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Abstract: In applications of Gaussian processes where quantification of uncertainty is a
strict requirement, it is necessary to accurately characterize the posterior distribution over
Gaussian process covariance parameters. This is normally done by means of standard Markov
chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations in-
volving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC
algorithms rejecting a considerable amount of expensive proposals, this paper develops an
alternative inference framework based on Adaptive Multiple Importance Sampling (AMIS).
In particular, this paper studies the application of AMIS for Gaussian processes in the case
of a Gaussian likelihood, and proposes a novel Pseudo-Marginal-based AMIS algorithm for
non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results
suggest that the proposed framework outperforms MCMC-based inference of covariance pa-
rameters in a wide range of scenarios.

Keywords: Gaussian processes; Bayesian inference; Markov chain Monte Carlo;
Importance sampling

1. Introduction

Gaussian Processes (GPs) have proved to be a successful class of statistical inference
methods for data analysis in several applied domains, such as pattern recognition [1–
3], neuroimaging [4], signal processing [5], Bayesian optimization [6], and emulation and
calibration of computer codes [7]. GP models are attractive due to their nonparametric
formulation that yields the possibility to flexibly model data; in addition, with a suitable
parameterization, they offer the possibility to gain some insights into the application under
study. These properties hinge on the parameterization of the GP covariance function and
on the way GP covariance parameters are optimized or inferred.

It is acknowledged that optimizing covariance parameters can severely affect the ability
of GP models to quantify uncertainty in predictions [3, 4, 8, 9]. Therefore, in applications
where this is undesirable, it is necessary to accurately characterize the posterior distri-
bution over covariance parameters and propagate this source of uncertainty forward to
predictions. This task, which is the focus of this work, is particularly challenging when
dealing with GPs. Inference of GP covariance parameters in closed form is generally an-
alytically intractable, and when resorting to standard inference methods a complication
arises from the difficulties associated with having to repeatedly compute the so called
marginal likelihood (and possibly the gradient of its logarithm). The marginal likelihood
is computable in the case of a Gaussian likelihood, but extremely costly due to the need
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to carry out a number of operations that is cubic with the number of input vectors. On
the other hand, when the likelihood function is not Gaussian, e.g., in classification, in
ordinal regression, or in Cox-processes, the marginal likelihood is not even computable
analytically.

In response to these challenges, a large body of the literature develops approximate in-
ference methods [1, 10–14] which, although successful in many cases, give no guarantees on
the amount of bias they introduce. With regards to quantifying uncertainty without intro-
ducing any bias, there have been attempts to employ Markov chain Monte Carlo (MCMC)
techniques; we can broadly divide such attempts in works that propose reparameterization
techniques [8, 15–17], or methods that carry out inference based on unbiased computations
of the marginal likelihood [3, 18, 19]. Although these approaches proved successful in a
variety of scenarios, employing MCMC algorithms may lead to inefficiencies; for instance,
optimal acceptance rates for popular MCMC algorithms such as the Metropolis-Hastings
(MH) algorithm (around 25% [20]) and the Hybrid Monte Carlo (HMC) algorithm (about
65% [21, 22]) indicate that several expensive computations are wasted. Introducing adap-
tivity into MCMC proposal mechanisms to improve efficiency may lead to convergence
issues [23].

In this paper we develop a general framework to carry out Bayesian inference for GPs
aimed at overcoming the aforementioned limitations of MCMC methods, where expecta-
tions under the posterior distribution over covariance parameters are carried out by means
of the Adaptive Multiple Importance Sampling (AMIS) algorithm [24]. The application
of this framework to the Gaussian likelihood case, although novel, is relatively straight-
forward given that the likelihood is computable. In the case of non-Gaussian likelihoods,
the inability to compute the likelihood exactly motivates us to propose a novel version
of AMIS where the likelihood is unbiasedly estimated. Inspired by the Pseudo-Marginal
MCMC approaches [25], we propose the Pseudo-Marginal AMIS (PM-AMIS) algorithm,
and provide a theoretical analysis showing under which conditions PM-AMIS yields ex-
pectations under the posterior over GP covariance parameters without introducing any
bias. The proposed PM-AMIS is an instance of the Importance Sampling squared (IS2)
algorithms [26, 27] that are gaining popularity as practical Bayesian inference methods.

In summary, the main contributions of this work are: (i) the application of AMIS to infer
GP covariance parameters with any likelihood; (ii) a theoretical analysis of PM-AMIS; (iii)
an extensive comparison of convergence speed with respect to computational complexity
of AMIS versus MCMC methods. Table 1 illustrates where our work fits in the literature
of Bayesian inference for GP covariance parameters and beyond.

