Observation of the $E_b^- \rightarrow J/\psi AK^-$ decay

The LHCb Collaboration

1. Introduction

Since the birth of the quark model, the possibility of forming baryonic states from combinations of quarks other than three valence quarks has been considered [1,2]. For example, states with four quarks and an antiquark, referred to as pentaquarks [3], have been searched for experimentally for many years. As observed with the LHCb detector at the LHC, the distribution of invariant mass of the $J/\psi p$ system in $A_b^0 \rightarrow J/\psi (\rightarrow \mu^+\mu^-) pK^-$ decays shows a narrow peak suggestive of $uudc\bar{c}$ pentaquark formation [4–6]. The inclusion of charge conjugate processes is implied throughout the text. From a six-dimensional amplitude model fit, two pentaquark resonances, decaying into $J/\psi p$, are observed with large significances [4].

As suggested in Ref. [7], a hidden-charm pentaquark with open strangeness (udsc\bar{c}) [8] could be observed as a $J/\psi \Lambda$ state in the decay $E_b^- \rightarrow J/\psi AK^-$. The decay is similar to $A_b^0 \rightarrow J/\psi pK^-$, and differs from the latter by exchanging one u spectator quark with a s spectator quark, as illustrated in Fig. 1(a). An additional diagram can contribute to the E_b^- decay, as illustrated in Fig. 1(b), where the s spectator quark forms the K^- meson instead of the Λ baryon.

In this Letter, we present the first observation of the $E_b^- \rightarrow J/\psi AK^-$ decay. Using the decay $A_b^0 \rightarrow J/\psi \Lambda$ as normalisation

$$R_{E_b^-/A_b^0} = \frac{f_{E_b^0} B(E_b^- \rightarrow J/\psi AK^-)}{f_{A_b^0} B(A_b^0 \rightarrow J/\psi \Lambda)} = \frac{N(E_b^- \rightarrow J/\psi AK^-)}{N(A_b^0 \rightarrow J/\psi \Lambda)} \frac{\epsilon_{\text{rel}}}{\epsilon},$$

where $f_{E_b^0}$ and $f_{A_b^0}$ are the $b \rightarrow E_b^-$ and $b \rightarrow A_b^0$ fragmentation fractions, B represents the branching fraction of the corresponding b-baryon decay, $N(E_b^- \rightarrow J/\psi AK^-)$ and $N(A_b^0 \rightarrow J/\psi \Lambda)$ are the signal yields, and $\epsilon_{\text{rel}} = \epsilon(A_b^0 \rightarrow J/\psi \Lambda)/\epsilon(E_b^- \rightarrow J/\psi AK^-)$ is their relative efficiency. We also present a measurement of the mass difference between the E_b^- and A_b^0 baryons. Measurements

http://dx.doi.org/10.1016/j.physletb.2017.06.045
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
of the Σ^-_b mass to date have been obtained using absolute mass measurements and a single measurement of the mass difference $\delta M \equiv M(\Sigma^-_b) - M(\Lambda_b^0)$ [9]. Earlier measurements from the Tevatron [10] are, however, in tension (2.1 standard deviations) with the recent and most precise value from the LHCb experiment [11], obtained from the measurement of δM. The present analysis offers an opportunity to provide a second precise measurement of δM using a data sample that is statistically independent of other measurements of the Σ^-_b mass from LHCb.

2. Data sample and detector

The measurement is based on a data sample corresponding to 1 fb$^{-1}$ of integrated luminosity collected by the LHCb experiment in pp collisions at 7 TeV centre-of-mass energy in 2011, and 2 fb$^{-1}$ at 8 TeV in 2012. The LHCb detector [12,13] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/|p_T|) \mu$m, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov (RICH) detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger [14], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage. For this analysis, triggers that select J/ψ candidates are used for both signal and normalisation channels. The hardware trigger requires at least one muon with $p_T > 1.48$ (1.76) GeV/c, or two muons with $\sqrt{p_T(\mu_1)p_T(\mu_2)} > 1.3$ (1.6) GeV/c, in the 2011 (2012) data sample. The subsequent software trigger is composed of two stages, the first of which performs a partial reconstruction and requires either a pair of well-reconstructed, oppositely charged muons having an invariant mass above 2.7 GeV/c^2, or a single well-reconstructed muon with $p_T > 1$ GeV/c and high IP at all PVs of the event. The second stage of the software trigger requires a pair of oppositely charged muons to form a good-quality vertex that is well separated from all PVs, and which has an invariant mass within ±120 MeV/c^2 of the known J/ψ mass [9].

