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Abstract 

Volcanism associated with the Kerguelen Large Igneous Province is found scattered in 

southwestern Australia (the ca 136 to ca 130 Ma Bunbury Basalts, and ca 124 Ma Wallaby 

Plateau), India (ca 118 Ma Rajmahal Traps and Cona Basalts), and Tibet (the ca 132 Ma Comei 

Basalts), but apart from the ~70 000 km2 Wallaby Plateau, these examples are spatially and 

volumetrically minor. Here, we report dredge, geochronological, and geochemical results from 

the ~90 000 km2 Naturaliste Plateau, located ~170 to ~500 km southwest of Australia. Dredged 

lavas and intrusive rocks range from mafic to felsic compositions, and prior geophysical analyses 

indicate these units comprise much of the plateau substrate. 40Ar/39Ar plagioclase ages from 

mafic units and U–Pb zircon ages from silicic rocks indicate magmatic emplacement from 130.6 
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± 1.2 to 129.4 ± 1.3 Ma for mafic rocks, and 131.8 ± 3.9 to 128.2 ± 2.3 Ma for silicic rocks (2σ). 

These Cretaceous Naturaliste magmas incorporated a significant component of continental 

crust, with relatively high 87Sr/86Sr (up to 0.78), high 207Pb/204 Pb ratios (15.5–15.6), low 
143Nd/144Nd (0.511–0.512), and primitive-mantle normalised Th/Nb of 11.3 and La/Nb of 3.97. 

These geochemical results are consistent with the plateau being underlain by continental 

basement, as indicated by prior interpretations of seismic and gravity data, corroborated by 

dredging of Mesoproterozoic granites and gneisses on the southern plateau flank. The 

Cretaceous Naturaliste Plateau igneous rocks have signatures indicative of extraction from a 

depleted mantle, with trace element and isotopic values that overlap with Kerguelen Plateau 

lavas indicative of crustal contamination. Our chemical and geochronological results therefore 

indicate the Naturaliste Plateau contains evidence of an extensive igneous event representing 

some of the earliest voluminous Kerguelen hotspot magmas. Prior work indicates that 

contemporaneous correlative volcanic sequences underlie the nearby Mentelle Basin, and the 

Enderby Basin and Princess Elizabeth Trough in the Antarctic. When combined, the igneous 

rocks in the Naturaliste, Mentelle, Wallaby, Enderby, Princess Elizabeth, Bunbury, and Comei-

Cona areas form a 136–124 Ma Large Igneous Province covering >244 000 km2. 

 

Keywords: Naturaliste Plateau; Kerguelen hotspot; Gondwanaland breakup; geochronology; 

geochemistry; Tibet, Wallaby Plateau 

 

Introduction 

The comparatively well-studied, largely submarine Kerguelen Large Igneous Province (LIP) and 

its conjugate rifted fragment, Broken Ridge (Mutter & Cande, 1983; Tikku & Cande, 2000), 

together with its onshore correlatives in southwestern Australia (Frey, McNaughton, Nelson, de 

Laeter, & Duncan, 1996; Olierook et al., 2016), northeastern India (Coffin et al., 2002; Kent, 

Pringle, Müller, Saunders, & Ghose, 2002; Kent, Saunders, Kempton, & Ghose, 1997), and Tibet 

(Zhu et al., 2008, 2009), form the second largest known LIP preserved on Earth (Figure 1a). 

Geochronologic dating of these LIP fragments, now widely separated by rifting, show varying 

clusters – an apparently spatially minor early component around 137–130 Ma, exposed onshore 

in Western Australia (the Bunbury Basalt: Figure 1b; Frey et al., 1996, Olierook et al., 2016); and 

a volumetrically major cluster, which commenced later, around at 124–118 Ma in the main 

Kerguelen Plateau (Coffin et al., 2002), and the Wallaby Plateau (Olierook et al., 2015) as well as 

the smaller volumes in south Asia (Coffin et al., 2002; Zhu et al., 2008, 2009).  

The age discrepancy between onset of hotspot volcanism around ca 137 Ma, and major 

expression of volcanism some 13–19 Ma later, have led to speculation about the possibility of a 

Kerguelen mantle plume “incubating” beneath the extending Gondwana lithosphere (Coffin et 

al., 2002; Kent et al., 2002; Kent, Storey, & Saunders, 1992; Zhu et al., 2008). Furthermore, 

despite the large size of the Kerguelen LIP, it is not currently considered to have played a driving 

role in breakup of the Gondwana supercontinent, as the voluminous 120–118 Ma Kerguelen 

eruptions post-date rifting by 10–14 Ma (Coffin & Eldholm, 1992). 

There are, however, other rifted fragments of the Kerguelen LIP present in the Indian Ocean 

basin (Figures 1 and 2), which must be evaluated to fully assess links between the LIP and 

rifting, and to evaluate the models invoking “plume incubation”. In particular, the ~ 90 000 km2 
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Naturaliste Plateau, offshore from Western Australia (Figure 1b), has been previously correlated 

with the Kerguelen LIP based on examination of sparse reconnaissance material (Coffin & 

Eldholm, 1992; Mahoney et al., 1995; Storey et al., 1992). 

In this study, we report the results of further extensive dredging of the Naturaliste Plateau by 

the R/V Southern Surveyor in 2005, in order to investigate the origin of this oceanic feature. We 

present new geochemical and geochronological data from mafic and felsic igneous rocks 

dredged from the southern margin of the plateau. We then outline how these new data, together 

with seismic observations from the Naturaliste Plateau and adjacent Mentelle Basin, indicate the 

formation of a LIP by Kerguelen hotspot impact into the evolving Australia–Antarctica + India–

Madagascar spreading margin. 

Regional setting 

The Naturaliste Plateau is a quasi-rectangular ~ 250 by 400 km submarine massif rising ~ 2500 

m above the surrounding seafloor to water depths of ~ 1600 m (Figure 1b). It covers ~ 90 000 

km2 and is separated by a deep, ~ 170 km wide trough from the southwest Australian mainland 

(Figure 1b). The Naturaliste Plateau is related to the adjacent more deeply subsided Mentelle 

Basin (Figure 1b; Maloney, Sargent, Direen, Hobbs, & Grοcke, 2011), which occupies a further ~ 

44 000 km2. The Naturaliste Plateau and Mentelle Basin are located at the intersection of two rift 

arms formed during Gondwana breakup (Direen, Borissova, Stagg, Colwell, & Symonds, 2007; 

Direen, Stagg, Symonds, & Colwell, 2008; Jongsma & Petkovic, 1977; Petkovic, 1975; Powell, 

Roots, & Veevers, 1988; Royer & Coffin, 1992) (Figure 2). Rifting between India–Madagascar and 

Australia–Antarctica commenced in the Callovian (ca 165 Ma) in the Argo Abyssal Plain (Figure 

1a), and rapidly propagated southwards during the Valanginian–Hauterivian (Figure 2; 140 Ma–

130 Ma: Gaina, Mueller, Brown, Ishihara, & Ivanov, 2007; Markl, 1978; Mihut & Mueller, 1998; 

Veevers & Li, 1991), producing a rifted margin on the Australia–Antarctic plate, conjugate to 

Greater India. North of the Wallaby–Zenith Fracture Zone (Figure 1a), the rifted margin is 

voluminously magmatic, with extensive seaward-dipping reflector sequences (Direen et al., 

2008; Planke, Symonds, Alvestad, & Skogseid, 2000), and high velocity lower crust, extending 

south into the Houtman Sub-basin (Figure 1a). In contrast, in the Zeewyck and Vlaming sub-

basins of the Perth Basin (Figure 1a), no seaward-dipping reflector sequences or high velocity 

lower crust have been documented, and the margin is considered weakly magmatic (Bradshaw, 

Rollet, Totterdell, & Borissova, 2003), with the presence of discrete volcanic centres (Dadd, 

Kellerson, Borissova, & Nelson, 2015; Gorter & Deighton, 2002), which are also imaged 

seismically in the Mentelle Basin (Maloney et al., 2011). The volcanic margin north of the 

Wallaby–Zenith Fracture Zone predates the earliest currently known 124 Ma (Aptian) onset of 

Kerguelen Plateau-related hotspot volcanism (Duncan, 2002; Olierook et al., 2015). 

The southern Australian continental margin east of the Naturaliste Plateau is not well studied 

(Bradshaw et al., 2003), but contains onshore volcanic and intrusive rocks of the Bunbury Basalt 

(Coffin & Eldholm, 1992; Duncan, 2002; Frey et al., 1996; Ingle, Scoates, Weis, Brugmann, & 

Kent, 2004; Olierook et al., 2016). The Bunbury Basalt contains two geochemical suites: the 

Casuarina and Gosselin suites (Frey et al., 1996), and three distinct phases of eruption, at 136.96 

± 0.43 Ma, 132.71 ± 0.43 Ma and 130.45 ± 0.82 Ma (Olierook et al., 2016). The Bunbury Basalt 

has been correlated with the Rajmahal Traps (Figure 1a) of eastern India (Coffin & Eldholm, 

1992; Frey et al., 1996; Kent et al., 1997), which are dated at 118.1 ± 0.3 Ma (Kent et al., 2002). 

The Bunbury Basalt and Rajmahal Traps have been linked to the Kerguelen mantle hotspot 
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(Coffin & Eldholm, 1992; Duncan, 2002; Frey et al., 1996; Ingle et al., 2004; Kent et al., 1997; 

Olierook et al., 2016).  