The results demonstrate the value of our proposal. In particular, the results indicate
that AMIS is competitive with MCMC algorithms in terms of convergence speed over
computational cost. Furthermore, the results suggest that AMIS is a valid alternative to
MCMC algorithms even in the case of moderately large dimensional parameter spaces,
which is common when employing richly parameterized covariances (e.g., Automatic Rel-
evance Determination (ARD) covariances [28]). Given that importance sampling-based
inference methods, unlike MCMC algorithms, are inherently parallel, the results suggest
a promising direction to speed up inference of GP covariance parameters.

The paper is organized as follows. In section 2 we provide a brief overview of GP regres-
sion and Bayesian inference. Section 3 presents the proposed Adaptive Multiple Importance
Sampling for Gaussian Processes. Section 4 reports the experiments and the results, and
section 5 reports our conclusions and suggestions for future work.
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Table 1. Schematic representation of where the proposed contribution fits within the liter-
ature of inferring GP covariance parameters. In this work, we propose AMIS for Gaussian
processes and PM-AMIS and study its application to Gaussian processes; the latter can
be employed whenever an unbiased estimate of the (marginal) likelihood is available. The
list of references is not exhaustive but illustrates some of the key works and reviews in
this field.

Inference Models (Marginal) Likelihood ReparameterizationsComputable Estimated

MCMC Others [29] [25] [30]
GPs [8] [3] [17]

AMIS Others [24] PM-AMIS –
GPs AMIS for GPs –

2. Bayesian Gaussian Processes

2.1. Gaussian Processes

Consider a supervised learning scenario. Let X be a set of n input vectors xi ∈Rd(1≤ i≤
n), and let y be the vector consisting of the corresponding labels yi. In most GP models,
the labels are assumed to be conditionally independent given a set of n latent variables.
Such latent variables are modelled as realizations of a function f(x) at the input vectors
x1, . . . ,xn, i.e., f = {f(x1), . . . ,f(xn)}. Latent variables are used to express the likelihood
function, which under the assumption of independence becomes p(y | f) = ∏n

i=1 p(yi | fi),
where p(yi | fi) depends on the data being modelled (e.g., Gaussian for regression, Bernoulli
for probit classification with probability P (yi = 1) = Φ(f(xi)) where Φ is defined as the
cumulative normal distribution).

What characterizes GP models is the way the latent variables are specified. In particular,
we assume that the function f(x) is distributed as a GP, which implies that the latent
function values f are jointly distributed as a Gaussian f | θ ∼ N (0,K), where K is the
covariance matrix. The entries of the covariance matrix K are specified by a covariance
(kernel) function with hyperparameters θ between pairs of input vectors. In this work, two
different covariance functions are considered. The first is the RBF (Radial Basis Function)
covariance defined as:

k(xi,xj) = σ exp
®
− 1
τ2 ‖ xi−xj ‖2

´
(1)

The parameter τ defines the length-scale of the interaction between the input vectors,
while σ represents the marginal variance for each latent variable. The second is the ARD
covariance, which takes the form:

k(xi,xj) = σ exp

−
d∑
r=1

1
τr2 (xi(r)−xj(r))2

 (2)

The advantage of the ARD covariance is that it accounts for the influence of each feature
on the mapping between inputs and labels, with smaller values of parameters (τ1, ..., τd)
indicating a higher influence of the corresponding features [5]. For simplicity of notation,
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in the remainder of the paper we will denote by θ the vector of all covariance parameters.
When making predictions, using a point estimate of θ has been reported to potentially

underestimate the uncertainty in predictions or yield inaccurate assessment of the relative
influence of different features [2–4]. Therefore, a Bayesian approach is usually adopted
to overcome these limitations, which entails characterizing the posterior distribution over
covariance parameters. In order to do so, it is necessary to employ methods, such as
MCMC, that require computing the marginal likelihood every time θ is updated. We now
discuss the challenges associated with the computation of the marginal likelihood for the
special case of a Gaussian likelihood and the more general case of non-Gaussian likelihoods.

2.1.1. Gaussian likelihood
In the GP regression setting, the observations y are modeled to be Gaussian distributed
with mean of f (latent variables) and covariance λI, where I denotes the identity matrix,
and λ is the variance of the Gaussian noise on the observations. In this setting, the likeli-
hood p(y | f) and the GP priors p(f | θ) form a conjugate pair, so latent variables can be
integrated out of the model leading to y | θ ∼N (0,C), where C = K+λI. This yields the
log-marginal likelihood

log[p(y|θ)] =−1
2 log |C|− 1

2y>C−1y+ const.

in closed form. Although computable, the log-marginal likelihood requires computing the
log determinant of C and solving a linear system involving C. These calculations are usu-
ally carried out by factorizing the matrix C using the Cholesky decomposition, giving
C = LL>, with L being lower triangular. The Cholesky algorithm requires O(n3) opera-
tions, but subsequently computing the terms of the marginal likelihood requires at most
O(n2) operations [1].

