying on packet sampling (e.g., [8]) is good
for coarse-grained visibility, it was shown that the accu-
racy it provides is insufficient for fine-grained metrics [13].

On the other hand, relying on probe packets is the most
desired method in SDN networks nowadays for numerous
purposes (e.g., latency measurements, observing data plane
behaviors, congestion, etc.), however as they are injected
only at a switch, this method cannot provide real end-to-
end (from source to destination) metrics since the controller
has no access to end-hosts. Furthermore, tracing down probe
packets usually involves heavy hop-by-hop notifications sent
to the controller typically realized by OpenFlow’s Packet-In
messages. The reason of using Packet-In messages for path
tracing originates at the state-less nature of the OpenFlow
protocol: even if a comprehensive view of the topology is
available at the controller, once a packet leaves the switch
nothing but statistics are persistent, i.e., other information
such as header fields that have not been considered during
forwarding decisions, or even the incoming port identifier
perish. Path tracing methods using some forms of such no-
tifications include Netsight [14] and its interactive debugger
ndb [15] that create “postcards” from each packet traversing
a switch and send them to the controller. SDN traceroute [2]
also sends “postcard-equivalents”, however in contrast to
Netsight, it does not modify the production flow rules.
PathletTracer [16] modifies the ToS fields of the IP packets,
and installs flow rules into the switches to imprint path IDs
on the packets going through. The authors of FlowTrace [17]
aimed at reducing the number of control plane – data plane
messages by introducing a passive flow table collecting
method wherein once the flow tables are gathered, a path
tracing algorithm simulates forwarding behavior of physical
switches to find flow paths.

B. Practical Trace Route (PTR)

In order to identify the traversed paths, we propose a
different method, called Practical Trace Route (PTR), which
in some sense lies in the middle of the above-mentioned two
main categories: it gathers statistics from the switches, but
at the same time in order to catch particular traffic flows,
it installs specific matching rules into the switches as well.
However, it does not inject any probe packet into the network
at all. In contrast, it temporarily tags the actual production
traffic with VLAN IDs, and installs corresponding temporary
matching flow rules to catch them. Our main aims with such
an intermediate solution are seven-fold: eliminate the hop-
by-hop notification messages between the control plane and
the data plane, since too many continuous control messages
can easily overload the controller and make the network
unusable [18]; keep the volume of the remaining necessary
control messages in a constant size to make the consumed
bandwidth predictable; rely entirely on OpenFlow without
the need to modify the hardware appliances or access the
hosts; carefully manage the expensive space of TCAMs by
making the additional flow rules ephemeral by means of
OpenFlow’s hard_timeout parameter; do not modify the
production flow rules nor the original production traffic, but
use the latter instead of tinkering probe packets.

Next, we show its operation in detail. Assume that ac-
cording to the shortest paths, the desired forwarding rules are
already installed into the switches. In order to enable more
sophisticated and scalable processing, the pipeline consists



of multiple tables [19], i.e., each flow table has its own
purpose such as ARP and routing. Note that multi-table
pipeline is supported since OpenFlow version 1.1. In the
following, we concentrate again on the case of Tenant A
(recall, related traffic flows are denoted with green dashed
arrows in Fig. 1). First, consider the initial flow tables of
S1 denoted by the Original pipeline of S1 in Fig. 2b. For
brevity, it consists of two tables: the first table (table 5

(ARP)) is intended to filter ARP messages, while the other
table (table 100 (IP)) embodies a Layer-3 routing to
forward the corresponding packets towards the different
racks where the destinations reside. Furthermore, since from
T 1 to T 3 there exist two shortest paths, the controller has
simply installed an ECMP rule into the flow table for load
balancing reasons (see the forwarding rules of T 1, similarly
denoted by the group Original pipeline of T1 in Fig. 2a).
However, due to the unpredictable output of ECMP’s hashing
function, the controller cannot know in advance in which
direction any given packet will be sent.

(a) Extended pipeline of “tagging” and “untagging” switch T1

(b) Extended pipeline of “counting” switch S1

Fig. 2: Example pipelines and their extensions in PTR.

