
This the final accepted version of this article, available under a Creative Commons License: https://creativecommons.org/licenses/by-nc-nd/4.0/.

The published version is available: https://doi.org/10.1016/j.jenvrad.2017.07.016

http://eprints.gla.ac.uk/146083/

Deposited on: 24 August 2017
Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation

Ekaterina M. Dutova¹, Aleksei N. Nikitenkov², Vitaly D. Pokrovskiy³, David Banks⁴,⁵, Bjørn S. Frengstad⁶ and Valerii P. Parnachev⁷

¹,²,³ Tomsk Polytechnic University, Prospekt Lenina 30, 634050 Tomsk, Russia
⁴ School of Engineering, James Watt Building (South), University of Glasgow, Glasgow, G12 8QQ, United Kingdom
⁵ Holymoor Consultancy Ltd., 360 Ashgate Road, Chesterfield, S40 4BW, United Kingdom
⁶ Department of Geoscience and Petroleum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
⁷ Department of Dynamic Geology, Faculty of Geology and Geography, Tomsk State University, Prospekt Lenina 36, 634050 Tomsk, Russia.

E-mail: ¹dutova@sibmail.com, ²corestone@mail.ru, ³pokrovskiy.v@gmail.com, ⁴,⁵david.banks@glasgow.ac.uk, ⁶bsfrengstad@yahoo.no, ⁷dingeo@ggf.tsu.ru
Abstract. Generic hydrochemical modelling of a granitoid-groundwater system, using the Russian software “HydroGeo”, has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10°C, equilibrated with a soil gas partial CO₂ pressure (P_CO₂, open system) of 10⁻².₅ atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M – regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550 – 1000 mg L⁻¹. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L⁻¹ (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO₃ hydrofacies). The secondary minerals are typically “black” uranium oxides of mixed oxidation state (e.g. U₃O₇ and U₄O₉). For rock U content of 5 to 50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L⁻¹, but with typical concentrations of up to 10 µg L⁻¹ for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P_CO₂ (low P_CO₂ favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals).

Keywords: Natural uranium, groundwater, mineralisation, ore, solubility, hydrochemical modelling
Highlights:

- The computer model “HydroGeo” has been credibly applied to dissolution of uranium from silicate rocks.
- Uranium solubility in shallow groundwaters is limited by precipitation of mixed hexavalent-tetravalent uranium oxides.
- As redox potential and host-rock uranium concentrations increase, aqueous uranium concentrations also generally increase.
- Aqueous U concentrations of up to 10 µg L\(^{-1}\) are typical for shallow granite groundwaters, with up to 1 mg L\(^{-1}\) being simulated in the most evolved waters.
- Field studies of uranium in groundwater in Norway and Southern Siberia broadly support the modelling findings.
1. Introduction

The occurrence of natural uranium in surface- and groundwaters has obvious importance for human health and drinking water policy (Reimann & Banks 2004, WHO 2012, Frengstad & Banks 2014); moreover, it has implications for ore formation and prospecting. The mechanisms of uranium accumulation in the aqueous phase and its behaviour in natural waters are topics that have occupied many scientists (Lisitsin 1971, Grenthe et al. 1992, Kislyakov & Shchetochkin 2000, Barnett et al. 2000, Runde 2000, Bain et al. 2001, Kondratyeva & Nesterova 2002, Barsukov & Borisov 2003, Krainov et al. 2004, Shvartsev et al. 2007, Dutova & Nikitenkov 2010, Frengstad & Banks 2008, 2014, Ariunbileg 2016). It is broadly recognised that, while uranium forms a variety of uranium (+VI) oxy-ions and complex ions that permit its accumulation and mobilisation in relatively high concentrations in oxidising aqueous environments, its behaviour is redox-sensitive. The mobility of uranium in reducing environments can be severely limited, at least at circum-neutral pH, by the formation of reduced (uranium (+IV)) secondary minerals. This is also the reason why primary uranium deposits tend to be formed in redox-front (e.g. “roll-front”) environment (such uranium deposits formed by precipitation from aqueous solution are typically termed “hydrogene” in Russian terminology). Although laboratory and field studies have allowed a generally good understanding of the occurrence and behaviour of aqueous uranium, some uncertainties remain. Does uranium (+VI) reach concentrations which represent an “equilibrium” with a given mineral assemblage? To what extent can it continue to accumulate in the aqueous phase before reaching a mineral saturation “ceiling”? Do observed high concentrations (e.g. in the mg L\(^{-1}\) range: Frengstad et al. 2000, Frengstad & Banks 2014) represent some form of supersaturated state, with mineral precipitation limited only by kinetic constraints?

This paper represents a continuation of the research carried out by the Tomsk research team (Bukaty et al. 2010, Dutova & Nikitenkov 2010) and focuses on the behaviour of uranium in oxidising conditions in the zone of shallow groundwater circulation (often referred to in Russian literature as the “hypergene” zone). Such conditions are, of course, widely encountered by hydrogeologists and geochemists, not least in the context of uranium toxicity in potable groundwater (Frengstad & Banks 2014). In a Russian context, we consider especially groundwater discharge areas adjacent to the folded, metamorphic and igneous cores of orogenic belts - regarded as being favourable for the accumulation of hydrogene uranium deposits.
Modelling uranium in groundwaters (Kondratyeva et al. 1980). The methods used for the physico-chemical modelling of uranium in this paper have been selected to best reflect the natural conditions, pH and redox ranges encountered in Russian field studies (Lisitsin 1996, Barsukov & Borisov 2003, Bukaty 2005a, Shvartsev et al. 2007, Bukaty et al. 2010, Chudnenko 2010).

2. Software and Methods

2.1 The HydroGeo Code

The software package “HydroGeo”, developed by M.B. Bukaty, has been selected as the preferred modelling tool for the study of uranium hydrochemistry reported here (Bukaty 2002, 2005a, 2005b, 2008). HydroGeo, like many other similar models developed in western Europe or the USA (such as MINTEQA or PHREEQC; Allison et al. 1991, Parkhurst & Appelo 1999), models the thermodynamic processes of dissolution and precipitation, solving for minimisation of free energy. Like other models, it relies upon a comprehensive database of thermodynamic data for minerals and reactions. Unlike the standard versions of some other modelling tools, however, it does have access to databases which include data on the thermodynamic properties of uranium minerals and species, culled from various sources including cprons92, SUPCRT (Helgeson et al. 1978, Johnson et al. 1992, Arthur 2001, Anderson 2009), UNITHERM (Shvarov & Bastrakov 1999, Cleverley & Bastrakov 2005), Berman (1988), and the NAGRA NTB report series.