The southern margin of the Naturaliste Plateau, between Australia and Antarctica, began rifting 

in Jurassic time (Callovian: ca 165 Ma; Direen, 2011; Direen et al., 2007; Maloney et al., 2011; 

Tikku & Direen, 2008; Totterdell et al., 2000). At ca 95 Ma (Cenomanian) mafic volcanism 

occurred on the co-joined Broken Ridge and Kerguelen Plateau (Figures 1a and 2) (Duncan, 

2002; Mutter & Cande, 1982; Tikku & Cande, 2000). Highly diachronous breakup between 

Australia and Antarctica and propagation of the Southeast Indian Ridge to the southeast in the 

late Cretaceous (Direen, Stagg, Symonds, & Norton, 2013; Tikku & Direen, 2008) formed a 

magma-poor, hyperextended margin (Direen et al., 2007, 2013; Direen, Stagg, Symonds, & 

Colwell, 2011; Sayers, Symonds, Direen, & Bernardel, 2001). Break-up south of the Naturaliste 

Plateau appears to have taken place between ca 90 and ca 84 Ma (Figure 2, Turonian–Santonian) 

(Beslier et al., 2004). Extreme thinning outpaced magma supply (e.g. Peron-Pinvidic & 

Manatschal, 2009), resulting in exhumation and marine flooding of the lower crust (Halpin et al., 

2008) and mantle (Beslier et al., 2004) at the southern margin of the Naturaliste Plateau, and in 

the Diamantina Zone (Figure 1b), respectively.  

Existing geological knowledge and sampling of the Naturaliste Plateau 

Based on seismic and gravity data, the middle crust of the Naturaliste Plateau is incised by 

probable Paleozoic and Mesozoic rift basins (Borissova, 2002; Direen et al., 2007). The upper 

crust of the plateau comprises volcanic rocks and >2 km of post-Turonian sediments (Borissova, 

2002; Burkle, Saito, & Ewing, 1967; Ford, 1975; Maloney et al., 2011). 

The first basement samples from the Naturaliste Plateau were obtained by the USNS Eltanin in 

1972, from a single site on the northeastern plateau (Figure 1b). This dredge recovered 

manganese crusts containing 0.5–15 cm conglomerate cobbles set in a matrix of manganese 

oxide and detrital grains of quartz, plagioclase, clinopyroxene, and garnet-bearing protoliths 

(Coleman, Michael, & Mutter, 1982; Heezen & Tharp, 1973). The cobbles were initially 

interpreted as continental fragments (Heezen & Tharp, 1973), but major and trace element 

analyses showed them to be mafic aphyric or plagioclase-phyric tholeiitic basalts (Coleman et al., 

1982; Mahoney et al., 1995; Storey et al., 1992). The presence of cobbles indicates erosion and 

transport in a high-energy environment, of at least at or above wave base, implying the site of 

eruption of the lavas on the Naturaliste Plateau was not always as deeply submerged as it is 

today. 

Further sampling of the Naturaliste Plateau was undertaken by the Deep Sea Drilling Project 

(DSDP). Two holes (Sites 258 and 264; Figure 1b) terminated in pre-Cenomanian and middle–

late Albian sedimentary sequences (Davies et al., 1974; Ford, 1975; Hayes et al., 1975). 

Importantly, the lowermost 35 m at Site 264 recovered conglomerate containing abundant mafic 

clasts (Ford, 1975; Hayes et al., 1975). This shows that both the northeastern (Site 258) and 

southern (Site 264) plateau contain mafic lavas that could have been erupted at or above wave 

base. 

In 1998, dredging from N/O Marion Dufresne recovered basalt lavas, dolerite, gabbro, and 

diorite, along with a small number of granite and gneiss fragments (Beslier et al., 2004). 
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Sampling of the Naturaliste Plateau by the R/V Southern Surveyor 

In 2005 the R/V Southern Surveyor dredged the steep margins of the plateau, with the best 

samples obtained from the southern flanks (Crawford, 2005; Figure 1b). Of 28 attempted bottom 

haul chain dredges, 11 yielded useable igneous rocks (Table 1; Figure 1b), 11 dredges were 

empty, and the remainder contained only sediments (Crawford, 2005). The igneous samples 

were dominantly mafic with varying degrees of seafloor alteration (Tables 1 and 2; 

Supplementary Papers Appendix 1). Some dredges recovered a mixture of rock types, including 

basalt lavas, dolerites, rhyolite, and granodiorite (Supplementary Papers Appendix 1), and were 

probably sampled from talus slopes comprising material from several lithostratigraphic units. 

Seafloor alteration was variable, ranging from minor to extreme, and usually takes the form of 

smectite replacing glass, and clay replacing plagioclase. The least altered samples from several 

dredges were selected for detailed petrographic and geochemical analysis. 

The dredged basalt lavas are aphyric or plagioclase+augite-phyric and represent a variety of 

submarine eruption styles, including: massive lava, pillow lava lacking vesicles, lava breccia, 

hyaloclastite, and highly vesicular lava (Supplementary Papers Appendix 1). The sample suite 

does not contain material from unambiguously subaerial eruptions. 

In addition to the lavas, some dredges recovered medium-grained rocks (e.g., dolerite, 

granophyre) presumably from intrusive units. Dolerite samples (DR7-2, 7-5, 10-39, 11-19, 11-

25, 12-20, 13-7, 21-17) are uniformly medium-grained rocks composed of augite, plagioclase 

and Fe–Ti oxides. Felsic granophyre in DR10-16 (dredged with gabbro, DR10-14, dolerite DR10-

39, and basalts DR10-7 10-67, 10-164) may derive from the last-crystallised part of a thick 

gabbroic or doleritic sill. Several blocks of formerly glassy, commonly spherulitic quartz+K-

feldspar-phyric rhyolite (DR7-12, DR12-41) were recovered among the basalts and dolerites. 

In addition to these mafic and felsic igneous rocks, two Southern Surveyor dredges (DR18 and 

DR21; Figure 1) also contained fragments of continental crustal rocks, comprising felsic gneiss, 

microcline phyric granite, felsic orthogneiss and hornblende–garnet gneissic diorite (Halpin et 

al., 2008). Within some thin metamorphic rims of Cambrian age (Halpin et al., 2008, and see 

below), zircon cores yielded U–Pb crystallisation ages of 1177 ± 28 Ma (DR18-4, gneiss, n = 10) 

and 1154 ± 25 Ma (DR21-1, gneiss, n = 15). Chemical (total U–Th–Pb) ages for monazites in two 

gneisses are much younger (515 ± 5 Ma DR18-4, n = 23 analyses of 10 crystals; 515 ± 7 Ma 

DR21–3, n = 49 analyses of 23 crystals), and together with the zircon metamorphic rims, suggest 

that peak thermal metamorphism in these rocks was related to the Cambrian Pinjarra Orogeny 

of southwest Western Australia (Halpin et al., 2008). The presence of these old mid-crustal 

continental rocks at two Southern Surveyor and one Marion Dufrense dredge sites, along with the 

more widespread occurrence of mafic+felsic igneous activity, is consistent with seismic and 

gravity data that indicate that the plateau is underlain by thinned (12.5–16 km) continental 

crust capped by volcanic rocks (Direen et al., 2007), unlike initial suggestions that envisaged the 

plateau to be constructed entirely from juvenile oceanic erupted material (Coffin & Eldholm, 

1992; Coleman et al., 1982). 

Geochronology 

The age and duration of igneous activity on the southern Naturaliste Plateau was examined 

using 40Ar/39Ar dating of plagioclase from a basalt and two dolerites and U–Pb dating of zircon 

from a granophyre, a monzodiorite and a rhyolite, all selected from the R/V Southern Surveyor 

dredge sample suites.  
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Laser ablation ICP-MS zircon U–Pb dating 

LA–ICP–MS dating of zircons was carried out at the University of Tasmania (Supplementary 

Papers Appendix 3). Zircons were extracted from three of the more differentiated rocks, a 

granophyre (DR10–16), a monzodiorite (DR11–6), and a rhyolite (DR12–29). The zircons 

extracted from the three rocks are euhedral (some unbroken grains with both terminations; 

others are stubby) and are 50–120 µm in length. In cathodoluminescence images, all analysed 

grains show oscillatory or sector zoning (Supplementary Papers Figure A3-1). Some grains in 

monzodiorite DR11-6 show igneous resorption textures on their margins. There are no 

identifiable inherited cores or metamict textures. U contents vary widely (31–1923 ppm) and 

Th/U is typically >1 (0.98–10.10). The Pb–U isotopic results define indistinguishable lower 

intercept ages for the three populations: 131.8 ± 3.9 Ma (granophyre DR10-16), 128.2 ± 2.3 Ma 

(monzodiorite DR11-6) and 129.8 ± 6.1 Ma (rhyolite DR12-29, all ages ± 2σ; Figure 3).  

40Ar/39Ar dating of basaltic plagioclase 

Three basaltic samples with well-preserved plagioclase were selected for 40Ar/39Ar dating. 

Basalt DR11-19 contains plagioclase phenocrysts ≤5 mm long in a grey groundmass; dolerite 

DR12-8 has plagioclase <1 mm long set in a mid-brown groundmass; and dolerite DR13-33 has 

plagioclase phenocrysts ≤15 mm long set in a light-brown groundmass. A description of the 

analytical methods and results is presented in Supplementary Papers Appendix 4. 

Plagioclases from DR11-19 and DR12-8 yield precise plateau ages of 129.4 ± 1.3 and 130.6 ± 1.2 

Ma (2σ), respectively, reflecting their relatively high K/Ca ratios and radiogenic 40Ar yields 

(Figure 4). DR13-33 yields a plateau age of 130 ± 4 Ma (2 σ), with the inferior age precision 

reflecting smaller sample size, lower K/Ca and lower radiogenic 40Ar yields. The step-heating 

sequences for both DR11-19 and DR12-8 show declining %40Ar* values at high temperature, 

reflecting increased atmospheric argon contributions from the resistance furnace itself; 

however, this has no influence on the derived 40Ar/39Ar ages. 