1) Phase - Capturing packets: After the request of
Tenant A has been received, the controller needs to trace
down the path between the source and the destination (from
the front-end (F) to the storage (S) in Fig. 1). According to
the shortest paths, it first identifies the edge switches, i.e.,
the switches that are closest to the source and destination,
which are T 1 and T 3. Then, based on the connection details
available at the application layer, i.e., the 5-tuple, it installs
temporary “tagging” and “untagging” rules into T 1 and T 3,

respectively. Consider table 0 in the extended pipeline of T 1
depicted in Fig. 2a: the first high priority rule matches on the
5-tuple and pushes VLAN ID X onto all packets (“tagging”),
then the practical forwarding is done by the original flow
rules (indicated by the goto_table:5 action). For the
reverse direction, the original pipeline of T 3 is extended in
a similar way by tagging the packets with a different VLAN
ID Y . Consequently, a low priority rule is also installed in
T 1’s (T 3’s) flow table that matches on the VLAN ID Y (X),
which is being stripped (“untagging”) before continuing the
processing in the original pipeline. In order to forward the
rest of traffic as usual, a final low priority match-all rule is
also installed in T 1’s and T 3’s table 0, respectively.

Next, the controller installs temporary high priority
“counting” rules matching on the corresponding VLAN IDs
into the rest of the switches along the shortest paths (see
Fig. 2b as an example). Observe that these rules leave
the packets completely untouched and commit their further
processing to the original pipeline immediately. The reason
of having this extra step in the pipeline is to provide states
at the switches by increasing the counters of that specific
rules, which is used in the path reconstruction phase (see
later) and helps identifying possible packet losses. Note that
the two different priorities make it possible that any switch
in the network can act the part of counting, tagging, and
untagging role1. Phase 1 is summarized in Alg. 1, where
SP (S,D) is the set of shortest paths between S and D.

Algorithm 1 Capture packets

1: t← (5− tuple)
2: k ← get unused V LAN(t)
3: S ← first edge switch(t)
4: D ← last edge switch(t)
5: install tagging rule(S, t, k)
6: install untagging rule(D, t, k)
7: for path in SP (S,D) do
8: for switch in path do
9: install counting rule(switch, k)

10: end for
11: end for

2) Phase - Path Reconstruction: In this phase, the con-
troller gathers statistics from the tagging, untagging, and
counting switches. In particular, it reads the corresponding
flow rules’ packet counter fields by means of OpenFlow’s
FlowStats-Request and Reply messages. In contrast
to generic flow monitoring approaches, only a subset of
switches are concerned, thus the number of control messages
is limited. In the a FlowStat-Request message, the con-
troller can indicate the table of interest, and can also specify
a filter for a certain flow rule. This has two main benefits: in
contrast to using Packet-In and Packet-Out messages
(e.g., in [2]), where the number of bytes included in the
messages depends on the original packet’s header2 (a simple

1Otherwise, for instance, in a counting switch intended to be a tagging
one as well the match-all rule and the tagging rule would interfere.

2If a packet is not buffered either because of no available buffers or
because explicitly requested, the entire packet needs to be included in the
message.



Layer-3 packet encapsulated in a Packet-In message is 168
bytes on the wire, while a corresponding Packet-Out is 106
bytes), the amount of data sent as FlowStats messages
is always constant (Request message occupies 130 bytes,
while the response is 154 bytes on the wire). This makes the
amount of traffic needed for the control plane – data plane
communication more predictable. On the other hand, note
that since the “counting” rules are in a separate flow table,
the overall time to find and gather the relevant information
is only affected by the number of capture rules.