For readers unfamiliar with this type of hydrogeochemical modelling, such models essentially start with a set of initial components (mineral assemblage, water and CO₂). These components are allowed to react with each other by solving a large set of simultaneous equations, each equation representing the thermodynamic equilibrium between two (or occasionally more) species. Constraints can be imposed on certain reactions (kinetic constraints, or specification of which minerals are allowed to precipitate when they become supersaturated), but the model ultimately seeks the solution to the large set of simultaneous equations within these constraints. The model keeps internal account of all dissolved species (such as protons, dissolved CO₂, redox-sensitive species or uranyl species, such as UO₂OH⁺), such that pH, Eh, total dissolved solutes (mineralisation) or total dissolved uranium can be calculated at any stage of the simulated hydrochemical evolution. The detail of such modelling is beyond the scope of this
paper, but the interested reader is referred to Kharaka et al. (1988), Allison et al. (1991),
Parkhurst & Appelo (1999), Ball & Nordström (2001), Alekseev et al. (2005) and Bukaty

The HydroGeo model has been extensively tested against comparable international models,
including the HMV model (Harvie et al. 1984, Bukaty 2005b). The use of the software
HydroGeo for solving various problems has demonstrated earlier by Shvartzev & Dutova
(2001), Dutova et al. (2006), Gaskova et al. (2009), Dutova & Nikitenkov (2010), Dutova et
al. (2016) and Balobanenko et al. (2016).

2.2. Defining the Modelled Problem

In this study, the model considered the interaction of groundwater with granitoids under
conditions characteristic of the zone of shallow groundwater circulation (temperature = 10°C,
pressure = 1 MPa, equivalent to 100 m hydraulic head or 10 bars). The uranium content of the
rocks, assumed to be present within the primary mineral phases, was set at between 5 ppm and
500 ppm. The environment was simulated as mildly oxidising, with an initial Eh of between
+5 to +100 mV (although the Eh was allowed to vary as the reaction progresses). The model
assumes a system which is open with respect to CO₂, equilibrated with various putative soil
gas partial pressures (P_{CO₂} = 10^{-0.5}, 10^{-1.5}, 10^{-2.5} atm.). Henceforth in this paper, the term “partial
pressure” will refer to the (soil) gas-phase partial pressure with which the water is equilibrated.
This situation is believed to be characteristic for groundwater drainage from granitoid-
containing hydrogeological massifs. Naturally, the higher the P_{CO₂}, the lower the initial water
pH.

The composition of the simulated granitoid mineral assemblage was broadly based on the
composition of granitoids that are common in mountainous areas of southwestern Siberia
(Western and Eastern Sayan mountains, Kuznetsk Alatau, Altai, Salair and the Kolyvan’-
Tomsk folded zone - Babin et al. 2007, Banks et al. 2008, 2011, Korobeinikov et al. 1983,
Voroshilov et al. 2014). These are predominantly Cambro-Ordovician granitoids intruded into
a Precambrian-Cambrian suite of metavolcanics and metasediments. Specifically, the
modelling assumed an assemblage comprising 60% plagioclase (An_{30}Ab_{70}), 23% quartz, 5%
hornblende, 7% biotite and 5% potassium feldspar. Calcite is initially assumed to be absent.
The parent mineral assemblage is indicated in Table 1. The uranium was introduced in the model in its hexavalent form as a substitute for Ca and Al proportionately in the matrices of all of the aluminosilicate mineral phases (except quartz) listed in Table 1. Accordingly, uranium is released to the water phase as the minerals are hydrolysed.

The rate of dissolution / hydrolysis of the various mineral phases is calculated on the basis of initial reaction / dissolution rate constants, relative to a reference reaction. As reaction products accumulate in the aqueous phase and equilibrium is approached, the net rates of reaction decrease according to the relevant rate laws. Precipitation, once saturation has been achieved with respect to the secondary minerals, is assumed to be instantaneous. Sorption is not explicitly included in these simulations.
Table 1. Parent mineral phases included in the model

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>% volume of the rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pargasite (hornblende)</td>
<td>Na(Ca)₂(Fe^{II})₄Al₃Si₆O₂₂(OH)₂</td>
<td>5</td>
</tr>
<tr>
<td>Pargasite (hornblende)</td>
<td>Na(Ca)₂Mg₄Al₃Si₆O₂₂(OH)₂</td>
<td></td>
</tr>
<tr>
<td>Albite</td>
<td>Na(Al)Si₃O₈</td>
<td>42</td>
</tr>
<tr>
<td>Anorthite</td>
<td>(Ca)Al₂Si₂O₈</td>
<td>18</td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO₂</td>
<td>23</td>
</tr>
<tr>
<td>Potassium feldspar</td>
<td>K(Al)Si₃O₈</td>
<td>5</td>
</tr>
<tr>
<td>(K-Fe^{II}) biotite</td>
<td>K(Fe^{II})₃(Al)Si₃O₁₀(OH)₂</td>
<td>7</td>
</tr>
<tr>
<td>(Na-Fe^{II}) biotite</td>
<td>Na(Fe^{II})₃(Al)Si₃O₁₀(OH)₂</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. A listing of the secondary minerals considered in the modelling of the groundwater-granitoid geochemical system.

<table>
<thead>
<tr>
<th>Mineral no.</th>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Calcite</td>
<td>CaCO₃</td>
</tr>
<tr>
<td>2</td>
<td>Aragonite</td>
<td>CaCO₃</td>
</tr>
<tr>
<td>3</td>
<td>Dolomite</td>
<td>CaMg(CO₃)₂</td>
</tr>
<tr>
<td>4</td>
<td>Siderite</td>
<td>Fe^{II}CO₃</td>
</tr>
<tr>
<td>Oxides / hydroxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Goethite</td>
<td>Fe^{III}OOH</td>
</tr>
<tr>
<td>6</td>
<td>Hematite</td>
<td>Fe^{III}O₃</td>
</tr>
<tr>
<td>7</td>
<td>Gibbsite</td>
<td>Al(OH)₃</td>
</tr>
<tr>
<td>Silicates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Amorphous silica</td>
<td>SiO₂</td>
</tr>
<tr>
<td>9</td>
<td>Chalcedony</td>
<td>SiO₂</td>
</tr>
<tr>
<td>10</td>
<td>Mg-serpentine (chrysotile)</td>
<td>Mg₆Si₄O₁₀(OH)₈</td>
</tr>
<tr>
<td>Aluminosilicates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Kaolinite</td>
<td>Al₂Si₂O₅(OH)₄</td>
</tr>
<tr>
<td>12</td>
<td>Ca-Montmorillonite</td>
<td>Ca₀.₁₅Al₁.₉Si₀.₁₀O₁₀(OH)₂</td>
</tr>
<tr>
<td>13</td>
<td>K-Montmorillonite</td>
<td>K₀.₃Al₁.₉Si₀.₁₀O₁₀(OH)₂</td>
</tr>
<tr>
<td>14</td>
<td>Mg-Montmorillonite</td>
<td>MgAl₂Si₄O₁₁(OH)₂</td>
</tr>
<tr>
<td>15</td>
<td>K-Fe^{III} illite</td>
<td>K₀.₅(Fe^{III})Al₁.₅Si₃.₅O₁₀(OH)₂</td>
</tr>
<tr>
<td>16</td>
<td>Muscovite</td>
<td>KAl₁Si₃O₁₀(OH)₂</td>
</tr>
<tr>
<td>17</td>
<td>Mg-beidellite</td>
<td>Mg₀.₁₆₅Al₂.₃₃Si₃.₆₇O₁₀(OH)₂</td>
</tr>
<tr>
<td>18</td>
<td>Mg-chlorite</td>
<td>Mg₄.₅Al₁.₃Si₂.₅O₁₀(OH)₈</td>
</tr>
<tr>
<td>Uranium minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Amorphous UO₂</td>
<td>UO₂</td>
</tr>
<tr>
<td>20</td>
<td>Uraninite</td>
<td>UO₂</td>
</tr>
<tr>
<td>21</td>
<td>Schoepite</td>
<td>UO₂(HOH)₂₂(H₂O)</td>
</tr>
<tr>
<td>22</td>
<td>Rutherfordine</td>
<td>UO₂CO₃</td>
</tr>
<tr>
<td>23</td>
<td>(UO₂)(UO₂)₂ (“black” oxide) alpha</td>
<td>α-U₃O₇</td>
</tr>
<tr>
<td>24</td>
<td>(UO₂)₂(UO₂) (“black” oxide)</td>
<td>U₃O₈</td>
</tr>
<tr>
<td>25</td>
<td>(UO₂)(UO₂)₂ (“black” oxide) beta</td>
<td>β-U₃O₇</td>
</tr>
<tr>
<td>26</td>
<td>(UO₂)(UO₂)₃ (“black” oxide)</td>
<td>U₄O₆</td>
</tr>
<tr>
<td>27</td>
<td>α-(UO₂)O</td>
<td>UO₃</td>
</tr>
<tr>
<td>28</td>
<td>β-UO₂</td>
<td>UO₃</td>
</tr>
<tr>
<td>29</td>
<td>γ-UO₃</td>
<td>UO₃</td>
</tr>
<tr>
<td>30</td>
<td>β-schoepite</td>
<td>UO₂(HOH)₂₂(H₂O)</td>
</tr>
<tr>
<td>31</td>
<td>Soddyite</td>
<td>(UO₂)₂SiO₄(H₂O)₂</td>
</tr>
<tr>
<td>32</td>
<td>Amorphous coffinite</td>
<td>USiO₄</td>
</tr>
<tr>
<td>33</td>
<td>Coffinite</td>
<td>USiO₄</td>
</tr>
</tbody>
</table>