Initial 40Ar/36Ar ratios on isochron diagrams (Figure 4) are within error of modern-day 

atmospheric Ar, indicating the analysed plagioclase samples are free from inherited argon. While 

the low-temperature steps yield younger ages – attributed here to argon loss caused by incipient 

seawater alteration of the plagioclase – the reported plateau 40Ar/39Ar ages are based on 64 to 

82% of the 39Ar released, indicating they are reliable determinations of plagioclase 

crystallisation ages. This is supported by concordant 40Ar/39Ar isochron and plateau ages. 

The U–Pb zircon and 40Ar/39Ar plagioclase ages overlap within their reported uncertainties and 

range from 131.8 ± 3.9 to 128.2 ± 2.3 Ma, placing volcanic activity in this sector of the plateau in 

the late Hauterivian to Barremian, possibly just post-dating the ca 132 Ma Valanginian–

Hauterivian regional unconformity (Maloney et al., 2011).  

Geochemistry 

Concentrations of major and trace elements in 47 samples of basalts, dolerites, rhyolite and 

granophyre were determined by X-Ray fluorescence (XRF) and solution-mode ICP-MS 

(University of Tasmania), and are reported in Tables 2 to 4. Sr–Nd–Pb–Hf isotopic compositions 

were measured by multi-collector ICP-MS (University of Melbourne) and are reported in Table 

5. Details of the analytical methods can be found in the Supplementary Papers (Appendices 2 

and 5). 
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Major elements 

The dredge samples from the Southern Surveyor 2005 cruise analysed here vary widely in 

composition (48.0–75.5 wt% SiO2, 0.16 to 7.3 wt% MgO; Table 2). Loss on Ignition (LOI) ranges 

from 0.82 to 7.25 wt%, with only 6 of the 46 analysed samples having <2 wt% LOI (Table 2). LOI 

is a broad measure of low-temperature alteration, and these results illustrate the extent of 

seawater alteration in the samples. Ca, Na and K are particularly mobile during submarine 

alteration (e.g. Hart, Erlank, & Kable, 1974) and their concentrations in the dredge samples are 

thus unlikely to be primary. 

All mafic samples have <8 wt% MgO (most have 5–7 wt% MgO and 48–53 wt% SiO2; Figure 5a) 

indicating they represent relatively evolved magmas. The most differentiated members of this 

group have 2–4% MgO and up to 56 wt% SiO2. Al2O3 is high compared with many other basaltic 

suites (13 samples with >18 wt%, see Table 2), and CaO/Al2O3 is low (<0.6) in most analysed 

samples. This may reflect accumulation of Al-rich plagioclase (Bryan, Thompson, & Ludden, 

1981), consistent with prominent plagioclase phenocrysts in the lavas. Although there is much 

scatter (perhaps partly related to Ca mobility), CaO/Al2O3 tends to be lower at low MgO and 

approaches zero in the most silicic samples (DR10-16 and 12-41) and in DSDP Site 264 core 

material. In addition to plagioclase, a Ca-rich mineral – probably clinopyroxene – must have 

been an important fractionating phase. TiO2 (0.79–3.41 wt% in basaltic samples) shows a broad 

anti-correlation with MgO (Figure 5b). Low TiO2 (<0.3 wt%) in the four SiO2-rich lavas indicates 

fractionation of a Fe–Ti oxide; the high magnetic susceptibilities recorded for the mafic samples 

suggest this is probably Ti-magnetite.  

The most silicic samples analysed here have ~75 wt% SiO2, low Fe, Mg and Ca, and high Na and 

K (Table 2; Figure 5a, c). Silicic samples were also recovered at DSDP Site 264 (Coleman et al., 

1982). 

Trace elements 

Trace element concentrations (Tables 3 and 4) show variations typical of basaltic systems: most 

incompatible elements (Zr, Nb, Hf, Ta, REE, Y, Th, U, Rb, Ba, Pb) are anti-correlated with Mg 

while Cr, Ni, Cu and Co show positive correlations. Many trends are scattered, undoubtedly 

reflecting alteration effects (Figure 6a). Co-variations among alteration-resistant elements (e.g. 

Nb, Zr, LREE) show much less scatter (Figure 6b, c). However, given the large geographic spread 

of the dredge samples, primary variations of trace element abundances, as well as local 

differentiation effects, probably contribute to the observed scatter. 

The composition of mafic rocks varies with tectonic setting and the degree of partial melting; 

high degrees of partial melting typically produce tholeiitic magmas, which are relatively 

depleted in incompatible elements, while low degrees of melting typically produce alkaline 

magmas, which are enriched in incompatible elements. To determine the relative extent of 

melting, it is important to determine if the Naturaliste Plateau dredge samples are tholeiitic or 

alkaline. Classification using the total alkalis (Na2O+K2O) versus SiO2 diagram (TAS; Le Bas, Le 

Maitre, Streckeisen, & Zanettin, 1986) is compromised by seawater alteration, and the results of 

a TAS classification (18 of the 45 dredge samples plot in the alkaline field; Figure 5c) are likely to 

be spurious. An alternative subalkaline vs alkaline classification can be made using the 

alteration-resistant high field strength elements (Pearce & Cann, 1973), such as the Nb/Y ratio 

(Pearce & Norry, 1979), which identifies the Naturaliste Plateau samples as dominantly tholeiitic 

(Figure 5d).  

Page 8 of 36

URL: http://mc.manuscriptcentral.com/taje

Australian Journal of Earth Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

Rare-earth element (REE) concentrations for 15 samples from eight of the nine sampled dredges 

are anti-correlated with MgO and have unfractionated to LREE-enriched normalised distribution 

patterns (Figure 7a), with La/LuPM ranging from 1.28 to 7.24 in the basalts and from 4.5 to 11.3 

in two silicic rocks (Table 4, subscript ‘PM’ denotes primitive mantle-normalised values, relative 

to values in McDonough & Sun, 1995). HREE fractionation is modest (Gd/LuPM 1.0–2.4). Some of 

the basaltic samples have patterns resembling those typical of Indian Ocean MORB while others 

match the patterns in Kerguelen Plateau basalts from ODP Site 1138 that have been proposed as 

melts derived from the hotspot at ca 100 Ma (Neal, Mahoney, & Chazey, 2002).  

Eu/Eu* (0.79–1.21 in the basalts, 0.36–0.54 in the silicic rocks) varies considerably and is 

undoubtedly controlled by plagioclase fractionation (viz. petrographic evidence and correlation 

with Al2O3). However, correlation with other parameters (e.g. La/Sm, Zr and radiogenic 

isotopes) suggest further controls, such as addition of a crustal component in some samples. 

Sr–Nd–Pb–Hf isotopes 

The radiogenic isotope compositions (Table 5) for nine of the least altered samples representing 

seven of nine dredges are highly heterogeneous. For example, parent/daughter ratios in eight 

basalts vary widely (87Rb/86Sr 0.03–1.13, 147Sm/144Nd 0.139–0.203, 176Lu/177Hf 0.012–0.028, 
238U/204Pb 2.2–20.9, 232Th/204Pb 9.4–54.9; Table 5). The respective values in rhyolite 12-41 are 

3.65, 0.111, 0.0120, 4.6 and 79.9. The measured isotopic ranges for the basalts are: 87Sr/86Sr 

0.7038 to 0.7147, ε Nd +4.4 to –10.6, εHf +4.7 to –15.7, 206Pb/204Pb 17.28 to 18.32 and 208Pb/204Pb 

38.15 to 39.24 (Table 5). After age correction to 130 Ma, the average of the U–Pb zircon and 

plagioclase 40Ar/39Ar ages obtained here, 87Sr/86Sri, 143Nd/144Ndi and 176Hf/177Hfi in the mafic 

rocks range from 0.7036 to 0.7135, 0.51268 to 0.51197 (εNd +4.3 to –9.7) and 0.28291 to 

0.28231 (εHf +7.2 to –14.1), respectively (Table 5). These isotopic compositions show consistent 

correlations with each other and with chemical indices of differentiation, e.g. Si, Mg, Ti, and Zr 

concentrations (Figures 5 and 6). While we will argue below that this reflects crustal 

contamination, it also indicates that calculated 87Sr/86Sri ratios in the acid-leached samples are 

good estimates of primary 87Sr/86Sr, despite the alteration experienced by the samples. Initial 

isotope ratios in rhyolite DR12-41 (87Sr/86Sri 0.7175, εNd –15.8, εHf –18.8) extend the trends on 

Sr–Nd–Hf isotope plots and in plots of Sr–Nd–Hf isotopes versus Si, Mg and Zr, but not Ti, 

probably because Ti is strongly fractionated in the parental magmas of the most felsic rocks 

(Figure 5). 

Initial Pb isotope ratios (206Pb/204Pb 17.23–18.26, 207Pb/204Pb 15.58–15.68, 208Pb/204Pb 37.94–

38.92; Table 5; Figure 8) do not show strong correlations with each other, with Sr–Nd–Hf 

isotopes, or with chemical parameters, despite the relatively modest age corrections 

(206Pb/204Pb ≤0.12 and 208Pb/204Pb <0.30 in eight of nine samples). This lack of correlation 

suggests that either alteration effects are not sufficiently removed by the strong acid leaching of 

the analysed rock chips, and/or that primary Pb isotope variations were heterogeneous. 