In the simulation, pp collisions are generated using PYTHIA 8 [15,16] with a specific LHCb configuration [17]. Decays of hadronic particles are described by EVTGEN [18], in which final-state radiation is generated using PHOTOS [19]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [20,21] as described in Ref. [22]. The signal decays of Λ_b^0 and Σ^-_b baryons are simulated according to a phase-space model.

3. Selection requirements

The $\Sigma^-_b \to J/\psi \Lambda K^-$ and $\Lambda_b^0 \to J/\psi \Lambda$ candidates are reconstructed using the decays $J/\psi \to \mu^+ \mu^-$ and $\Lambda \to p \pi^-$. An offline selection is applied after the trigger, based on a loose preselection, followed by a multivariate classifier based on a Gradient Boosted Decision Tree (BDTG) [23].

In the preselection, the J/ψ candidates are formed from two oppositely charged particles with $p_T > 500$ MeV/c, identified as muons and consistent with originating from a common vertex but inconsistent with originating from any PV. The invariant mass of the $\mu^+ \mu^-$ pair is required to be within $[-48, +43]$ MeV/c^2 of the known J/ψ mass [9].

The Λ candidates are formed by combining candidate p and π particles with large χ^2_p, where χ^2_p is defined as the difference in the x^2 of the vertex fit for a given PV reconstructed with and without the considered particle. Given the long lifetime of the Λ baryon, its decay vertex can be reconstructed either from a pair of tracks that include segments in the VELO, called long tracks (LL Λ candidates), or from a pair of tracks reconstructed using only the tracking stations downstream of the VELO, called downstream tracks (DD Λ candidates). The invariant mass of the $p\pi^-$ pair is required to be within 4 (6) MeV/c^2 of the known Λ mass [9] for the LL (DD) Λ candidates. For the LL Λ candidates, both the proton and the pion must have $p_T > 250$ MeV/c, and pass loose particle identification (PID) criteria based on information provided by the RICH detectors. For the DD Λ candidates, the decay vertex must not be reconstructed in the first half of the VELO. To remove background from $K_b^0 \to \pi^+\pi^-\pi^-$ decays, the reconstructed mass for the LL (DD) Λ candidate under the $\pi^+\pi^-$ hypothesis is required to be more than 4 (10) MeV/c^2 away from the known K_b^0 mass [9].

The Σ^-_b and Λ_b^0 candidates are formed from a J/ψ and a Λ candidate, combined with a kaon candidate for the Σ^-_b baryon, where the kaon candidate must have $p_T > 250$ MeV/c and large χ^2_K. Each reconstructed b-baryon candidate is required to have $\chi^2_K < 25$ with respect to at least one PV, and is associated to the one which the χ^2_K is smallest. The candidate decay vertex must also have a fit with good χ^2 and a separation of at least 1.5 mm from the PV. The angle, θ, between the b-baryon momentum and the vector from the associated PV to the decay vertex must satisfy $\cos \theta > 0.999$. For both b baryons fiducial cuts of $p_T < 25$ GeV/c and rapidity in the range $2.0 < y < 4.5$ are required to have a well-defined kinematic region in which the measurement is performed. There are only 0.2% events outside the fiducial kinematic region. A kinematic fit [24] is applied to the Σ^-_b and Λ_b^0 candidates, with the J/ψ and Λ masses constrained to the known values [9], and the b-baryon candidate constrained to point back to its PV. As a result, the mass resolution is improved by 60%, with most of the improvement coming from the constraints on the J/ψ and Λ masses.