The modelling of the aqueous phase considered redox potential and the following main ionic components (and their aqueous complex ions): H⁺ / OH⁻, Na⁺, K⁺, Ca²⁺, Mg²⁺, Fe²⁺ / Fe³⁺, Al³⁺, SO₄²⁻, Cl⁻. The following uranium species were also considered within the model: (UO₂)²⁺, U⁴⁺, (UO₂HCO₃)⁺, UO₂(HCO₃)₂, UO₂CO₃, (UO₂(CO₃)₂)²⁻, (UO₂(CO₃)₃)⁴⁺, (UO₂(CO₃)₃)⁶⁺,
Modelling uranium in groundwaters

173 \((\text{UO}_2\text{CO}_3\text{(OH)}_3)^+, (\text{U(CO}_3)_4)^4+, (\text{U(CO}_3)_5)^6, \text{UO}_2\text{SO}_4, (\text{UO}_2\text{(SO}_4)_2)^2-, \text{UO}_2\text{HSO}_4^2, \\
174 (\text{UO}_2\text{HSO}_4)^+, (\text{USO}_4)^2+, \text{U(SO}_4)_2, \text{UO}_2\text{Cl}^+, (\text{UCl})^3+, (\text{UCl}_2)^2+, (\text{UO}_2)^+, (\text{UOH})^3+, (\text{U(OH)}_2)^2+, \\
175 \text{U(OH)}_4, (\text{U(OH)}_3)^+, (\text{UO}_2\text{H}_3\text{(OH)}_4)^2+, (\text{UO}_2\text{(OH)}_4)^2-, (\text{UO}_2\text{(OH)}_3)^-, ((\text{UO}_2)_2\text{(OH)})^3+, \\
176 ((\text{UO}_2)_3\text{(OH)}_7)^-, ((\text{UO}_2)_3\text{(OH)}_5)^+, ((\text{UO}_2)_2\text{(OH)}_2)^2+, \text{UO}_2\text{OH}_2, \text{UO}_2\text{OH}^+, ((\text{UO}_2)_4\text{(OH)_7})^+, \\
177 \text{UO}_2\text{OH}, (\text{HUO}_3)^+, (\text{HUO}_4)^-, (\text{UO}_4)^2-, (\text{UOH})^2+, (\text{UO}_3)^-, (\text{HUO}_2)^+. \)

178

The modelling also considered 33 secondary solid phase minerals, of which 15 were uranium-containing (Table 2). Metal-uranyl complexes (e.g. Ca-uranyl complexes, which can be important in defining the aqueous behaviour of uranium; Dong & Brooks 2006, Stewart 2008, Lietsch et al. 2014) were not explicitly included in the simulations, both for reasons of simplicity and because the cationic composition of the system may be rather lithology-dependent.

179

The evolved water composition was, at each step of the modelling process, reacted with the rock mineral assemblage derived from the previous step of modelling. The results are presented as a series of graphs, showing the evolution of the composition of the aqueous and solid phase with each step of the modelling process. The correspondence of the modelling results to real world hydrogeochemistry was “reality-checked” by comparison with real secondary mineralogical assemblages, absolute concentrations of parameters in groundwaters and ratios of elements in groundwaters (Shvartsev & Dutova 2001, Dutova et al. 2006).

3. Results

3.1 Modelling results: baseline case

Figures 1 to 4 show the evolution of the composition of the aqueous phase and the secondary mineral assemblage, focussing on the distribution of uranium at 10°C, total pressure of 1 MPa, a soil gas carbon dioxide partial pressure (P_{CO_2}, with which the water is equilibrated) of 10\(^{2.5}\) atmospheres and an initial Eh of +50 mV. In each case, the initial rock uranium content was 5 ppm. The degree of hydrochemical evolution is indicated by plotting against total water mineralisation (i.e. total dissolved solids) in the range 0 to 1500 mg L\(^{-1}\) on the y-axis.
The modelled evolution of the water is characterised, at all stages, by a progressive rise in pH from mildly acidic (containing dissolved CO$_2$) to mildly alkaline (Figure 1). The greatest changes in the chemical composition of the water are related to the removal of certain elements by precipitation within secondary mineral phases. Especially marked are the changes in concentration of calcium and magnesium in solution, related to the formation of carbonate (and other) minerals.

Figure 1. The evolution of the pH of the aqueous phase simulated in the groundwater-granitoid system, as a function of total mineralization (temperature = 10°С, P_{tot} = 1 MPa, P_{CO2} = 10$^{-2.5}$ atm., Eh = +50 mV, initial uranium content in rocks = 5 ppm)

This behaviour contrasts with that of sodium which, lacking significant insoluble secondary mineral phases, continues to accumulate in the water throughout the evolution of the simulation (Figure 2). In the early stages of modelled evolution, a calcium-sodium bicarbonate type of water is formed. At a total mineralisation (M) of around 550 mg L$^{-1}$, the soluble calcium content is depleted due to carbonate (calcite) precipitation and the continued accumulation of sodium leads to sodium-(calcium)-bicarbonate waters, as also observed by Banks & Frengstad (2006) and Frengstad & Banks (2007). The final phase of the simulated evolution of the system occurs at a mineralisation of around 900 mg L$^{-1}$, when magnesium begins to be removed from solution.
Figure 2. The evolution of the cationic composition of the aqueous phase simulated in the groundwater-granitoid system, as a function of total water mineralisation (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm., Eh = +50 mV, initial uranium content in rocks = 5 ppm).