The large ranges in Sr–Nd–Hf isotopic ratios and their correlations with chemical compositions 

(Figures 5, 6 and 8), as well as trace element evidence (high ratios of Th/Nb and La/Nb in the 

mafic rocks; Figure 7), and the geological setting of the ca 130 Ma volcanic rocks on attenuated 

older continental crust, strongly indicate these results reflect a crustal contamination trend. This 

trend, defined by the mafic rocks, appears to be controlled by the same crustal component that 

is even more strongly expressed in the coeval rhyolite, DR12-41. Simple binary mixing lines 

between model mantle- and crustally-derived end-members (Figure 8, details for end-members 
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in figure caption) encompass, or pass close to, the data for the southern Naturaliste Plateau, and 

all other data sets plotted in these figures. The crustal end-member is based on published data 

for the Albany Fraser Orogen in southern Western Australia (Fletcher et al., 1983; Kirkland et al., 

2011; Rosman, Wilde, Libby, & De Laeter, 1980), which was considered the most likely onshore 

equivalent of granites and granitic gneisses recovered from the same Southern Surveyor dredges 

that yielded the basaltic material discussed here (Halpin et al., 2008). εNd in the crustal end-

member is based on the average of a large Nd isotope data set for the Albany Fraser Orogen (H. 

Smithies, pers. comm., augmented by data from Fletcher et al., 1983, εNd130 –19 ± 5, ± 1 σ, n = 70). 

εHf is based on zircon-Hf isotope data reported in Kirkland et al. (2011). For our purpose, the 

initial 176Hf/177Hf recorded in the dated magmatic zircons (ca 1.35, 1.65–1.75 Ga) were ‘aged’ to 

130 Ma using an average crustal 176Lu/177Hf of 0.015 (Goodge & Vervoort, 2006), to yield a range 

of εHf130 of –17 to –26. 87Sr/86Sr in the Albany Fraser Orogen is more difficult to estimate because 

strong heterogeneity is likely and because there are few published data. 87Sr/86Sr130 ratios for 

Meso- to Neoproterozoic granites and sedimentary rocks in the western part of the orogen 

(Rosman et al., 1980; Turek & Stephenson, 1966) are very high (>0.740), consistent with simple 

modelling of Rb-rich rocks of this age; we chose a 87Sr/86Sr130 of 0.74 for the model crustal end-

member. 

While the particular end-member compositions used here may not be representative or unique, 

they are plausible within the regional geological context and fit the data reasonably well. Based 

on the models, up to 70–75% of the Hf and Nd in rhyolite DR12-41 could be crustally derived. 

The least-contaminated samples, with positive εNd–εHf and 87Sr/86Sr of 0.7036–0.7046, contain 

<10% of the model crustal end-member. We note that data for basalts from the northern 

Naturaliste Plateau, from the onshore Bunbury and Rajmahal basalts, and for Cretaceous basalts 

from the Kerguelen Plateau and Broken Ridge are equally well described by these simple mixing 

curves, despite their very different geological locations. 

The Sr–Nd isotope data for basalts dredged from the northern Naturaliste Plateau (Eltanin 

Cruise, ‘NNP’ in Figure 8) resemble those for the southern margin rocks (Figure 8) but Pb 

isotope data follow different trends, with some samples close to the field for modern MORB from 

the Southeast Indian Ridge (Figure 8c, d).  

Discussion 

Comparison of Naturaliste Plateau basalt with the Bunbury Basalt in southwest Australia 

The compositions of mafic rocks from the Naturaliste Plateau and those from the near-coeval 

on-shore Bunbury Basalt overlap substantially, despite the much more limited compositional 

range of the on-shore basalts (Figures 5–7). Both suites show variable upper crustal signatures, 

e.g. in the Th/Nb vs. La/Nb plot (Figure 7) where all samples lie on a trend from primitive 

mantle towards the composition of average upper continental crust, with Naturalist Plateau 

rhyolite DR12-41 showing the highest Th/Nb and La/Nb ratios. Mafic rocks dredged by USNS 

Eltanin from Site 55-12 on the northwest margin of the Naturaliste Plateau (Coleman et al., 

1982) (Figure 1) are similarly evolved, and those basalts less enriched in cumulus plagioclase 

phenocrysts show also high SiO2 (mainly 54–57 wt%), like the more fractionated among our 

dredged Naturaliste Plateau basalts. Mahoney et al. (1995) found that the Eltanin basalts have 

flat to slightly LREE-enriched REE patterns, like those from the southern margin of the 

Naturaliste Plateau, and they show similar large ranges in Th/Nb and La/Nb (Figure 7). 
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The overlap in age (137–130 Ma vs ca 130 Ma) and composition strongly imply a spatial 

continuity between the Bunbury Basalts and basaltic rocks from the southern margin of the 

Naturaliste Plateau. Although undated, available geochemical data suggest that it is also likely 

that the mafic samples dredged from USNS Eltanin on the northwest margin of the Naturaliste 

Plateau are part of the same magmatic province, as suggested by Mahoney et al. (1995). 

Comparison between the Naturaliste and Kerguelen plateaus 

Cretaceous basaltic rocks from the Naturaliste Plateau (and from the onshore Bunbury Basalt) 

generally have higher SiO2 contents (50–60 wt%) than basalts from the Kerguelen Plateau (e.g. 

ODP Site 1138, 45–50 wt%; Figure 5). However, evolved compositions like those from the 

Naturaliste Plateau also occur on the Kerguelen Plateau, e.g. dacite forms the uppermost flow 

drilled at ODP Site 1138 (Neal et al., 2002). Apparently as construction of the two igneous 

plateaus terminated, the flux of mantle-derived basaltic magma slowed sufficiently to enable 

formation of SiO2-rich magma. Plagioclase-rich rocks like those found on the Naturaliste Plateau 

are also dominant at ODP Site 757 on the Ninetyeast Ridge (Frey, Jones, Davies, & Weis, 1991). 

TiO2 concentrations in Naturaliste Plateau basaltic rocks scatter strongly, reaching both lower 

and higher levels than those recorded at ODP Sites 1138 and 738 (Figure 5).  

Isotopic (Sr–Nd–Pb–Hf) data for several tholeiitic mafic suites from the Kerguelen Plateau show 

trends towards evolved signatures similar to old continental crust. These include sites on the 

southern Kerguelen Plateau (ODP Site 738), from Elan Bank (ODP Site 1137) and from its 

conjugate margin, Broken Ridge (R/V Conrad dredge 8; Coffin et al., 2002; Davies et al., 1989; 

Frey, Weis, Borisova, & Xu, 2002; Ingle, Weis, & Frey, 2002a; Ingle, Weis, Scoates, & Frey, 2002b; 

Ingle et al., 2004; Mahoney et al., 1995; Storey et al., 1992). Mahoney et al. (1995) argued that 

these isotopic signatures signal ‘shallow-level incorporation of continental lithosphere in either 

the head of the early Kerguelen plume or in plume-derived magmas’ at ‘sites located closest to 

rifted continental margins’. The strong continental lithospheric signature observed in the 

Cretaceous dredge samples from the southern Naturaliste Plateau, like that observed in the 

Bunbury Basalt (Frey et al., 1996), supports this argument. Furthermore, the correlations of 

some major and trace elements with isotopic compositions (Figures 5 and 6) in the southern 

Naturaliste Plateau samples strongly indicate that the continental signature in these rocks was 

acquired at crustal level. The large geographic spread of the dredge samples and their strongly 

variable chemical and isotopic compositions (even within the same dredge, see data for DR7 and 

DR12; Table 5) imply they represent broadly coeval but spatially separate volcanic centres, each 

with its own magmatic history but involving the same (or similar) juvenile and crustal 

components (Figure 8). The presence of exhumed lower continental crystalline Mesoproterozoic 

crust beneath the volcanic carapace of the Naturaliste Plateau (Halpin et al., 2008) and other 

sectors of offshore Western Australia (Williams, Whittaker, Granot, & Mueller, 2013), provides a 

suitable setting and obvious source for the inferred crustal component in the Cretaceous basalts. 

This is illustrated in Figure 9, which shows the isotope data of Figure 8 with some inferred 

source components (see also Ingle, Weis, Doucet, & Mattielli, 2003). In Hf–Pb isotope space 

(Figure 9a), for example, the southern Naturaliste Plateau basalts appear to be dispersed 

between the putative Kerguelen plume head component and a lower crustal component. Local 

granite gneisses from the same Southern Surveyor dredges have suitable compositions to 

represent this crustal source. The radiogenic Pb data (Figure 9b) are more difficult to interpret 

in terms of the mantle source (or sources involved) but a Lower Crust component (generally 

thought to be associated with low 206Pb/204Pb, see Ingle et al., 2002) is again implied by the data 

trend. The Southern Surveyor gneiss samples shown in Figure 9a are not a suitable match to the 
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crustal component in the southern Naturaliste Plateau (SNP) basalts, as their 208Pb/204Pb is far 

too high. The crustal basement of the Naturaliste Plateau thus is likely to be very heterogeneous, 

in particular in its Sr–Pb isotope composition.  

A rift-fragmented Large Igneous Province in the eastern Indian Ocean 

Extensive dredging and geochronology from R/V Southern Surveyor cruise SS09/2005, together 

with seismic reflection data (Borissova, 2002; Maloney et al., 2011), potential field analyses 

(Direen et al., 2007), and DSDP data (Burkle et al., 1967; Ford, 1975) indicate that an extensive 

post-Valanginian volcanic carapace erupted over the Naturaliste Plateau and the adjacent 

Mentelle Basin (Maloney et al., 2011). This volcanic carapace formed a major unconformable 

landscape surface correlative with a similar surface in the Perth Basin, where it has also been 

drilled and dated (Bradshaw et al., 2003; Dadd et al., 2015; Gorter & Deighton, 2002). Above this 

surface are developed major, kilometre thick, seismically reflective, high velocity mounded 

edifices (Maloney et al., 2011), likely to be mafic volcanoes (Gorter & Deighton, 2002). 