The $\Sigma^-_b \to J/\psi \Lambda K^-$ and $\Lambda_b^0 \to J/\psi \Lambda$ candidates passing the preselection are filtered with a BDTG to further suppress the combinatorial background. For the Σ^-_b decay, the following discriminating variables are used: the minimum DLL$_{\mu\pi}$ (defined as the difference in the logarithms of the likelihood ratios from the particle identification systems [25] for the muon and pion hypotheses) and the minimum p_T within the muon pair; the χ^2_K of all other final-state tracks and the Λ baryon; the p_T of the p, π, K and J/ψ candidates; the decay length and the vertex fit χ^2 of the Λ candidate; the χ^2 of the kinematic fit, $\cos \theta$ and the decay time of the Σ^-_b baryon. The BDTG is trained on a simulated $\Sigma^-_b \to J/\psi \Lambda K^-$ sample for the signal; data candidates with $5944 < m(J/\psi \Lambda K^-) < 6094$ MeV/c^2 are used to model the background. The LL and DD samples are trained separately. The optimal
working point on the BDTG response and the PID variable of the kaon is determined by maximising the significance of the expected \(\mathcal{S}_b^- \) signal, \(S/\sqrt{S+B} \), where \(S \) (\(B \)) is the expected signal (background) yield in a range corresponding to \(\pm 2.5 \) times the mass resolution at the known \(\mathcal{S}_b^- \) mass [9]. The \(S \) value is calculated as the product of an initial signal yield determined from the data at BDTG > 0, and the relative efficiency with respect to the BDTG selection obtained from the simulation. The value of \(B \) is estimated from the data sidebands. The final BDTG working point has a signal efficiency of 90% (70%) and a background rejection rate of 97% (99%) for LL (DD) samples.

The normalisation channel uses a separate training for the BDTG, where the variables for the \(K^- \) meson are excluded. The background training sample is taken from the \(J/\psi \Lambda \) invariant mass regions with \(150 < |m(J/\psi \Lambda) - m_{c\bar{c}}| < 350 \text{ MeV}/c^2 \), where \(m_{c\bar{c}} \) is the known \(\Lambda^0 \) mass [9]. The optimal requirement on the BDTG response for the normalisation mode is the same as for the signal channel. For both samples, in 0.3% of the cases multiple candidates are found, all of which are retained in the analysis.

4. Signal yields

In each of the two categories (LL and DD), a simultaneous extended unbinned maximum likelihood fit to the \(\mathcal{S}_b^- \) and \(\Lambda^0 \) candidates’ invariant mass distributions is performed to determine the respective \(\mathcal{S}_b^- \) and \(\Lambda^0 \) signal yields. The data, separated by category, and the results of the two fits are shown in Fig. 2.

In the fit of each sample, the signal shape is modelled by a Hypatia function [26]. The mean values and the resolutions of the functions are allowed to vary in the fit, with the ratio of the \(\mathcal{S}_b^- \) to \(\Lambda^0 \) mass resolution and the tail parameters fixed to the values obtained from simulation. The combinatorial background is modelled by an exponential function whose parameters are determined by the fit. A partially reconstructed background component, which comes from the decay \(\mathcal{S}_b^- \rightarrow J/\psi \Sigma^0 K^- \) with \(\Sigma^0 \rightarrow \Lambda \gamma \), is taken into account in the \(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^- \) sample. The shape of this background is determined from simulation, and its yield is free to vary in the fit. In each \(\Lambda \) category, the fit is simultaneously done for the signal and control channels. The fit procedure is validated by large sets of pseudo-experiments.