2.1.2. Non-Gaussian likelihoods
In the case of non-Gaussian likelihoods, the likelihood p(y | f) and the GP prior p(f | θ)
are no longer conjugate. As a consequence, it is not possible to solve the integral needed
to integrate out latent variables

p(y|θ) =
∫
p(y|f)p(f |θ)df

and this requires some form of approximation. A notable example is GP probit classifica-
tion, which is what we explore in detail in this paper. In this case, the observations y are
assumed to be Bernoulli distributed with success probability given by [1]:

p(yi | fi) = Φ(yifi) (3)

For GPs with non-Gaussian likelihoods, there have been several proposals on how to
carry out approximation to integrate out the latent variables, or to avoid approximations
altogether. The focus of this paper is on methods that do not introduce any bias in the
calculation of expectation under the posterior over covariance parameters, and we will
discuss these approaches in detail in the next sections.
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2.2. Bayesian inference of covariance parameters

For simplicity of notation, we denote the posterior distribution over covariance parameters
by

π(θ) := p(θ|y,X) = p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ (4)

where p(θ) encodes any prior knowledge on the parameters θ. Within the Bayesian frame-
work, we are usually interested in calculating expectations of functions of θ with respect to
the posterior distribution, i.e., Eπ(θ)[h(θ)]. For instance, setting h(θ) = p(y? | θ,x?,y,X),
we obtain the predictive distribution for the label y? associated with a new input vector
x?.

The denominator needed to normalize the posterior distribution π(θ) is intractable, so
it is not possible to characterize the posterior distribution analytically. Despite this com-
plication, it is possible to resort to a Monte Carlo approximation to compute expectations
under the posterior distribution of θ

Eπ(θ)[h(θ)]' 1
N

N∑
i=1

h(θ(i)) (5)

where θ(i) denotes the ith of N samples from π(θ). However, as it is generally not feasible
to draw samples from π(θ) directly, it is necessary to resort to MCMC methods to generate
samples from the posterior π(θ).

An alternative way to compute expectations is by means of importance sampling, which
takes the following form:

Eπ(θ)[h(θ)] =
∫
h(θ)π(θ)

q(θ) q(θ)dθ (6)

where q(θ) is the importance distribution. The corresponding Monte Carlo approximation
is of the form:

Eπ(θ)[h(θ)]' 1
N

N∑
i=1

h(θ(i))π(θ(i))
q(θ(i))

(7)

where the samples θ(i) are now drawn from the importance sampling distribution q(θ).
The key to make this Monte Carlo estimator accurate is to choose q(θ) to be similar to the
function that needs to be integrated, that is h(θ)π(θ). It is easy to verify that when this is
the case, the variance of the importance sampling estimator is zero. Therefore, the success
of importance sampling relies on constructing a tractable importance distribution q(θ)
that well approximates h(θ)π(θ). In the remainder of this paper we study and evaluate
methods that adaptively construct q(θ).

Both Monte Carlo approximations in equations (5) and (7) converge to the desired
expectation, and in practice, they can estimate the desired integral to a given level of
precision [31, 32]. The experimental part of this work is devoted to the study of the
convergence properties of the expectation Eπ(θ)[h(θ)] with respect to the computational
effort needed to carry out the Monte Carlo approximations in Equations (5) and (7).
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2.3. Pseudo-Marginal MCMC for inference of covariance parameters

Standard MCMC algorithms to draw from the posterior π(θ) require calculating the
marginal likelihood and the gradient of its logarithm exactly. When the likelihood is not
Gaussian, computing the expectation in equation (5) becomes unfeasible because of the in-
ability to calculate the marginal likelihood exactly. In cases where the marginal likelihood
can be unbiasedly estimated, it is possible to resort to so called Pseudo-Marginal MCMC
approaches. Taking the Metropolis-Hastings algorithm as an example, it is possible to
replace the exact calculation of the Hastings ratio

p(y | θ′)p(θ′)
p(y | θ)p(θ)

with an approximation where the marginal likelihood is unbiasedly estimated

p̃(y | θ′)p(θ′)
p̃(y | θ)p(θ)

where p̃(y | θ) denotes such an approximation. Interestingly, the introduction of this ap-
proximation does not affect the properties of the MCMC approach that still yields samples
from the correct posterior π(θ). The effect of introducing this approximation, however, is
that the efficiency of the corresponding MCMC approach is reduced; this is due to the
possibility that the algorithm accepts a proposal with a largely overestimated value of the
marginal likelihood, making it difficult for any new proposals to be accepted.