Figure 3. The evolution of the major ion composition of the aqueous phase simulated in the groundwater-granitoid system, as a function of total water mineralisation (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm., Eh = +50 mV, initial uranium content in rocks = 5 ppm). Ions are shown as the ionic equivalent percentage of the total cations or anions, respectively, in solution.
All changes in the chemistry of the aqueous phase are reflected in corresponding changes in the secondary (solid phase) mineral assemblage. Thus, the depletion of calcium in the aqueous phase at $M = 550 \text{ mg L}^{-1}$ is related to the precipitation of calcite (Figure 4). The greatest intensity of secondary carbonate precipitation occurs in the interval $M = 550-650 \text{ mg L}^{-1}$, preceding the formation of a sodium-bicarbonate type groundwater. As the groundwater becomes dominated by sodium as the major cation, the intensity of calcium depletion decreases dramatically. Similarly, at $M = 900 \text{ mg L}^{-1}$, the depletion of magnesium from the aqueous phase corresponds to the progressive accumulation of secondary magnesium minerals (Figure 2) such as montmorillonite, Mg-illite and dolomite. At early stages of evolution montmorillonite is the dominant secondary Mg mineral, although as sodic water becomes dominant, magnesium is primarily removed from solution as dolomite.

Figure 4. The mass fraction distribution of secondary minerals (as a proportion of the total mass of secondary minerals), as a function of total groundwater mineralisation in the simulated groundwater-granitoid system (temperature = 10°C, $P_{\text{tot}} = 1 \text{ MPa}$, $P_{\text{CO}_2} = 10^{-2.5} \text{ atm.}$, $E_{\text{h}} = +50 \text{ mV}$, initial uranium content in rocks = 5 ppm).

The accumulation of dissolved uranium in the groundwater of the simulated water-granitoid system is quite complex (Figure 5). The rate of accumulation of uranium, as a function of mineralisation ($\Delta U/\Delta M$, in μg per 100 mg mineralisation M) abruptly increases from 0.2 μg per 100 mg in the range $M = 0$ to 550 mg L$^{-1}$ (the domain of calcium-sodium-bicarbonate...
waters), to up to 37 µg per 100 mg in the region $M = 550$ to 1100 mg L$^{-1}$ (when sodic waters become dominant). With further evolution ($M > 1000$ mg L$^{-1}$), the rate of uranium accumulation in solution decreases again (9 µg per 100 mg), due to the sustained loss of uranium to secondary phases. These secondary phases are found, in the simulation, to be from the pitchblende ("black") oxide group, containing hexavalent and tetravalent uranium in ratios between 1:2 and 1:3. The dominant secondary uranium minerals are found to be, initially, uraninite UO$_2$, α-U$_4$O$_9$, β-U$_4$O$_9$ and, as the mineralisation exceeds 1000 mg L$^{-1}$, α-U$_3$O$_7$, β-U$_3$O$_7$ and coffinite. In our simulated conditions (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm., $Eh = +50$ mV, uranium content in rocks = 5 ppm), secondary uranium mineral formation commences at aqueous uranium concentrations of 100 µg L$^{-1}$.

Figure 5. Dynamics of uranium accumulation in the simulated groundwater-granitoid system (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm., $Eh = +50$ mV, initial uranium content in rocks = 5 ppm).

Figure 6 shows the dependence of aqueous concentrations of uranium on the uranium content of the rocks. It is conceivable that this graphic actually has the potential to be used as a “nomogram” (i.e. an inverse model), to estimate the parent rock uranium content from the mineralisation and uranium content of the groundwater.
Figure 6. Accumulation of uranium in the aqueous phase in the simulated groundwater-granitoid system, for various parent rock uranium contents (temperature = 10°C, P_{tot} =1 MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm., Eh = +50 mV, uranium content in rocks = 5 to 500 ppm).

3.2 Sensitivity of results to host rock uranium content and Eh

Modest alterations to the model parameterisation (e.g. uranium content of original rock, Eh of the solution) do not lead to fundamental changes in the pattern of uranium accumulation in the aqueous phase described above, although, together with pH, they do affect the point at which formation of secondary minerals occurs and thus the aqueous concentrations of U that are achieved. The formation of secondary uranium minerals seems to coincide with the formation of sodic (sodium bicarbonate) waters, albeit from solutions with somewhat different hydrochemical compositions and uranium concentrations (Table 3).

For example, with a parent rock uranium content of 5 ppm U, the formation of secondary minerals commences at a water mineralisation (M) around of around 930 mg L$^{-1}$ when Eh = +5 mV and at about 1000 mg L$^{-1}$ when Eh = +50 mV. Thus, with decreasing Eh (more reducing conditions), uranium encounters saturation thresholds at an earlier stage of hydrochemical evolution (lower mineralisation and pH).
Table 3. Impact of varying the initial rock uranium content and Eh on the onset of formation of secondary uranium minerals (temperature = 10°C, P_{tot} = 1 MPa, $P_{\text{CO}_2} = 10^{-2.5}$ atm.)

<table>
<thead>
<tr>
<th>Concentration of uranium in primary rock, ppm</th>
<th>Eh of solution (mV)</th>
<th>Characteristic water chemistry at the onset of uranium secondary mineral formation</th>
<th>pH</th>
<th>Mineralisation M (mg L$^{-1}$)</th>
<th>U at onset of secondary mineral formation, (µg L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>+5</td>
<td></td>
<td>7.4</td>
<td>>930</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>+50</td>
<td></td>
<td>7.42</td>
<td>>1000</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>+100</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
</tr>
<tr>
<td>500</td>
<td>+5</td>
<td></td>
<td>6.96</td>
<td>>110</td>
<td>0.2</td>
</tr>
<tr>
<td>500</td>
<td>+50</td>
<td></td>
<td>7.2</td>
<td>>340</td>
<td>356</td>
</tr>
<tr>
<td>500</td>
<td>+100</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
</tr>
</tbody>
</table>

$ne = $ not attained in the modelled interval

With a parent rock uranium content of 50 ppm U, the pattern of evolution is not qualitatively different, but secondary uranium minerals begin to precipitate at a much earlier stage of evolution; when Eh = +5 mV, precipitation begins in the first modelling step at $M = c. \ 110 \ \text{mg L}^{-1}$, when aqueous uranium concentrations are less than 1 µg L$^{-1}$. With a somewhat higher Eh of c. +50 mV secondary uranium minerals begin to form at $M = 340 \ \text{g L}^{-1}$.