In the LL samples, the signal yields are found to be \(\mathcal{N}(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^-) = 99 \pm 12 \) and \(\mathcal{N}(\Lambda^0_\Lambda \rightarrow J/\psi \Lambda) = 4838 \pm 72 \). The corresponding values in the DD samples are \(209 \pm 17 \) and \(12499 \pm 125 \), respectively. The \(\mathcal{S}_b^- \rightarrow J/\psi \Sigma^0 K^- \) background yields are \(72 \pm 25 \) and \(221 \pm 37 \) in the LL and DD samples, respectively. A likelihood ratio test \(\Delta(L) = -2 \ln (C_\mathcal{S}^-/C_{\mathcal{S}+b}) \) is used to estimate the \(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^- \) signal significance, where \(C_b \) and \(C_{\mathcal{S}+b} \) stand for the likelihood values of the background-only hypothesis and the signal plus background hypothesis, respectively. A fit to the combined data samples of LL and DD categories is performed to estimate the total signal significance. The value of \(\Delta(L) \) is 464.8. Accounting for two additional parameters associated with the signal component in the \(L_{\Lambda+b} \) fit, this corresponds to a significance of 21 standard deviations [27].

5. Efficiency corrections

The total efficiency of each decay mode consists of the geometrical acceptance of the detector, the efficiencies of the trigger, the reconstruction and selection, and the hadron identification. The first three efficiency factors are determined from samples of simulated events generated within the kinematic region \(p_T < 25 \text{ GeV}/c \) and \(2.0 < y < 4.5 \) for both \(b \) baryons. The hadron PID efficiency is determined using calibration data of \(D^{\pi^+} \rightarrow D^0(\rightarrow K^- \pi^+)\pi^+ \) and \(\Lambda^+ \rightarrow p K^- \pi^+ \) decays. Events in the calibration samples are weighted to reproduce the momentum, pseudorapidity and event multiplicity distributions of the hadrons from \(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^- \) and \(\Lambda^0 \rightarrow J/\psi \Lambda \) decays. The relative efficiency is estimated to be \(\epsilon_{rel} = \epsilon(\Lambda^0_\Lambda \rightarrow J/\psi \Lambda)/\epsilon(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^-) = 1.964 \pm 0.028 \) and \(2.191 \pm 0.017 \) for the LL and DD samples, respectively, where the uncertainties are statistical only.

Two correction factors are considered for the relative efficiency to account for differences between data and simulation. The LL and DD samples are combined to derive these factors. The first factor accounts for possible local structures in the data distribution due to intermediate states or nonresonant amplitudes that are generally present in multibody decays. An average efficiency is calculated over the two-dimensional phase space of the \(\mathcal{S}_b^- \rightarrow J/\psi \Lambda K^- \) three-body decay,

\[
\langle \epsilon \rangle = \frac{\sum w_i}{\sum w_i/\epsilon_{PHI}},
\]

where \(\epsilon_{PHI} \) is the efficiency as a function of the phase-space position obtained from simulation, the numerator represents the number of reconstructed signal candidates, and the denominator represents the efficiency-corrected number of signal candidates; in both cases the sum extends over all \(\mathcal{S}_b^- \) candidates in data. The event-by-event signal weight \((w_i) \) is obtained using the sPlot technique [28] to subtract the background contribution. The average efficiency is 98% relative to the efficiency obtained using the phase-space simulation.

The second factor accounts for possible differences in \(p_T \) and rapidity spectra in \(b \)-baryon production in data and simulation. The simulated samples are reweighted in bins of \(p_T \) and rapidity, in order to reproduce the data distribution of \(\Lambda^0 \) decays, and the relative efficiency is recalculated. The correction factor of this source is 1.138. The value is consistent if separately correcting for the LL and DD samples. The product of the two correction factors for the average efficiency is 1.115. The uncertainties in the correction factors are taken as systematic uncertainties discussed below.

6. Results of \(R_{\mathcal{S}_b^-/\Lambda^0} \) and systematic uncertainties

Using the yields and efficiencies with corrections, the ratios of \(R_{\mathcal{S}_b^-/\Lambda^0} \) for the LL and DD data sets are measured to be \(4.46 \pm 0.55 \times 10^{-2} \) and \(4.08 \pm 0.34 \times 10^{-2} \), respectively, where the uncertainties are statistical only. The two independent measurements are consistent with each other. Their weighted average yields \(R_{\mathcal{S}_b^-/\Lambda^0} = (4.19 \pm 0.29 \pm 0.15) \times 10^{-2} \). Whenever two uncertainties are quoted, the first is statistical and the second is systematic.