The discovery of major Cretaceous basaltic volcanism mantling the Naturaliste Plateau (this 

study) greatly expands the known volume of ca 130 Ma basaltic volcanism in the eastern and 

northern margins of the wider Indian Ocean basin (Coffin et al., 2002; Duncan, 2002; Frey et al., 

1996; Ingle et al., 2004; Olierook et al., 2016; Zhu et al., 2008). The area of the Naturaliste 

Plateau over which this Early Cretaceous volcanic surface has been encountered is ~90 000 km2 

(this study; Figure 1). Additional extensive early Cretaceous basaltic volcanism within the 

Australian region (Figure 1) that can be correlated to the Naturaliste Plateau in both age and 

composition occurs in the Mentelle Basin (see above, ~44 000 km2; Maloney et al., 2011) and the 

ca 124 Ma Wallaby Plateau (~70 000 km2, Olierook et al., 2015); the onshore 137–130 Ma 

Bunbury Basalts of the Perth Basin (Olierook et al., 2016) cover a relatively small area. 

Elsewhere, additional correlatives include ~40 000 km2 of the Comei-Cona basalt suites in Tibet 

(Zhu et al., 2008, 2009), the Valanginian volcanic sectors of the Enderby Basin (Stagg et al., 

2004), and the Princess Elizabeth Trough (Stagg, Colwell, Borissova, Ishihara, & Bernardel, 

2006) on the Antarctic Plate. Together, these geochemically similar 136–124 Ma basaltic 

volcanics cover a minimum total area of ~244 000 km2. Assuming a thickness of 0.5–1 km 

(Direen et al., 2007; Frey et al., 1996; Maloney et al., 2011; Zhu et al., 2008, 2009), the minimum 

erupted volume is ~1.2 x 106 km3, establishing the 137–124 Ma Naturaliste–Bunbury–Wallaby–

Comei–Cona–Enderby–Antarctic province as a LIP in its own right (Coffin & Eldholm, 1992). 

Geochemical and isotopic data (e.g. Davies et al., 1989; Duncan, 2002; Frey et al., 1996, 2002; 

Ingle et al., 2002a, 2002b, 2003, 2004; Kent et al., 1997, 2002; Mahoney et al., 1995; Neal et al., 

2002; Storey et al., 1992; Zhu et al., 2008, 2009; this study) indicate similarities between these 

ca 130 Ma magmatic rocks and the oldest eruptive phases in the Kerguelen Plateau (ODP Site 

1138: Coffin et al., 2002). Perhaps the most noticeable shared feature is the occurrence of Nb-

depleted basalts (Figure 7d). A characteristic of the continental crust, Nb depletions are 

observed in Cretaceous basalts from ODP sites 738 and 1137 on the Kerguelen Plateau, in the 

Rajmahal Traps, Bunbury Basalt, Wallaby Basin and on the Naturaliste Plateau. 

Conclusions 

Similarities in age, major and trace element composition, and Sr–Nd–Hf–Pb isotopic ratios in the 

now widely dispersed fragments of early Kerguelen hotspot magmatism, including rocks in 

southeast Tibet (Zhu et al., 2008, 2009), northeast India (Kent et al., 1997, 2002), southwest 

Western Australia (Frey et al., 1996; Ingle et al., 2004; Olierook et al., 2016), Wallaby Plateau 
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(Olierook et al., 2015) and the Naturaliste Plateau (this study) document LIP formation at 137–

124 Ma. This LIP predates the earliest known stages recorded from the Kerguelen Plateau (ca 

120 Ma: Coffin et al., 2002, Duncan, 2002) although we note that the currently deepest 

penetration of Kerguelen Plateau igneous basement is only 233 m of an estimated ~20 km total 

thickness (Coffin et al., 2000); older Cretaceous eruptions may yet be found on the Kerguelen 

Plateau. The extensive layer-cake stratigraphy of the 0.5–1 km-thick seismically defined mafic 

cover of the Naturaliste Plateau (Borissova, 2002; Direen et al., 2007), and the absence of 

seaward-dipping reflector sequence crustal architecture that dominates the Australian margin 

north of the Wallaby–Zenith Fracture Zone (Direen et al., 2008; Planke et al., 2000), indicates 

that this plateau and the adjacent Mentelle Basin represent a ~130 000 km2 fragment of the 

Kerguelen LIP, rather than breakup-related volcanism at the margin of continental plates. 

If the extensive basaltic volcanism on the Naturaliste Plateau and Mentelle Basin is indeed an 

early stage of the Kerguelen hotspot volcanism, models involving an “incubating plume” (Coffin 

et al., 2002; Ingle et al., 2002, 2004; Kent et al., 1992; Zhu et al., 2008, 2009) are no longer 

necessary to explain the apparent age difference between this magmatic activity and the oldest 

known volcanism on the Kerguelen Plateau. It also confirms that the Kerguelen hotspot did not 

trigger the contemporaneous continental breakup, even if correlation with the Naturaliste–

Bunbury sequences now mean that its earliest recorded products could be as old as 137 Ma, 

because breakup was already underway and progressing from north (Direen et al., 2008; Mihut 

& Mueller, 1998) to south (Bradshaw et al., 2003; Markl, 1978; Powell et al., 1988) to southwest 

(Gaina et al., 2007; Stagg et al., 2004). The role of mantle plumes or hotspots as a trigger for 

breakup was also recently questioned for the South Atlantic Ocean (Fromm et al., 2015). Open 

questions remain about the possible role of large plate-boundary-forming stresses related to 

rifting in the post-breakup formation of this LIP. 
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Appendix 5. Radiogenic (Sr–Nd–Hf–Pb) isotopes (University of Melbourne). 
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Figure and table captions 

Table 1. RV Southern Surveyor SS09/05 Dredge location and contents. 

Table 2. Abundance of major elements (wt%). 

Table 3. Abundance of trace elements (ppm) analysed by X-Ray Fluorescence. 

Table 4. Abundance of trace elements (ppm) analysed by ICP-MS.  

Table 5. Radiogenic (Sr–Nd–Hf–Pb) isotope compositions. 

 

Figure 1. (a) Regional tectonic setting based on bathymetry of the Indian Ocean. NP, Naturaliste 

Plateau; WP, Wallaby Plateau; WZFZ, Wallaby-Zenith Fracture Zone; NK, northern 

Kerguelen Plateau; CK, central Kerguelen Plateau; SK, southern Kerguelen Plateau; BR, 

Broken Ridge; R, Rajmahal Traps; C, Cona Basalts; H, Houtman Sub-Basin; V, Vlaming Sub-

Basin; Z, Zeewyck Sub Basin; AAP= Argo Abyssal Plain. Map projection is American 

Polyconic, with the central meridian at 85° E. Scale is in meters below sea level. (b) Location 

map of the R/V Southern Surveyor voyage SS2005/09 sample locations on the Naturaliste 

Plateau (Crawford, 2005), regional bathymetry in metres below sea level. Blue numbered 

squares, dredges from this study; red circles, DSDP boreholes (Burkle et al., 1967; Ford, 

1975; Hayes et al., 1975); prior dredge sites from USNS Eltanin (Coleman et al., 1982), 

yellow star; and R/V Marion Dufresne (Beslier et al., 2004), inverted red triangle. Map 

projection is Mercator, Ellipsoid WGS84. 

Figure 2. Reconstructions of east Gondwana breakup. (a) 132 Ma, (b) 128 Ma, (c) 118 Ma, (d) 95 

Ma, (e) 83 Ma and (f) 43 Ma (adapted from Coffin et al., 2002). Blue diamond denotes initial 

preferred location of Kerguelen hotspot, red polygons are outlines of LIP fragments 

associated with this event at 132 Ma, and subsequently. Green polygons are current 

continental outlines, and tan outlines delimit both extended continental crust and Continent 

Ocean Transition Zone regions out to the Continent Ocean Boundary, defined as the inboard 

limit of unambiguous oceanic crust. Abbreviations as for Figure 1, except KP, Kerguelen 

Plateau; CC, Comei-Cona Basalts. Map projection is Stereographic (conformal), with 105° 

and –90° as the viewpoint. 
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Figure 3. U–Pb concordia diagram for zircons from DR10-16 (granophyre), DR11-6 

(monzodiorite) and DR12-29 (rhyolite). Error bars shown at 1σ for clarity, age 

uncertainties given at 1σ. For further details, see Supplementary Papers Appendix 3. 

Figure 4. 40Ar–39Ar step-heating and 36Ar/40Ar vs 39Ar/40Ar isochron diagrams for plagioclase 

separates from DR11-19 (basalt) and dolerites DR12-8 and DR13-33. Plateau age errors are 

calculated as the standard error of the weighted mean; if MSWD>1, errors are calculated as 

the standard error of the weighted mean multiplied by the square root of the MSWD; light-

brown dashed lines indicate the 2σ error envelopes. Further detail, see Supplementary 

Papers Appendix 4. 