Under more oxidising conditions (Eh = +100 mV), the model does not predict the formation of secondary uranium minerals within the modelled mineralisation interval (i.e. at $M < 10 \ \text{g L}^{-1}$).

Based on these results we can conclude that the formation of secondary uranium minerals is very Eh sensitive, and therefore that the redox conditions suitable for the mobilisation and subsequent formation of secondary uranium deposits are likely to be relatively uncommon and specific to zones of steep redox gradients (geochemical “barriers”). The hydrochemical evolution patterns identified in the simulations are consistent with the findings of previous studies such as those of (Lisitsin 1967, 1971).

3.3 Sensitivity of results to assumptions about CO$_2$ conditions

To examine the influence of CO$_2$ conditions on uranium mobilisation, the simulations were repeated under the same conditions (10°C, 1 MPa total pressure), and CO$_2$ partial pressures...
were varied within the range $10^{-2.5}$ to $10^{-0.5}$ atmospheres (Figure 7). The system was open with respect to CO$_2$. The partial pressure of $10^{-0.5}$ atm. is rather high to be realistic for soil gas or recharge water, but 10^{-2} or $10^{-1.5}$ atm is a realistic figure for CO$_2$ concentrations found in soil gas and new recharge water, even in relatively unproductive soil systems (such as in Norway, Banks & Frengstad, 2006).

Figure 7. The evolution of the pH of the aqueous phase simulated in the groundwater-granitoid system, as a function of total water mineralisation (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{-0.5}, 10^{-1.5}$ and $10^{-2.5}$ atm., Eh = +50 mV, uranium content in rocks = 5 ppm)

Figure 7 illustrates that the pH value is controlled by the available partial pressure of CO$_2$. The curves have similar shape in each case and the pH increases by 0.5 units in the mineralisation interval 150 to 1500 mg L$^{-1}$. One order of magnitude increase in the CO$_2$ partial pressure typically results in 0.5 units of pH decrease. In reality, the CO$_2$ content experienced by the water-mineral system will depend on temperature, biological activity in the soil zone, diffusion processes, gas-phase/dissolved-phase dynamics (and also the degree of closure of the system: here it is assumed that the system is open with respect to CO$_2$). Furthermore, it has been shown that the mobility of uranium is directly affected by complexation with elements of the carbon-dioxide-carbonate system (Barsukov & Borisov, 2003). Table 4 summarizes the impact of varying P_{CO_2} on the formation of secondary uranium minerals.
Table 4. Impact of varying the CO₂ partial pressure on the onset of formation of secondary uranium minerals (temperature = 10°C, Pₜₒₜ = 1 MPa, Eh = +50mV, rock uranium content = 5 ppm).

<table>
<thead>
<tr>
<th>P CO₂ (atm.)</th>
<th>pH and mineralisation M of solution at commencement of secondary uranium mineral formation (mg L⁻¹)</th>
<th>Uranium minerals formed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH</td>
<td>M</td>
</tr>
<tr>
<td>10⁻².⁵</td>
<td>7.42</td>
<td>1000</td>
</tr>
<tr>
<td>10⁻¹.⁵</td>
<td>7.01</td>
<td>1770</td>
</tr>
<tr>
<td>10⁻⁰.⁵</td>
<td>6.61</td>
<td>3100</td>
</tr>
</tbody>
</table>

Figure 8. Dependence of aqueous uranium concentrations in groundwater on mineralisation for varying CO₂ partial pressure (from 10⁻².⁵ to 10⁻⁰.⁵ atm.), for temperature = 10°C, Pₜₒₜ = 1 MPa and content of uranium in primary mineral assemblage = 5 ppm.

It can be seen from Table 4 that the evolution of the behaviour of uranium in the system is heavily dependent on the CO₂ conditions. Further detail can be found in Figure 8, which demonstrates that, for a P CO₂ of 10⁻¹.⁵ to 10⁻².⁵ atm. (which range corresponds well with natural groundwater systems), it is possible to achieve up to just over 1 mg L⁻¹ uranium in the simulated groundwater system with 5 ppm uranium in the primary mineral assemblage. This corresponds very well with the Norwegian groundwater data, where maximum concentrations in exactly this range are observed (Frengstad & Banks 2014). The lower the P CO₂, the “earlier” (i.e. the lower the total mineralisation) secondary uranium mineral precipitation commences and the
earlier an apparent “saturation ceiling” appears. However, in the mineralisation interval 0 to c. 600 mg L$^{-1}$, characteristic for the Siberian and Norwegian study areas considered below (Section 5), uranium concentrations typically do not exceed 10 µg L$^{-1}$.

4. Discussion: Field Comparison and Verification

In order to “reality-check” the results of the simulations, they have been compared with groundwater quality data collected from two research areas (Figure 9):

- Groundwaters from the Alta-Sayan orogenic belt, south-western Siberia, Russian Federation
- Groundwater from Norwegian crystalline bedrock aquifers (ranging in age from Precambrian basement, through rocks of the Caledonian orogenic belt, to late Palaeozoic igneous rocks of the Oslo Rift).

Within these regions, granitoids (often rather radioactive) are widespread, as are occurrences of various types of uranium mineralisation (Lindahl 1983, Dahlkamp 2009). The groundwater hydrochemistries of these two study areas have been widely investigated and documented from both practical (water resources) and theoretical viewpoints (Dutova et al. 2006, Shvartsev et al. 2007, Balobanenko et al. 2016 for the Russian area; Banks et al. 1998, Frengstad et al. 2000, 2001, Banks & Frengstad 2006, Frengstad & Banks 2007, 2008, 2014 for Norway).
Figure 9. Overview map showing the locations of the study areas: 1 – Norway; 2 – south-western Siberia (including the Altai-Sayan mountain belt).

4.1 Groundwaters of the Altai-Sayan orogenic belt

The Altai-Sayan orogenic belt comprises a series of eroded mountain ranges (the Western and Eastern Sayan, the Altai, the Kuznetsk Alatau, etc.), separated by intermontane basins (Tuva, Rybinsk, Kuznetsk, Minusinsk etc. – see Figure 10).

The orogenic belts comprise intensely metamorphosed sedimentary and volcanic rocks of Archean, Proterozoic, Lower and Middle Palaeozoic ages, in highly compressed, sometimes overturned, fold structures, cut by numerous faults and intruded by igneous rocks of various compositions. The intermontane basins comprise gently folded Palaeozoic and Mesozoic rocks, partially overlain by Cenozoic sediments. Truly mountainous relief is found only in the very cores of the orogenic belts, the bulk of which comprise terrain with a relief of 1000-2000 m above sea level (asl). Lower hilly relief characterises the foothills of the Altai, Sayan, Kuznetsk Alatau and the Salair structure and the Kolyvan’-Tomsk folded zone. The intermontane basins
are characterised by low hills or flat land, with altitudes of between 125-150 m asl (Rybinsk basin) to 1000-1200 m asl (Altai basin).