The sources of systematic uncertainties for the ratio \(R_{\mathcal{S}_b^-/\Lambda^0} \) are summarised in Table 1. The quoted values are averages over the LL

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal model</td>
<td>0.7</td>
</tr>
<tr>
<td>Background model</td>
<td>1.6</td>
</tr>
<tr>
<td>BDTG efficiency</td>
<td>0.1</td>
</tr>
<tr>
<td>PID efficiency</td>
<td>1.0</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>1.2</td>
</tr>
<tr>
<td>Phase space</td>
<td>1.5</td>
</tr>
<tr>
<td>b-baryon kinematics</td>
<td>1.5</td>
</tr>
<tr>
<td>(\mathcal{S}_b^-) and (\Lambda^0) lifetime</td>
<td>1.1</td>
</tr>
<tr>
<td>Simulation sample size</td>
<td>0.7</td>
</tr>
<tr>
<td>Fixed resolution ratio</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>3.5</td>
</tr>
</tbody>
</table>
and DD categories. The uncertainty on the relative yields is evaluated using alternative functions to model each of the fit components. These include changing the signal model from the Hypatia function to a double-sided Crystal Ball function [29], changing the combinatorial background model from the exponential function to a second-order polynomial, and varying the parametrisation of the \(\Xi^0 \rightarrow J/\psi K^0 \) background. The effect of the latter is found to be negligible. To reduce the statistical fluctuations in the estimate of the systematic uncertainties, large numbers of pseudoexperiments are performed. The parameters of the alternative model are used to generate experiments, which are then fitted by both the alternative and the default models. A Gaussian function is fitted to the distribution of the \(R_{\Xi^0} / A^0_b \) difference for these pseudoexperiments and the mean value is assigned as a systematic uncertainty.

There are several sources of systematic uncertainty related to the evaluation of the relative efficiency. Most of them cancel in the ratio of efficiencies, except those related to the additional kaon in the \(\Xi^0 \) decay. The BDTG input variables for background-subtracted \(A^0_b \rightarrow J/\psi \Lambda \) data are compared to the corresponding simulated distributions, and all of the variables, except for the vertex-fit \(\chi^2 \) and \(\chi^2_b \) for \(\Lambda \) candidates in the DD category, are well modelled. The simulation is then smeared for these two variables to match the data, and the small change of 0.1% in the relative efficiency is taken as systematic uncertainty. The uncertainty due to the kaon PID efficiency is studied by changing the binning scheme in momentum, pseudorapidity and event multiplicity. The alternative binning gives a 1% difference in the signal efficiency, which is assigned as a systematic uncertainty. The tracking efficiency is estimated from simulation and calibrated with the data [30]; an uncertainty of 0.4% is assigned for the kaon track. An additional systematic uncertainty of 1.1% is assigned to the kaon tracking efficiency due to an imperfect knowledge of the material budget in the detector [5]. It is estimated from simulation by changing the used interaction length in the detector by 10%. The total tracking-efficiency related systematic uncertainty, adding the two contributions in quadrature, is 1.2%.

The systematic uncertainty of the average efficiency defined in Eq. (2) is 1.5%, calculated by propagating the statistical uncertainties for the efficiencies over the phase space. In reweighting the simulated \(p_T \) and \(y \) spectra to match the data, an uncertainty of 1.5% is estimated by varying the weights for each kinematic bin by its uncertainty. The uncertainties in the \(A^0_b \) lifetime of 1.468 ± 0.012 ps [31] and the \(\Xi^0 \) lifetime of 1.57 ± 0.04 ps [9], result in relative changes of ±0.2% and ±1.1% in the efficiencies, respectively. The limited size of the simulated samples gives rise to an uncertainty of 0.7%. Varying the mass resolution ratios of the \(\Xi^0 \) to \(A^0_b \) mass peaks, which are fixed in the nominal fit to the data, results in an uncertainty of 0.6%. The uncertainty due to the trigger efficiency is cancelled between the signal and control modes, as the trigger requirements are imposed only on the muon pairs. Finally, the total relative systematic uncertainty is 3.5%, obtained by adding all of the above contributions in quadrature.