Algorithm 2 Reconstruct paths

1: F ← list()
2: for switch in SP (S,D) do
3: stat← request f lowstat(switch,

table id = 1,
vlan id = k)

4: if stat.packet counter 6= 0 then
5: F.append(switch)
6: end if
7: end for
8: PATH ← list();PATH.append(S)
9: while F 6= ∅ do

10: X = PATH.last element()
11: PATH,F = find next node(X,F, PATH)
12: end while
13: PATH.append(D)
14: function find next node(X, F, PATH)
15: NX,D ← get next hops(X,D)
16: B =intersect(NX,D, F )
17: PATH.append(B)
18: F.remove(B)
19: return PATH, F
20: end function

The methodology of Phase 2 is defined in Alg. 2: first, we
gather flow statistics from the concerned switches (lines 2-
3), then we filter out those, with a packet counter of 0 and
store the remainder in variable F (lines 4-6). For brevity,
we omitted the lines that identify packet loss, which is
only a simple comparison of the concerned switches’ packet
counters. As the first edge switch is S, we store it as the
first hop in variable PATH (line 8). In lines 14-19, we
recursively look for the intersection of the set of next-hops
of the already reconstructed path’s last element X (refreshed
in each iteration in line 10) and the switches in F . Once a
switch (B) is found as an intersection (line 16), it will be
removed from F and added to PATH (line 17-18). This
process is repeated until F 6= ∅ (line 9-12).

One might observe that the Achilles-heel of the algorithm
can be line 16: what if there is more than one node in
the intersection B? In particular, consider a simple network
topology depicted in Fig. 3. Under the assumption that
the path to find is one between S and D, and we only
know that A and B have encountered the packets, we
would not be able to determine whether the actual path
was (S → A → B → D) or (S → B → A → D).
Next, we show that if forwarding is based on the shortest
paths, we are always able to determine the actual traversed

S

A

B

D

Fig. 3: A sample network topology to ease the understanding
of Proof IV-B2.

path unambiguously. In particular, we theoretically show
that if the above-ambiguity arises at all, then forwarding is
definitely based on non-shortest paths. Then, accordingly we
prove that based on shortest paths, the traversed path could
always be reconstructed from F , i.e., Alg. 2 always finds
the traversed path. In the following, G(V,E) always denotes
an arbitrary network graph with non-negative arbitrary link
costs, where V and E mark the set of nodes, and the
set of links, respectively. Furthermore, SPS,D denotes the
set of shortest paths, APS,D is the set of all paths, while
PPS,D marks the possible paths3 (i.e., routes) determined by
the controller between a source-destination pair S,D ∈ V .
Before digging into details, we recap a common graph
theoretical property.

Proposition 1: In G(V,E), the sum of the lengths of two
shortest paths is always less than the sum of lengths of any
other two paths. In other words, if e, f ∈ SPS,D, and g, h ∈
APS,D \ SPS,D ⇒ e + f < g + h.

Theorem 1: In G(V,E), let F ∈ V be the unordered
set of switches that encountered a packet between a given
source-destination pair (S,D ∈ V ). Now, if two arbitrary
paths i, j ∈ PPS,D, with i 6= j traverse each node in F but
no other nodes, then PPS,D 6= SPS,D, i.e., i, j /∈ SPS,D.

Proof: Indirect: Suppose that F = {S,A,B,D} (for
an easier comprehension, consider the network in Fig. 3).
Let the two different paths i, j ∈ PPS,D be i = (S → A→
B → D), and j = (S → B → A → D), respectively. In
contrast to our statement, let us assume that i, j ∈ SPS,D.

Suppose that the length S → A = x1, S → B = x2,
A → B = x3, A → D = x4, and B → D =
x5, respectively. Furthermore, let g, h ∈ APS,D be g =
{S,A,D}, and h = {S,B,D}, respectively. Now, according
to Prop. 1 SUM(i, j) < SUM(g, h), where SUM(x, y)
denotes the sum of the lengths of paths x and y. However,
SUM(i, j) = (x1 + x3 + x5) + (x2 + x3 + x4), while
SUM(g, h) = (x1 + x4) + (x2 + x5), which obviously
cannot be true as SUM(i, j) = SUM(g, h) + 2x3. Thus,
i, j 6∈ SPS,D.

Theorem 2: In an given G(V,E), where PPS,D =
SPS,D, the proposed algorithm in Alg. 2 can always recon-
struct the traversed path from the unordered set of nodes F
that encountered a tagged packet.