The ecology and landscape of the area are closely related to relief. Subalpine meadows and mountain tundra occupy the highlands and areas of middle relief (around 20% of the region). Forest taiga dominates the middle-low altitude mountain areas and the foothills, while sub-taiga forest occupies the peripheries of the intermontane basins. Steppe and forest-steppe landscape is characteristic of the intermontane basins and also significant parts of the foothills and even middle elevations. The mountainous areas are rather wet and a high modulus of groundwater run-off is estimated (3 - 6 L s⁻¹ km⁻²), whereas that in the drier intermontane basins is much lower at around (0.1 – 0.5 L s⁻¹ km⁻²).

The hydrogeology of the region is complex. The rocks are consolidated to varying degrees and fracture flow of various types (including some karstic) is dominant. Groundwater circulation is believed to be within an exogenous fractured zone of 50-80 m thickness, although in discrete fracture structures significant circulation may reach 100 m or more. Artesian conditions occur in the intermontane basins. The general direction of regional groundwater flow is from the mountains towards the artesian intermontane basins or towards the Western Siberian artesian megabasin. The main areas of groundwater discharge are the local river valley systems.
Figure 10. Structural elements of the Altai-Sayan region of Western Siberia (for location, see Figure 9).

An interplay of tectonic, climatic and lithological conditions, together with precipitation characteristics and altitudinal landscape zonation, conspires to give the groundwaters their characteristic hydrochemistry (Table 5). Typical groundwaters of the fractured aquifers of the mountain-meadow-taiga terrain of the Sayan, Altai and Kuznetsk Alatau mountains have a typical mineralisation of c. 340-400 mg L$^{-1}$, are of sodium-magnesium-calcium bicarbonate composition, and are neutral to slightly alkaline. In the taiga and forest-steppe terrain of the Salair and Kolyvan'-Tomsk structures, groundwaters tend to be more highly-mineralised, circumneutral to slightly alkaline, bicarbonate waters, mainly dominated by magnesium-calcium in their cation content. In these regions, the major ion chemistry does not predominantly depend on rock type and is controlled by more universal reactions governing water-rock interaction (see Frengstad & Banks 2007, Shvarts et al. 2007). More deeply-circulating groundwaters, sometimes associated with fault zones, are characterised by a greater residence time and hydrogeochemical “maturity”: sodium-bicarbonate composition is characteristic, as are mineralisations of up to 1500 mg L$^{-1}$, or more.
Table 5. Average chemical compositions of groundwater from the zone of shallow groundwater circulation (hypergene zone) of the Altai-Sayan orogenic belt and adjacent structures of the West Siberian plate (mg L\(^{-1}\), except for U in µg L\(^{-1}\); compiled from Shvartsev et al. 2007)

<table>
<thead>
<tr>
<th>Components</th>
<th>Mountains</th>
<th>Intermontane basins</th>
<th>Adjacent structures of West Siberian plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altai</td>
<td>Sayan</td>
<td>Kuznetsk Alatau</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>6.9</td>
<td>7.3</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>218</td>
<td>201</td>
<td>225</td>
</tr>
<tr>
<td>SO(_4^{2-})</td>
<td>20</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>17</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>48</td>
<td>37</td>
<td>56</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>21</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>15</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>SiO(_2)</td>
<td>11</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Sum</td>
<td>352</td>
<td>340</td>
<td>400</td>
</tr>
<tr>
<td>U</td>
<td>0.88</td>
<td>1.12</td>
<td>0.77</td>
</tr>
<tr>
<td>number of samples</td>
<td>930</td>
<td>1309</td>
<td>3319</td>
</tr>
</tbody>
</table>

In the steppe terrain of the intermontane basins and adjacent structures of the West Siberian Plain, the majority of groundwaters are of bicarbonate type, with mineralisation not exceeding c. 1000 mg L\(^{-1}\). However, more brackish waters of varying ionic composition can also be found (Na-HCO\(_3\)-Ca-Na-Cl-HCO\(_3\), Na-Ca-SO\(_4\)-HCO\(_3\), Ca-Na-Cl-SO\(_4\)-HCO\(_3\) and even Na-SO\(_4\) or, Na-Cl), in part due to the presence of evaporite minerals within the sedimentary rock sequences. In general, these lower altitude groundwaters enjoy a longer residence time and greater degree of water-rock interaction, whilst evaporative concentration of salts is also believed to also play an important role (Parnachev et al. 1999, Banks et al. 2004).

The uranium concentrations in the studied waters of the region range from a few hundredths to a few hundred µg L\(^{-1}\). In the waters of the folded mountain belt, the uranium concentrations are modest at typically several tenths of µg L\(^{-1}\) (Table 4). Concentrations are somewhat higher in the lower altitude waters and in the zones of known uranium mineralisation (Gornii Altai, Sayan, Kolyvan'-Tomsk). The highest uranium concentrations (tens or, in exceptional cases, hundreds
of µg L\(^{-1}\)) are associated with water-bearing fault structures in the orogenic belts, associated with uranium or sulphide mineralisation. In these structures, as well as a generally high metals content in the rocks, the oxidation of sulphide minerals and dissolution of hydrothermally altered mineral assemblages may also play a role in uranium mobilisation. This interpretation is supported by the fact that the groundwaters in such zones generally have a high total mineralisation and elevated calcium and sulphate concentrations, as well as high uranium concentrations.

The groundwaters of the intermontane basins of the region, derived from subsurface run-off from the surrounding mountains and influenced by evaporative concentration in a shallow oxidising steppe environment (Parnachev et al. 1999, Banks et al. 2004), are characterised by elevated uranium concentrations. Typical uranium concentrations are in the several µg L\(^{-1}\) range, with even higher concentrations (tens to hundreds µg L\(^{-1}\)) in some water seepages and springs. In general, higher uranium concentrations correlate with elevated total mineralisation of waters.

Deeper groundwaters (presumed more reducing geochemical environment) are characterized by substantially (one order of magnitude) lower concentrations of uranium, although a positive correlation between uranium and total mineralization is still observed.

Actual uranium concentrations are plotted against total groundwater mineralisation on several of the simulated evolution curves in Figure 11.
Figure 11. Dissolved uranium versus total groundwater mineralisation in the Altai-Sayan region, compared with the simulated groundwater-granitoid system (temperature = 10°C, $P_{\text{tot}} = 1$ MPa, $P_{\text{CO}_2} = 10^{2.5}$ atm., $E_h = +50$ mV, uranium content in rocks from 5 to 500 ppm). (a) Kuznetsk Alatau (granitoids), (b) Kolyvan’-Tomsk (granitoids), (c) Altai (various rocks), (d) Salair (various rocks).

Analysis of these data indicates that the general magnitude of uranium concentrations predicted by the simulations is close to those observed in the field study area. In both the simulated and real data, there is a general increase in uranium concentration with total mineralisation. The distribution of real uranium concentrations tends to bear closest resemblance to the models where the primary rock uranium content is around 5 ppm. Groundwaters from the granitoids of Kuznetsk Alatau match the simulated evolutionary trend for uranium up to a mineralisation of around 300 mg L$^{-1}$ and are characterized by rather low uranium concentrations. The distribution of uranium in groundwaters of the granitoids of the Kolyvan’-Tomsk folded zone corresponds to a mineralisation range from 300 to 1200 mg L$^{-1}$. The low groundwater uranium concentrations from Salair correspond with the low uranium content of the rocks (<5 ppm), while the large range of uranium concentration in Altai also reflects the large variation in rock types and their radionuclide contents.
Significant mineral-forming concentrations of aqueous uranium (such as are obtained from the simulations – Table 3) are, for the most part, not observed in the zones of regional fracturing. The exception appears to be waters derived from specific local fault zones. Such uranium-rich waters may be able to participate in hydrogene formation of low temperature uranium mineralisation or uranium ore genesis in the marginal parts of intrusions within volcanoclastic formations.