7. Measurement of the mass difference

The mass difference, \(\delta M \), is obtained from a single simultaneous fit to four mass distributions, consisting of the LL and DD samples for both the \(\Sigma^0 \) and \(A^0_b \) candidates. The ratio \(R_{\Sigma^0} / A^0_b \) is also a freely varying parameter in this second fit for \(\delta M \). Compared to the fits described in the previous section, the new fit has two less free parameters: for each of the \(\Lambda \) categories, \(\delta M \) is constrained to be the same value and \(N(\Xi^0 \rightarrow J/\psi \Lambda K^-) \) is replaced by \(N(\Lambda^0_b \rightarrow J/\psi \Lambda) \cdot \epsilon_{\text{rel}} \cdot R_{\Xi^0} / A^0_b \). The simultaneous fit gives the same result as the weighted average for the ratio \(R_{\Xi^0} / A^0_b \), and the mass difference is measured to be

\[
\delta M = 177.08 \pm 0.47 \pm 0.16 \text{MeV}/c^2.
\]

This measurement is of similar precision to and consistent with the previous LHCb result \(\delta M = 178.36 \pm 0.46 \pm 0.16 \text{MeV}/c^2 \) using
$\mathcal{B}(\Xi^- \rightarrow J/\psi \Lambda K^-) = \left(4.19 \pm 0.29 \text{(stat)} \pm 0.15 \text{(syst)}\right) \times 10^{-2},$

where f_{Ξ^-} / f_{L^0} is the ratio of the fragmentation fraction for $b \rightarrow \Xi^-_b$ and $b \rightarrow L^0_b$ transitions. The mass difference between Ξ^-_b and L^0_b baryons is measured to be

$$M(\Xi^-_b) - M(L^0_b) = 177.08 \pm 0.47 \text{(stat)} \pm 0.16 \text{(syst)} \text{MeV}/c^2.$$
LHCb Collaboration

52 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
55 Imperial College London, London, United Kingdom
56 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
57 Department of Physics, University of Oxford, Oxford, United Kingdom
58 Massachusetts Institute of Technology, Cambridge, MA, United States
59 University of Cincinnati, Cincinnati, OH, United States
60 University of Maryland, College Park, MD, United States
61 Syracuse University, Syracuse, NY, United States
62 Pontificia Universidad Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
63 University of Chinese Academy of Sciences, Beijing, China
64 School of Physics and Technology, Wuhu University, Wuhu, China
65 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
66 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia
67 Institut für Physik, Universität Rostock, Rostock, Germany
68 National Research Centre Kurchatov Institute, Moscow, Russia
69 Instituto de Física Corpuscular, Centro Mixto Universidad de València – CSIC, Valencia, Spain
70 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands

* Corresponding author.
E-mail address: xuesong.liu@cern.ch (X. Liu).

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
Laboratoire Leprince-Ringuet, Palaiseau, France.
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
Università di Bari, Bari, Italy.
Università di Bologna, Bologna, Italy.
Università di Cagliari, Cagliari, Italy.
Università di Ferrara, Ferrara, Italy.
Università di Genova, Genova, Italy.
Università di Milano Bicocca, Milano, Italy.
Università di Roma Tor Vergata, Roma, Italy.
Università di Roma La Sapienza, Roma, Italy.

AGH – University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
Hanoi University of Science, Hanoi, Viet Nam.
Università di Padova, Padova, Italy.
Università di Pisa, Pisa, Italy.
Università degli Studi di Milano, Milano, Italy.
Università di Urbino, Urbino, Italy.
Università della Basilicata, Potenza, Italy.
Scuola Normale Superiore, Pisa, Italy.
Università di Modena e Reggio Emilia, Modena, Italy.
Iligan Institute of Technology (IIT), Iligan, Philippines.

Novosibirsk State University, Novosibirsk, Russia.
Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
Associated to Center for High Energy Physics, Tsinghua University, Beijing, China.
Associated to LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France.
Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
Associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.
Associated to ICCUB, Universitat de Barcelona, Barcelona, Spain.
Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.

Deceased.