Proof: Let X,Y ∈ V and NX,Y be the set of next-hops
of X towards Y . Furthermore, let B = NX,Y ∩F . Next, we
show that for each Z ∈ NX,Y : |B| = 1. First, observe that
|B| > 0 for each Z ∈ NX,Y , since there has been at least one

3Note that in our architecture for each X, Y ∈ V : SPX,Y = PPX,Y .



path that the tagged packet traversed from X to Y . Second,
we show that |B| cannot be more than 1. In contrast to this,
assume that for a given Z , |B| = k, where k > 1. This
would imply the following consequences: the possible next-
hops of X towards Y can be any of the k nodes, although
the tagged packet traversed all of them on its way towards
Y . However, this is a contradiction since it would mean that
a next-hop W ∈ NX,Y was not reached directly from X ,
i.e., W /∈ NX,Y . Thus, |B| = k if and only if k = 1.

V. EVALUATION

In this section, we evaluate the proposed EDT archi-
tecture. First, we concentrate on PTR, in particular, we
examine its practical properties. In contrast to other proposals
(e.g., [2], [14]), we not just study the time necessary for
tracing down a certain path, but we also assess to what extent
the data plane throughput of the production traffic is affected.
Then, we discuss the possible time frame HEL needs.

A. Implementation and Testbed Setup

From the control plane aspect, we implemented EDT in
python as an extension to Ryu4 SDN controller. From the
data plane point of view, the architecture and its operation
was first evaluated in a Mininet environment with OVS
(Open vSwitch [20]) switches. Then, in order to study the
data plane performance in a more realistic environment, we
used a testbed consisting two IBM x3550 M5 servers with
Intel Xeon E5-2620v3 processors and 64GB of memory
running Debian Linux Jessie 8.0/kernel 3.16. Each server
was equipped with an Intel X710 NIC with two 10G ports.
In our experiment, one of the servers was configured to
run NFPA [21] (an Intel DPDK pktgen based performance
analyzer) connected back to back with the System-Under-
Test (SUT). The SUT was provisioned on the other IBM
server, running the latest stable version of OVS (Open
vSwitch v2.5.1), compiled with DPDK v16.04 using 1 CPU
core. As a specific use case, the SUT was configured to act
as a Layer-3 router, having more than 100 production rules
installed in its flow table5.

B. Measurements

First, we examine how the performance is affected at
a single switch performing counting, tagging, or untagging
role, respectively. Then, we investigate the overall time
needed to trace down a path as a function of the number
of switches along the shortest paths. Relying on NFPA, we
put the SUT under a heavy traffic load (using 64-byte sized
packets) and first, we examined its nominated throughput
as a baseline value. According to the available resources
the testbed has and the installed pipeline, OVS attained
an average throughput of 4.6 million packets per seconds
[Mpps]. Then, in accordance with the used traffic trace, the
controller was requested to consecutively trace all possible
paths, i.e., install capture rules into the flow tables for all
possible 5-tuples. The results as a function of the number
of traced paths (i.e., the number of additional rules) are
depicted in Fig. 4. The performance of a switch set up for

4https://github.com/cslev/nmaas
5See https://goo.gl/cHknii for more details about the use case.
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Fig. 4: Influence on data plane performance and path tracing
time

counting, tagging, and untagging a specific traffic flow is
denoted by a black solid line, red dashed line, and blue
dotted line, respectively. One can observe that counting has
the least effect on performance as it only involves committing
a certain amount of traffic to an additional table. On the other
hand, the performance deterioration becomes slightly worse
when packets have to be tagged/untagged. In particular,
pushing a VLAN tag onto the packets has lesser influence
on the performance than stripping it. Nevertheless, compared
to the baseline throughput, the overall performance is barely
affected (ca. 4%) for a handful of coexisting path tracing
rules, and even tracing 100 paths at the same time, introduces
only ca. 11% performance drop. Recall that the additional
flow rules PTR ushers in are ephemeral meaning that it only
affects the performance for a limited time frame.