Figure 5. Major element compositions of RV Southern Surveyor 2005 cruise dredge samples from 

the southern margin of the Naturaliste Plateau. (a) SiO2 vs MgO, (b) TiO2 vs MgO, (c) Total 

Alkali Silica. TAS, diagram (after Le Bas et al., 1986), showing effects of submarine 

alteration scattering the alkali oxides. Panel (d) shows the Zr/Y vs Zr/Nb variations with 

the alkalic–subalkaline (tholeiitic) divide (after Winchester and Floyd (1977) as modified 

by Pearce (1996)): this identifies almost all of the dredge samples as tholeiitic. (e, f) Initial 
87Sr/86Sr and εNd vs MgO and SiO2, respectively. Data for other sectors of the Naturaliste 

Plateau (DSDP site 264, Eltanin 1972 cruise, see Figure 1), for Cretaceous basaltic suites 

from the Kerguelen Plateau (KP, ODP sites 738 and 1138) and for ca130 Ma Bunbury Basalt 

shown for comparison. Data sources: Coleman et al. (1982), Ford (1975), Frey et al. (1996), 

Mahoney et al. (1995), Neal et al. (2002), Olierook et al. (2016), and Storey et al. (1992). 

Figure 6. Trace element variations (a) Sr vs Ce, (b) Nb vs Ce; (c) Zr vs Ce. Panel (d) shows 

covariation of initial 87Sr/86Sr and εNd with Zr concentration. This implies that the 

measured initial 87Sr/86Sr are robust, despite possible alteration effects on Sr 

concentrations (a). Also shown are available data for DSDP Site 264 and from the Eltanin 

cruise, from the southern and northern Naturaliste Plateau, respectively. Data sources, see 

Figure 5. 

Figure 7. Rare earth element and Th/Nb vs La/Nb systematics. (a) Chondrite-normalised REE 

patterns for the RV Southern Surveyor dredge sample suite (small grey circles). Several of 

the patterns are highlighted: basalt DR7-11, with the highest MgO content (7.26 wt%) of the 

sample suite, has a MORB-like pattern; dolerites 10–39 (6.52 wt% MgO) and DR13-7 (5.35 

wt% MgO) have the most juvenile Sr–Nd isotope ratios of the suite; granophyre DR10-16 

and rhyolite DR12-41 have high LREE/HREE and are Eu-depleted. Eu/Eu* correlates with 

MgO and Al2O3 and anti-correlates with La, La/Sm and SiO2 (not shown). About half of the 

samples have Ce anomalies (negative and positive); Ce/Ce* shows no clear correlation with 

sample composition except LOI. A similar range of REE patterns was reported from undated 

but probably Cretaceous basalts in other sectors of the Naturaliste Plateau (Eltanin and 

DSDP264, grey field). (b) The range of REE patterns in Naturaliste Plateau basalts (grey 

field) completely overlaps that of Cretaceous basalts from the Kerguelen Plateau (ODP1138, 

note strongly LREE-enriched dacite) and onshore Western Australia (Bunbury Basalt). 

Average Indian Ocean MORB shown for comparison (from White & Klein, 2014). Chondrite 

REE concentrations from McDonough and Sun (1995). (c) Th/Nb vs La/Nb (normalised to 

primitive mantle) plot for dredged rocks (red, this study), northern Naturaliste Plateau 

flank (blue). Symbols for other Cretaceous basalts are: Bunbury Basalt (Casuarina and 

Gosselin Suites), Kerguelen Plateau (ODP Sites 738, 1137, 1138). AFO is the field for the 

Albany-Fraser Orogen in southern Western Australia, and UCC and LCC are fields for 
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various averages and sample suites representing the upper and lower continental crust, 

respectively. Data sources: Fitton et al. (2000), Frey et al. (1996), Mahoney et al. (1995), 

Neal et al. (2002), Rudnick & Gao (2104), Storey et al. (1992), and references therein; AFO 

data based on Geological Survey of Western Australia (Hugh Smithies unpubl. data). 

Figure 8. Sr–Nd–Pb–Hf isotope variations for Naturaliste Plateau dredge samples (‘SNP basalts’), 

calculated at 130 Ma. Also shown are data for basalts from other sites on the northern 

Naturaliste Plateau (‘NNP’), Bunbury Basalt, Rajmahal Traps, Broken Ridge, Cretaceous 

basalts from various ODP sites on the Kerguelen Plateau (‘KP’), and modern MORB from the 

SE Indian Ridge (‘SEIR’). (a) Sr–Nd isotopes, binary mixing lines drawn between a mantle 

endmember (300 ppm Sr, 87Sr/86Sr 0.7028, 10 ppm Nd, 143Nd/144Nd 0.51295, εNd +9.5) and 

two crustal endmembers modelled on data for the Albany Fraser Orogen (100 ppm Sr, 

0.740, 40 ppm Nd, 0.51149, –19; 150 ppm Sr, 0.740, 20 ppm Nd, –19). (b) Hf–Nd isotopes, 

mixing lines are for two similar mantle endmembers (1–2 ppm Hf, 176Hf/177Hf 0.28315, εHf 

+15.8, 10 ppm Nd, 143Nd/144Nd 0.51295, εNd +9.5) and two similar crustal endmembers 

modelled on data for the Albany Fraser Orogen (4–5 ppm Hf, 176Hf/177Hf 0.282135, εHf –

20.1, 30 ppm Nd, 143Nd/144Nd 0.51149, εNd –19.0). (c) 207Pb/204Pb vs 206Pb/204Pb. (d) 
208Pb/204Pb vs 206Pb/204Pb. Data sources: Davies et al. (1989), Frey et al. (1996, 2002), 

Graham, Blichert-Toft, Russo, Rubin, & Albarede (2006), Hanan et al. (2013), Ingle et al. 

(2002, 2003, 2004), Kent et al. (1997), Mahoney et al. (1995, 2002), Neal et al. (2002), 

Storey et al. (1992) and dredged gneisses from the southern Naturaliste Plateau (orange 

squares, R. Maas unpubl. data). 

Figure 9. Hf–Pb and Pb–Pb isotope variations for Naturaliste Plateau dredge samples (‘SNP 

basalts’), at 130 Ma. Also shown are data for basalts from other sites on the Naturaliste 

Plateau, Bunbury Basalt, Rajmahal Traps, Broken Ridge, Cretaceous basalts from various 

ODP sites on the Kerguelen Plateau, and modern MORB from the SE Indian Ridge (see 

Figure 8). Various inferred source components (Plume Head, Lower Crust, Upper Crust) 

inferred to be involved in the Cretaceous Kerguelen LIP and Naturaliste Plateau basalts 

(loosely modelled after Ingle et al., 2003) are shown for reference. 
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Table 1. RV Southern Surveyor SS09/05 Dredge location and contents. 

Station# Locality Start Start End End Depth Depth Total Dredge haul description  
  Lat. Long. Lat. Long. Start End Weight  

DR3 Seamount at NW 
end of Leeuwin 
Escarpment 

–34.7698 113.6449 –34.7664 113.6519 3851 3690 20 kg Cobbles of metasediments and 
volcanics plus several white muddy 
limestone cobbles 

DR7 South-facing scarp, 
south margin NP 

–34.9021 112.9389 –34.8697 112.9424 3710 3200 100+ kg Altered vesicular mafic lavas, felsic 
lavas 

DR10 South-facing scarp, 
south margin NP 

–35.0356 112.2374 –35.0358 112.2115 3752 3072 500 kg Coarse qtz-poor felsic intrusive (altered) 
+ abundant altered mafic lavas, 
intrusives and lava breccia 

DR11 South-facing scarp, 
south margin NP 

–35.1058 111.9827 –35.0969 111.9830 3600 3180 500 kg Angular blocks granodiorite, altered 
mafic lavas and lava breccia 

DR12 South-facing scarp, 
south margin NP 

–35.0586 111.7235 –35.0393 111.7251 3700 3250 500 kg Altered mafic volcanics, felsic lavas 

DR13 South-facing scarp, 
south margin NP 

–35.0349 111.6074 –35.0074 111.6140 3800 3130 500 kg Altered volcanics 

DR16 South-facing scarp, 
south margin NP 

–35.0592 110.8759 –35.0577 110.8788 4140 3120 200 kg Weathered and altered mafic volcancis 

DR20 South-facing scarp, 
south margin NP 

–35.0943 110.3241 –35.0908 110.3060 3850 3325 5 kg Altered mafic volcanics 

DR21 South-facing scarp, 
south margin NP 

–35.0459 110.4159 –35.0410 110.4165 3900 3100 5 kg in pipe 
dredge 

Gneiss fragments 
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Table 2. Abundance of major elements (wt%). 

Dredge # Sample description SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Loss 
inc S

–
 

Total 

3-2 Plagioclase-phyric, slightly vesicular basalt 54.28 2.93 18.56 8.71 0.08 1.14 4.81 3.47 5.33 0.67 2.67 99.66 

3-3 Plagioclase-phyric dolerite 49.22 1.80 18.56 12.48 0.08 2.42 10.31 3.38 1.37 0.38 7.25 100.07 

3-5 Altered glassy plagioclase-phyric basalt 52.12 1.77 19.66 12.20 0.08 2.03 5.55 3.30 2.99 0.29 6.78 99.74 

3-7 Plagioclase-phyric basalt 50.18 1.49 20.76 13.17 0.06 2.13 6.43 3.26 2.33 0.18 6.28 99.74 

7-2 Olivine-bearing dolerite 55.50 3.72 14.83 11.89 0.12 2.54 5.51 3.30 2.09 0.50 3.17 99.66 

7-5 Olivine-bearing dolerite 53.23 3.41 13.27 14.02 0.17 3.42 7.05 2.99 2.00 0.45 2.38 100.46 

7-10 Plagioclase-phyric basalt 51.41 1.29 17.45 9.62 0.11 7.10 9.14 3.40 0.34 0.12 3.63 99.75 