One can speculate that groundwater from the mountain belts, with a relatively modest uranium content, flows in the subsurface towards the artesian structures of the intermontane basins or towards the West Siberian artesian megabasin. Such long flow pathways under oxidizing conditions, coupled with evapoconcentrative steppe processes, tend to lead to progressive elevation in uranium concentrations (Figure 10). Such waters, on encountering reducing geochemical “barriers” may be able to form uranium deposits from aqueous solution, which typically leads to a drop in dissolved uranium concentration of around two orders of magnitude. As far as current knowledge allows, it appears that in this region, hydrogene uranium deposits form within platform cover sediments and with palaeo-depression structures at oxidation/reduction barriers. Moreover, rich ore deposits, of industrial relevance, occur at ancient structural-stratigraphic unconformities (Kislyakov & Shchetochkin 2000, Domarenko et al. 2010).

4.2 Crystalline bedrock groundwaters from Norway

Between 1996 and 1998, the Geological Survey of Norway sampled 1604 groundwaters from Norway’s crystalline rock aquifers, many (but not all) of which comprise granitoids or granitic gneisses (Banks et al. 1998, Frengstad et al. 2000). As regards uranium content, Killeen & Heier (1975a,b) report arithmetic mean uranium contents of 5.7, 9.9, 5.5 and 4.7 ppm for the Flå, Iddefjord, Bohus and Drammen granites of the Oslo area, respectively, but lower mean U contents (0.7 to 2.3 ppm) for the Farsund granites of southern Norway. Regrettably, neither mineralisation (M), nor sodium accumulation can be used as indicators of groundwater hydrochemical maturity in Norway’s coastal environment, as sodium and chloride mineralisation can be due to the influence of marine salts, as well as to, for example, aluminosilicate hydrolysis. In the discussion, below, three proxy indicators of hydrochemical maturity have been utilised:
(i) total alkalinity (in most cases, this simply represents the water’s bicarbonate content)
(ii) the lithologically derived sodium (Na*) content, having been corrected for marine salts on
the basis of chloride, where Na*=Na-Cl×(10556/18980) in mg L⁻¹, based on a typical marine
sodium concentration of 10556 mg L⁻¹ and chloride 18980 mg L⁻¹ (Lenntech 2016).
(iii) the Na*/Ca meq ratio = Na* × 20.04 / (Ca × 22.99)

In the 1996-98 study, 476 of the Norwegian waters were analysed for uranium by ICP-MS
techniques (Frengstad et al. 2000, 2001). The median uranium concentration of these water
was 2.5 µg L⁻¹, while the maximum was 750 µg L⁻¹. These magnitudes support the observation
(Figure 8) that simulated uranium concentrations in relatively unevolved groundwaters (M <
600 mg L⁻¹) are generally < 10 µg L⁻¹, although concentrations of up to just over 1 mg L⁻¹ can
be observed at higher degrees of hydrochemical evolution (or greater host rock U contents).
Indeed, uranium concentration up to a maximum of 2 mg L⁻¹ have been observed in other
Norwegian studies (Frengstad & Banks 2014).

In the 1996-98 (N=476) study, a large number of the waters exhibited pH values around 8.0
(60% of the waters had pH in the range 7.74 to 8.22). This clustering effect means that it is
very difficult to observe pH-related trends on standard x-y diagrams of covariance (Figure
12c,d). It appeared that, in many waters, the pH was buffered around 8.0 to 8.2 and it was
hypothesised that this represented precipitation of calcite from the waters and the transition to
sodium bicarbonate-dominated waters (Banks & Frengstad 2006). To circumvent the data
clustering effect, Frengstad et al. (2001) ranked the data according to pH and divided it into 5
equal quintiles (Figure 12a,b).

It will be seen (Figure 12b) that Na* tends to increase slightly with increasing pH (judging
from the numbers of zero or negative calculated Na* for each pH subgroup), but with a major
increase in the last pH subgroup (pH > 8.2) indicating that, at high pH, sodium has become the
dominant cation. Uranium also initially increases with increasing pH, up to a pH of around 8.
Following this, U concentrations decline slightly again, although there is very large variance
in each pH subgroup (which may reflect both lithological and kinetic factors). This decrease at
elevated pH values could be considered to represent depletion due to precipitation as secondary
minerals, as predicted by the HydroGeo simulations. As noted above, the maximum U
concentrations of a few hundred µg L⁻¹ agree rather well with the HydroGeo simulations.
Figure 12. The relationship between dissolved uranium, total alkalinity and the meq ratio between lithologically derived sodium (Na*) and calcium in 476 Norwegian crystalline bedrock groundwaters (the dataset reported by Frengstad et al. 2000, 2001). Na* = lithological sodium (Na*=Na-Cl×(10556/18980), based on typical marine sodium concentration of 10556 mg L⁻¹ and chloride 18980 mg L⁻¹ - Lenntech 2016). Where Na* is calculated as <0, data for Na*/Ca are omitted from the logarithmic scaled plots (b) and (c). The red figures at the base of the boxes in Figure 12(b) denote the number of data points omitted due to Na* being calculated as a (near-zero) negative value. The subsets pH20 to pH100 represent ranked quintiles of the dataset according to pH: pH20 represents pH from 6.18 to 7.73; pH40 represents 7.74 to 8.01; pH60 represents 8.01 to 8.13; pH80 represents 8.14 to 8.22; pH100 represents 8.22 to 9.58. # denotes numbers of data in each subset.
Figure 13. The relationship between dissolved uranium, total alkalinity and the meq ratio between lithologically derived sodium (Na*) and calcium in two subsets of the Norwegian crystalline bedrock groundwaters shown in Figure 12 (the 1996-98 dataset reported by Frengstad et al. 2000, 2001). Na* = lithological sodium (Na*=Na-Cl(10556/18980), based on typical marine sodium concentration of 10556 mg L⁻¹ and chloride 18980 mg L⁻¹ (Lenntech 2016). Group 71 = groundwaters from Norwegian Caledonian granite to tonalite (N = 24); Group 92 = groundwaters from Norwegian autochthonous Precambrian granite to tonalite (N=29)

In order to remove the variability in mineralogy and rock uranium content in the 1996-98 (N=476) data set, two lithological subgroups of the Norwegian data have been selected: Group 71 (N=24), representing granitoids of the Caledonian orogenic belt and Group 92 (N=29), representing “autochthonous” Precambrian granites (Figure 13). In a lithological analysis (Frengstad et al. 2000), these two granitic groundwater subgroups were demonstrated to exhibit generally higher uranium concentrations than other lithological subsets, presumably reflecting the higher uranium contents of the granites. It will be noted that the generally highest uranium
concentrations in the granitoid data are observed around pH 8, lithologically-derived sodium concentrations of c. 100 mg L\(^{-1}\) (which agrees quite well with the modelling findings in Section 3), alkalinites of around 2 meq L\(^{-1}\) and Na*/Ca meq ratios of <1 (i.e. before the stage of sodium bicarbonate waters is reached).