Next, we turn to the latency of tracing a path. According
to Alg. 2, the controller needs to gather statistics from all
counting switches along all possible shortest paths (and from
the edge switches in order to observe any packet loss).
Obviously, the time needed to gather all data heavily depends
on the number of switches being considered. Furthermore,
even if the number of production flow rules does not have
any impact, the number of coexisting paths to be traced does
(recall Sec. IV-B2). We configured the SUT in a similar way
as before, however now we instantiated i = {1, 2, . . . , 100}
number of new switch instances chained together, and in
each case we requested the controller to consecutively install
j = {1, 2, . . . , 100} number of different path tracing flow
rules into each switch’s flow table. We measured the elapsed
time between the time the controller initiated the gathering
and when all data have been collected. We ran these experi-
ments 100 times, and the averages of the measured results are
plotted in Fig. 4b. We found that, on average, i contributed
the most to the overall time, while j introduced negligible
impact (see error-bars). One can observe that when only 20
switches are concerned, a path can be traced in 10 ms, and
this number increases to only 40 ms when the controller
needs to gather data from 100 switches. Note, however, that
the number of concerned switches does not correlate with
the number of hops, i.e., in a scarcer ISP network with an
average of 2 − 3 shortest paths, PTR can trace more than
30-hops long paths in less than 40 ms (compared to SDN
traceroute [2] that introduces approx. 2 ms for each hop).
Although, in a denser data center topology, for instance in a
Clos (Leaf-Spine) topology, where each path is 2 hops long,
the time needed to trace a path is a linear function of the
number of Spine switches.



As mentioned in Sec. III, once the tracing is done, HEL
deploys the ping NFs along the path and installs temporary
flow rules to direct ICMP packets properly. Note that these
NFs run in parallel, and the time one NF needs to conduct
a measurement only depends on the desired demands. In
our implementation, we set the number of packets to 3, and
the time-interval to the lowest possible 200 ms meaning
that the practical measurement can be conducted in 600 ms
irrespectively of the number of hops. Note that relying
on more sophisticated NFs instead of ping modules might
further reduce the measurement period. On the other hand,
we believe that the advantages HEL provides (e.g., precision,
reduced control plane overhead) can easily overcome its
incidentally higher time frame. Furthermore, the desired way
these results are sent back to the controller is also up to the
network operator. For instance, it could be done via REST
API, or even through Packet-In messages. According to the
results, the operator can further investigate the root causes
of a delay, and decide how much information can be sent
back to the users.

VI. CONCLUSION

Modern enterprises heavily depend on their infrastruc-
tures’ smooth operation. Any level of service degradation
is often realized by loss of reputation and revenue. There-
fore, when an issue arises accurate problem resolutions are
essential in every network to reduce the negative effects
on business. However, troubleshooting tasks are becoming
more challenging due to the continuously increasing traffic
demands of today’s applications. Moreover, the advanced
network services (e.g., load-balancers, caches, accelerators)
hide many details between layers. The increasingly popular
SDN paradigm and the inherent freedom of defining arbitrary
routing policies just make the whole process even harder.

In this paper, we designed EDT in order to accelerate
the identification of the root causes of a failure. In EDT the
measurements carried out by the infrastructure are driven
by the end-hosts providing necessary application level in-
formation. We have therefore two troubleshooting tools: we
designed PTR for tracing path and identifying packet losses
at the same time and HEL, a NF-based hop-by-hop latency
measurement tool. Our PTR is completely novel in its kind
as it uses the production traffic to trace a flow by temporarily
tagging its packets, capturing them with ephemeral flow
rules and gathering statistics. We proved that PTR always
finds the traversed paths, when the forwarding is based on
shortest paths. Furthermore, we showed that for the limited
time frame the path tracing lasts, the overall data plane
performance is slightly affected (ca. 10%), and tracing a path
up to 30 hops long can be done in less than 40 ms. Finally,
relying on PTR we outlined a possible setup for HEL, which
due to its NF-based approach can be further customized to
meet certain goals (e.g., time frame, precision).
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