7-11 Plagioclase-phyric basalt, relatively 
unaltered 

51.27 1.27 17.00 10.10 0.14 7.26 9.33 3.18 0.31 0.13 2.55 99.85 

7-28 Plagioclase-phyric basalt, moderate 
alteration 

51.47 1.23 17.08 9.93 0.11 7.23 9.30 3.21 0.31 0.12 2.69 99.95 

10-5 Plagioclase- and clinopyroxene-phyric 
basalt, slightly vesicular 

50.01 2.82 15.40 16.52 0.25 2.35 7.08 3.77 0.97 0.84 4.85 100.14 

10-14 Gabbro 49.96 1.48 21.76 8.71 0.14 2.85 10.53 3.37 0.86 0.34 2.23 99.94 

10-16 Granophyre 75.39 0.24 12.39 2.81 0.03 0.16 0.12 3.86 4.98 0.03 0.82 100.11 

10-39 Dolerite 49.54 1.89 15.13 13.12 0.28 6.52 9.42 3.20 0.64 0.26 2.77 99.70 

10-67 Aphyric basalt 50.10 1.71 17.72 11.49 0.10 4.87 9.43 3.30 1.07 0.22 5.38 99.74 

10-104 Very plagioclase phyric, vesicular basalt 54.52 1.58 19.35 8.70 0.13 3.79 6.90 3.45 1.31 0.29 6.10 100.05 

11-8 Dolerite, quite altered 50.54 1.31 17.13 10.88 0.15 7.29 8.72 3.37 0.44 0.17 3.11 100.26 

11-9 Coarsely plagioclase-phyric basalt 55.75 2.50 14.49 12.97 0.12 2.68 4.87 3.16 2.90 0.56 2.08 100.15 

11-19 Plagioclase+clinopyroxene (both fresh) and 
altered olivine-phyric basalt or microdolerite 

52.10 1.56 15.51 11.32 0.16 5.28 10.34 3.09 0.49 0.15 1.20 99.92 

11-20 Dolerite 51.92 1.94 14.74 12.56 0.17 5.21 9.20 3.44 0.60 0.22 1.50 100.24 

11-25 Dolerite 49.37 1.74 16.81 11.87 0.15 7.16 8.23 3.62 0.77 0.27 2.96 100.00 

12-1 Plagioclase phyric, slightly altered basalt 49.65 1.23 14.99 12.92 0.20 6.36 11.35 2.52 0.63 0.14 1.61 100.46 

12-3 Plagioclase- and clinopyroxene-phyric 
dolerite, moderately altered 

52.73 1.31 14.24 12.10 0.16 6.63 7.55 2.47 2.64 0.16 3.47 100.57 

12-17 Plagioclase-phyric, altered basalt 51.37 2.13 16.31 14.21 0.15 4.36 7.41 2.84 0.91 0.30 4.62 99.81 

12-18 Aphyric basalt 48.57 2.96 16.08 17.28 0.22 4.26 4.88 3.88 1.29 0.56 5.67 99.94 

12-20 Aphyric altered basalt with fresh 
clinopyroxene 

54.27 2.01 15.43 12.15 0.16 4.00 6.12 2.90 2.68 0.27 3.82 99.71 
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12-34 Massive plagioclase- and olivine-phyric 
basalt 

50.62 1.61 14.85 12.93 0.19 5.68 10.78 2.82 0.36 0.16 1.15 99.95 

12-38 Plagioclase-phyric basalt 48.95 2.03 18.16 15.97 0.22 2.52 6.55 2.96 1.91 0.73 5.65 99.71 

12-41 Rhyolite, altered glass, quartz–K-feldspar-
phyric 

75.47 0.28 12.10 2.90 0.05 0.79 0.90 3.36 4.04 0.11 1.90 99.68 

12-53 Olivine- and plagioclase-phyric, very altered 
basalt 

54.76 2.04 15.36 13.84 0.14 3.88 4.81 2.98 1.88 0.32 5.18 99.92 

13-1 Plagioclase-phyric, altered basalt 52.72 1.50 14.46 13.16 0.17 5.60 7.39 3.16 1.64 0.20 6.56 100.55 

13-7 Plagioclase-phyric dolerite 49.61 0.85 21.10 7.71 0.09 5.35 11.87 2.88 0.43 0.09 2.89 100.41 

13-34 Plagioclase- and olivine-phyric basalt 51.28 1.70 16.89 12.36 0.17 6.00 3.45 4.21 3.74 0.20 7.11 99.96 

13-36 Vesicular basalt with zeolites 48.81 1.81 18.24 13.02 0.09 5.06 7.20 3.72 1.77 0.27 4.81 99.67 

13-47 Aphyric, slightly vesicular basalt 50.80 1.38 15.15 12.94 0.15 5.91 9.66 2.95 0.91 0.17 3.93 99.91 

13-51 Clay-altered plagioclase-phyric basalt 51.05 1.89 17.42 13.31 0.16 3.08 6.90 3.19 2.50 0.50 5.76 100.29 

13-52 Clay-altered plagioclase-phyric basalt 50.64 1.92 18.59 10.53 0.10 5.17 7.61 3.74 1.46 0.24 4.29 99.67 

13-56 Plagioclase, clinopyroxene, altered olivine 
gabbro–dolerite 

50.77 1.74 18.78 10.83 0.10 2.92 9.63 3.38 1.59 0.26 2.39 99.94 

13-61 Large vesicular basalt 50.70 1.57 14.22 13.67 0.20 6.23 9.57 2.78 0.92 0.14 3.21 100.47 

13-62 Plagioclase and altered olivine gabbro 50.61 1.95 18.83 10.09 0.09 5.13 7.80 3.71 1.53 0.25 3.94 99.94 

16-2 Plagioclase-phyric vesicular basalt 55.99 1.93 14.48 14.47 0.16 1.90 4.59 2.90 3.10 0.50 3.97 99.90 

16-9 Clinopyroxene- and plagioclase-phyric 
gabbro 

48.01 2.56 17.57 16.32 0.22 1.91 7.02 3.60 1.46 1.34 6.41 99.83 

16-10 Clinopyroxene- and plagioclase-phyric 
gabbro 

50.53 0.79 18.27 10.70 0.16 5.12 9.90 2.79 1.62 0.11 3.72 99.75 

20-1 Plagioclase- and clinopyroxene-phyric, 
segregation vesicles 

55.66 1.39 13.29 12.79 0.16 3.77 6.74 3.53 2.46 0.22 2.54 99.99 

20-8 Plagioclase-phyric, altered basalt 51.86 1.01 16.27 12.65 0.21 5.23 7.36 4.00 1.25 0.18 3.62 99.86 

21-15 Moderately altered gabbro 48.13 1.93 17.11 19.11 0.24 2.03 5.83 2.79 2.49 0.33 5.63 99.73 

21-17 Dolerite 51.74 1.29 14.54 13.75 0.16 5.41 9.42 2.77 0.75 0.16 2.12 99.51 
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Table 3. Abundance of trace elements (ppm) analysed by X-Ray Fluorescence. 