Thus, while the Norwegian data exhibits significant support for the modelled scenarios, in terms of the general pattern of uranium accumulation, the typical maximum concentrations and the approximate concentrations of lithologically-derived sodium at which maximum uranium accumulation rates occur, there are also some significant differences:

- the Norwegian waters exhibit much higher pH values than predicted by the HydroGeo simulation. Banks & Frengstad (2006) have hypothesised that the groundwater systems cannot be fully “open” with respect to CO\(_2\) and must experience some degree of “closure” in order to explain the high pH of the Norwegian waters.

- with pH increasing beyond 8, the Norwegian waters exhibit a modest trend to decreasing uranium concentrations. This is not observed in the HydroGeo model; while the rate of accumulation decreases at elevated pH due to uranium mineral precipitation, dissolved concentrations do not. This may also be related to the fact that, because the HydroGeo simulation is “open” with respect to CO\(_2\), pH values do not approach or exceed pH 8. It may also be hypothesised that the highest pH Norwegian waters tend to be more deeper and reducing in nature.

- in the Norwegian field data, maximum uranium concentrations are observed before the water achieves an alkaline sodium composition.

All of this leads us to speculate that dissolved uranium concentrations in groundwater are controlled by three master variables:

(i) the total uranium content in the parent mineral assemblage (see Table 3)

(ii) the Eh (see Table 3)

(iii) the pH, which is in turn affected by CO\(_2\) conditions
and maybe not by the transition to sodic waters in itself. In many silicate-dominated groundwater systems, the transition to sodic waters tends to occur when the system is buffered at a relatively high pH by secondary calcite precipitation (which releases protons to the water).

\[
\text{Ca}^{2+} + \text{HCO}_3^- = \text{CaCO}_3 + \text{H}^+
\]

Thus, the approximate coincidence of the transition to sodic waters with an optimum pH for uranium mobilisation may be largely fortuitous.

5. Summary and Conclusions

Modelling of water-rock interaction using the software package “HydroGeo” has confirmed a number of known or suspected geochemical principles regarding the accumulation of uranium in shallow groundwaters in granitoid aquifers:

(1) In the simulated oxidising environment, uranium occurs predominantly in solution in its hexavalent state.

(2) Increasing the host rock uranium content generally tends to increase the aqueous uranium concentration.

(3) Increasing Eh (at least within the range +5 to +100 mV) also tends to increase uranium mobilisation in the aqueous phase.

The simulations have also allowed the following hypotheses to be formulated:

(4) In rocks with a uranium content of 5 to 50 ppm in the primary mineral assemblage, it is possible to accumulate concentrations of uranium in the aqueous phase that result in precipitation of secondary uranium minerals.

(5) At a partial CO$_2$ pressure of $10^{-2.5}$ atm., the rate of accumulation of uranium in the aqueous phase seems to reach a maximum in the transitional domain between calcium-sodium and sodium bicarbonate water, as calcite approaches saturation. The highest uranium concentrations in oxidising environments are predicted to occur in alkaline sodium bicarbonate water types, where calcium has been depleted by calcium saturation.
(6) Uranium accumulation in solution is hindered in hydrochemically mature waters by saturation with respect to, and the thermodynamic likelihood of precipitation of “black” pitchblende-type mixed hexavalent-tetravalent uranium oxides.

(7) For moderate mineralisations and P_{CO_2} between $10^{-1.5}$ and $10^{-2.5}$ atm., aqueous concentrations of uranium of up to 10 µg L$^{-1}$ are typical in the simulations for rocks with 5-50 ppm U. This observation corresponds very well with the median concentration of 2.5 µg L$^{-1}$ observed in N=476 Norwegian groundwaters (Frengstad et al. 2000). At higher groundwater mineralisations (i.e. greater degrees of water-rock interaction), simulations suggest that concentrations of just over 1 mg L$^{-1}$ can evolve, which again corresponds well with the maximum concentration of 750 µg L$^{-1}$ observed in N=476 Norwegian groundwaters (Frengstad et al. 2000) and the maximum observed Norwegian concentration of 2 mg L$^{-1}$ (Frengstad & Banks 2014).

(8) The accumulation of uranium in the aqueous phase is strongly dependent on the partial pressures of CO$_2$, which in turn influence the evolution of pH. In systems open to CO$_2$, higher pH values are observed at lower P_{CO_2} and saturation with respect to secondary uranium minerals is achieved at an earlier stage of hydrochemical evolution (lower mineralisation) than at higher values of P_{CO_2}. Moreover, uranium appears to accumulate more rapidly in solution, relative to the rate of accumulation of total aqueous mineralisation, at lower P_{CO_2}.

(9) The simulations where P_{CO_2} has been varied strongly suggest that there are several key influences on uranium accumulation in water and that it is impossible to draw general rules regarding the stage at which uranium becomes saturated with respect to secondary minerals (i.e. specific pH, mineralisation or hydrogeochemical facies transition).

These observations can be tested against existing data sets for groundwater quality from granitoid rocks and may also be of use in prospecting for secondary uranium deposits.

Acknowledgements

The research described in this paper was carried out at Tomsk Polytechnic University within the framework of the Tomsk Polytechnic University Competitiveness Enhancement Program grant.
References

Berman, R.G., 1988. Internally-consistent thermodynamic data for minerals in the system Na_{2}O·K_{2}O·CaO·MgO·FeO·Fe_{2}O_{3}·Al_{2}O_{3}·SiO_{2}·TiO_{2}·H_{2}O·CO_{2}. Journal of Petrology 29, 445-522. doi: 10.1093/petrology/29.2.445.

Bukaty, M.B. [Букаты М.Б.], 2002. Разработка программного обеспечения для решения гидрогеологических задач [Development of software for solving hydrogeological problems - in Russian]. In "Geology prospecting and exploration of mineral resources of Siberia", Известия Томского политехнического университета 305(6), 348-365.

Bukaty, M.B., Dutova, E.M., Balobanenko, A.A., Kuzevanov, K.I. [Букаты М.Б., Дутова Е.М., Балобаненко А.А., Кузеванов К.И.], 2010. Моделирование геохимического
поведения урана в подземных водах юго-восточной окраины Западно-Сибирского бассейна [Modelling the geochemical behaviour of uranium in groundwaters of the south-eastern region of the Western Siberian basin - in Russian]. Разведка и охрана недр. 11, 49–54.

7037(84)90098-X.

Modelling uranium in groundwaters

Modelling uranium in groundwaters

Dutova, Nikitenkov, Pokrovskiy, Banks, Frengstad, Parnachev.