Dredge # Rb Sr Ba Sc Cr V Ni Cu Zn Zr Nb Y Ce 

3-2 89.9 491 1250 34.8 20.6 270 11.1 20.0 163 258 26.5 58.7 69.3 

3-3 17.8 260 405 39.1 162 251 25.2 31.7 149 227 9.5 41.5 56.3 

3-5 43.7 296 511 40.1 109 139 44.8 63.1 145 137 10.0 25.7 26.6 

3-7 43.8 241 269 40.4 187 154 59.6 39.3 158 89.5 6.1 18.0 16.0 

7-2 50.9 239 644 42.5 27.0 352 23.7 26.9 105 357 23.5 55.4 83.2 

7-5 50.5 222 636 31.9 25.6 311 16.0 26.3 153 314 20.6 61.5 86.1 

7-10 1.7 201 102 30.4 304 188 56.1 34.4 118 87.9 2.6 24.2 18.7 

7-11 1.6 199 102 31.1 294 188 51.9 28.6 118 87.4 3.8 25.2 19.6 

7-28 2.1 199 97.2 29.4 298 184 51.3 27.8 104 84.1 3.6 24.3 16.5 

10-5 13.0 292 198 36.9 26.9 173 37.1 71.8 223 265 15.6 64.9 56.3 

10-14 12.2 366 80 24.3 54.6 164 44.2 90.7 95.2 87.7 4.5 33.9 18.4 

10-16 138 45.1 592 <2 2.7 19.2 5.6 11.9 81.4 614 40.7 40.8 108 

10-39 10.4 270 113 32.6 144 245 79.8 87.6 125 116 7.3 28.6 26.2 

10-67 22.9 274 36 37.8 350 224 68.4 112 325 85.5 5.2 24.0 13.7 

10-104 54.9 275 58.5 36.9 306 194 77.1 129 254 85.7 5.2 24.3 16.4 

11-8 8.5 270 141 29.2 234 196 84.3 44.0 159 82.1 3.8 20.8 15.6 

11-9 75.5 307 961 29.5 11.5 234 26.2 26.7 174 361 18.0 51.0 94.4 

11-19 12.7 207 196 39.8 205 274 51.2 110 106 84.4 4.7 28.0 11.1 

11-20 27.3 250 70.1 37.8 318 286 46.5 71.6 111 115 4.9 31.4 18.4 

11-25 15.9 424 247 27.8 81.6 189 77.9 33.6 131 121 8.5 24.5 26.4 

12-1 19.2 124 79 49.0 255 345 105 143 98.8 73.3 3.2 28.7 14.6 

12-3 104 224 306 41.2 174 259 77.7 107 127 93.4 1.9 30.3 14.7 

12-8 29.9 105 129 53.6 96.1 402 72.4 168 118 126 3.8 39.6 22.8 

12-17 20.3 215 103 42.3 206 247 70.0 96.5 155 156 7.6 37.4 37.0 

12-18 23.9 178 123 42.1 64.2 357 107 125 275 252 13.4 59.8 66.6 

12-20 71.5 236 329 39.6 198 248 72.4 85.1 154 150 7.3 35.4 42.0 

12-34 8.7 169 32.3 49.3 195 348 61.6 135 114 97.3 2.4 30.8 14.0 

12-38 39.5 210 152 55.0 159 296 120 264 252 144 4.1 42.3 28.2 

12-41 125 108 809 2.2 1.9 20.3 32.2 26.1 103 539 28.0 63.7 213 

12-53 50.8 200 310 38.5 174 202 89.5 110 203 149 6.7 35.5 36.1 

13-1 15.3 179 102 44.2 99.7 279 45.3 135 113 98.2 4.3 30.9 18.3 

13-7 12.1 167 51.3 42.8 228 252 66.9 94.9 90.4 45 1.6 15.0 7.49 

13-34 58.0 244 533 23.1 61.1 152 70.9 53.5 115 135 5.3 31.1 34.6 

13-36 96.1 294 347 25.6 59.6 192 77.9 55.2 148 147 7.0 33.9 39.0 

13-47 20.8 137 64.3 57.0 82.5 361 55.1 141 141 90.9 3.4 33.7 20.6 

13-51 73.0 234 236 38.4 103 168 75.0 110 184 142 7.2 39.8 35.4 

13-52 25.8 294 374 24.7 65.9 175 68.5 49.3 127 159 6.9 30.7 39.1 

13-56 28.6 287 360 35.6 113 261 42.3 44.3 54.3 139 7.1 28.4 32.6 

13-61 14.5 167 100 46.8 112 341 43.2 93.0 110 106 4.3 31.6 18.0 

13-62 26.3 304 386 26.7 65.0 182 65.5 50.9 108 159 6.7 31.3 37.6 

16-2 68.8 260 310 46.4 35.6 368 48.2 121 181 175 8.5 42.8 44.8 

16-9 21.2 210 261 64.6 35.6 509 67.4 160 268 232 10.9 81.0 68.7 

16-10 57.4 132 122 47.6 134 272 83.0 131 144 50.7 1.9 19.2 14.0 

20-1 71.5 194 463 36.6 33.5 330 30.8 67.2 98.4 157 15.5 40.0 56.4 

20-8 37.1 187 233 51.3 154 294 93.7 153 118 53.1 2.9 22.3 15.5 

21-15 52.2 149 248 70.7 121 562 106 107 242 138 6.1 40.6 36.8 

21-17 20.0 144 228 51.0 71.2 387 44.0 80.1 116 93.9 6.5 26.2 23.2 
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Table 4. Abundance of trace elements (ppm) analysed by ICP-MS.  

Dredge 
# 

Li Be Rb Sr Ba Sc V Cr Co Ni Cu Zn Ga Y Zr Hf Nb Ta Pb U Th 

3-2 10.1 1.26 85.6 478 1150 29.8 249 19.8 46.9 9.05 18.6 166 29.0 60.7 250 6.35 26.2 1.75 10.9 0.716 1.78 

7-5 10.9 1.42 50.2 213 536 34.4 293 25.3 75.6 14.2 25.4 162 23.6 63.9 318 7.90 21.3 1.54 13.0 0.857 5.40 

7-11 24.3 0.44 1.95 191 89.5 27.6 175 267 64.1 49.5 25.3 113 20.5 25.8 88.1 2.32 3.42 0.288 4.26 0.228 1.15 

10-5 14.8 1.04 13.4 280 174 31.4 149 21.9 50.6 33.8 68.5 219 27.3 67.7 265 7.01 15.5 1.10 3.94 0.493 2.89 

10-16 – 7.28 138 41.9 538 3.2 1.42 16.2 1.46 90.8 13.0 102 29.0 40.9 224 7.51 39.2 3.34 10.3 1.21 14.2 

10-39 13.1 0.86 10.3 253 92.4 35.2 248 144 73.8 69.3 81.0 124 21.1 28.4 78.2 2.20 7.17 0.563 4.23 0.227 0.614 

11-9 20.5 1.53 77.3 290 879 24.0 201 9.21 47.7 21.9 24.3 172 24.4 53.8 326 8.14 19.4 1.34 15.9 0.555 3.93 

11-25 41.8 0.77 15.8 409 231 26.9 179 75.9 63.4 72.0 29.9 126 20.5 25.0 64.6 2.10 9.28 0.67 3.88 0.269 0.827 

12-20 22.1 0.87 71.8 224 292 35.8 226 182 54.6 67.3 85.8 149 19.1 37.7 147 3.81 7.21 0.528 4.61 0.444 3.04 

12-34 11.7 0.50 9.11 165 30.5 48.3 325 188 73.4 57.6 136 118 20.2 32.8 98 2.65 2.7 0.30 0.887 0.41 0.40 

12-41 17.6 2.86 129 103 793 3.5 17.7 1.14 42.7 30.5 27.4 105 14.9 66.1 404 11.5 27.0 1.98 30.3 2.21 36.9 

13-7 38.1 0.27 12.1 158 41.2 37.5 222 220 70.4 63.2 88.7 95.2 18.1 15.2 43.4 1.21 1.79 0.173 0.455 0.151 0.224 

13-52 54.1 0.80 26.5 281 329 26.1 171 65.5 54.3 65.1 48.6 133 22.4 32.0 157 3.96 6.68 0.485 4.88 0.292 1.67 

16-9 30.9 1.24 22.1 199 226 54.7 434 31.1 74.5 63.6 162 269 27.2 85.2 229 6.11 10.4 0.691 12.2 2.07 7.36 

20-1 11.9 0.77 71.1 182 427 38.3 298 29.5 62.4 28.4 65.0 100 18.6 41.3 153 4.01 15.5 0.82 7.14 0.691 5.95 
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Table A5.1 Whole rock radiogenic isotope compositions, with replicates after low-pressure (LP) and high-pressure (HP) dissolution 

7-5 HP 7-11 10-39 11-9 LP 11-9 HP 12-20 12-41 LP 12-41 HP 13-7 20-1 

dolerite basalt dol/gabb basalt basalt dolerite rhyolite rhyolite dolerite basalt 

53.23 51.27 49.54 55.75 55.75 54.27 75.47 75.47 49.61 55.66 

3.42 7.26 6.52 2.68 2.68 4.00 0.79 0.79 5.35 3.77 

50.2 1.99 10.34 77.3 77.3 71.9 129.2 129.2 12.12 71.1 

213.0 191.2 253.4 290.0 290.0 224.1 102.6 102.6 158.5 181.7 

0.683 0.03 0.118 0.772 0.772 0.928 3.65 3.65 0.221 1.132 

 0.714607 0.707639 0.70383 0.712857 0.712846 0.711437 0.724667 0.724088 0.704974 0.713197 

10.66 3.51 4.74 11.38 11.38 5.93 14.84 14.84 1.83 5.64 

42.35 10.75 14.11 49.57 49.57 22.11 80.81 80.81 5.57 24.14 

0.152 0.198 0.203 0.139 0.139 0.139 0.111 0.111 0.199 0.141 

 0.512121 0.512369 0.512858 0.512087 0.512094 0.512309 0.511736 0.51175 0.512816 0.512226 

–10.0 –5.1 4.4 –10.6 –10.5 –6.3 –17.5 –17.2 3.6 –7.9 

0.92 0.36 0.34 0.69 0.69 0.49 0.97 0.97 0.24 0.67 

7.9 2.32 2.2 8.14 8.14 3.81 11.46 11.46 1.21 4.01 

0.0165 0.022 0.0219 0.012 0.012 0.0183 0.012 0.012 0.0282 0.0237 

 0.282462 0.282683 0.282919 0.282396 0.282402 0.282694 0.282211 0.282203 0.282974 0.282588 

–11.4 –3.6 4.7 –13.8 –13.5 –3.2 –20.3 –20.6 6.7 –7.0 

0.86 0.23 0.23 0.56 0.56 0.44 2.21 2.21 0.15 0.69 

5.4 1.15 0.61 3.93 3.93 3.04 36.92 36.92 0.22 5.95 

13.03 4.26 4.23 15.90 15.90 4.61 30.31 30.31 0.45 7.14 

4.2 3.4 3.4 2.2 2.2 6.0 4.6 4.6 20.9 6.2 

27.1 17.6 9.4 15.9 15.9 43.2 79.9 79.9 31.7 54.9 

17.817 17.793 18.327 17.277 17.290 17.727 17.539 17.537 17.867 17.885 

15.68 15.637 15.602 15.592 15.588 15.622 15.632 15.631 15.597 15.664 

38.633 38.464 38.186 38.15 38.151 38.989 39.241 39.219 38.146 39.267 

0.71337 0.70758 0.70362 0.71146 0.71144 0.70975 0.71804 0.71746 0.70457 0.71114 

 0.511992 0.512201 0.512685 0.511969 0.511976 0.512191 0.511642 0.511656 0.512647 0.512106 

–9.2 –5.2 4.3 –9.7 –9.5 –5.4 –16.1 –15.8 3.5 –7.0 

 0.282422 0.282630 0.282866 0.282367 0.282373 0.282650 0.282182 0.282174 0.282906 0.282530 

–9.9 –2.6 5.8 –11.9 –11.7 –1.9 –18.4 –18.7 7.2 –6.1 

17.73 17.72 18.26 17.23 17.25 17.60 17.45 17.44 17.44 17.76 

15.68 15.63 15.60 15.59 15.59 15.62 15.63 15.63 15.58 15.66 

38.46 38.35 38.13 38.05 38.05 38.71 38.73 38.70 37.94 38.91 
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