By inspecting the GP marginal likelihood

p(y | θ) =
∫
p(y | f)p(f | θ)df (8)

we observe that we can attempt to unbiasedly estimate this integral using importance
sampling:

p̃(y | θ)' 1
Nimp

Nimp∑
i=1

p(y | fi)p(fi | θ)
q(fi | y,θ) (9)

Here Nimp is the number of samples fi drawn from the importance density q(f | y,θ).
The motivation for attempting this approximation is to leverage the various successful
attempts that construct accurate approximations to the posterior distribution over the
latent variables p(f |y,θ) ∝ p(y | f)p(f | θ). The accuracy of the approximations to the
posterior over latent variables directly affects the accuracy of the importance sampling
estimates of the marginal likelihood. Despite introducing some noise in the calculation of
the Hastings ratio, the resulting MCMC approach has been shown to yield state-of-the-art
performance in sampling from the posterior over GP covariance parameters [3]. In this
paper, we investigate approximations q(f | y,θ) to the posterior obtained by the Laplace
Approximation (LA) and Expectation Propagation (EP) algorithms [1, 12].
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3. Adaptive Multiple Importance Sampling for Gaussian Processes

Inefficiencies arising from the use of MCMC methods to sample from the posterior distri-
bution over covariance parameters are due to the fact that several proposals are rejected.
To mitigate this issue, some adaptation mechanisms of the proposals can be used based on
previous MCMC samples, but the chain resulting from the adaptivity is no longer Marko-
vian. As a result, elaborate ergodicity results are needed to establish convergence to the
true posterior distribution [23, 33, 34].

In response to this, Cappe et al. [35] proposed a universal adaptive sampling scheme
called Population Monte Carlo (PMC), where the difference from Sequential Monte Carlo
(SMC) [36] is that the target distribution becomes static. This method is reported to have
better adaptivity than MCMC since the use of importance sampling removes the issue
of ergodicity. At each iteration of PMC, the Sampling Importance Resampling (SIR) [37]
particle filter is used to generate samples that are assumed to be marginally distributed
from the target distribution and hence, the approach is unbiased and can be stopped at any
time. Moreover, the importance distribution can be adapted using part (generated at each
iteration) or all of the importance sample sequence. Douc et al. [38, 39] also introduced
updating mechanisms for the weights of the mixture in the so called D-kernel PMC, which
lead to a reduction either in Kullback divergence between the mixture and the target
distribution or in the asymptotic variance for a function of interest. An earlier adaptive
importance sampling strategy was proposed in [40].

Cournet et al. [24] proposed a new perspective of adaptive importance sampling (AIS),
called Adaptive Multiple Importance Sampling, which differs from the aforementioned
PMC methods because the importance weights of all simulations, produced previously as
well as currently, are re-evaluated at each iteration. This method follows the ’deterministic
multiple mixture’ sampling scheme of Owen and Zhou [41]. The corresponding importance
weight takes the form

wti = f(θti)/
1∑T−1

t=0 Nt

T−1∑
t=0

Ntqt(θti; γ̂t) (10)

where T is the total number of iterations, f(·) denotes the target distribution π(·) up
to a constant, i.e., π(·) ∝ f(·), qt(·) denotes the importance density at iteration t with
sequentially updated parameters γ̂t and θti are samples drawn from qt(·) with 0≤ t≤ T−1,
1≤ i≤Nt.

The fixed denominator in Equation (10) gives the name ’deterministic multiple mixture’.
The motivation is that this construction can achieve an upper bound on the asymptotic
variance of the estimator without rejecting any simulations [41]. In AMIS, the parameters
γ of a parametric importance function qt(θ;γ) are sequentially updated using the entire
sequence of weighted importance samples, based on efficiency criteria such as moment
matching, minimum Kullback divergence with respect to the target, or minimum variance
of the weights (see, e.g. [42] for stochastic gradient-based optimization of these efficiency
criteria). This leads to a sequence of importance distributions, q1(θ; γ̂1), ..., qT (θ;”γT ) that
progressively improves on the approximation to the posterior over θ. Algorithm 1 gives
the pseudo code of the generic AMIS algorithm.

In this paper, we use a Gaussian importance density with mean µ and covariance Σ, that
is, γt = (µt,Σt). We also choose moment matching as the efficiency criterion to estimate
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Algorithm 1 Generic AMIS as analysed by Cornuet et al. [24]

• At iteration t= 0,
(1) Generate N0 independent samples θ0

i (1≤ i≤N0) from the initial importance
density q0(θ; γ̂0)

(2) For 1≤ i≤N0, compute δ0
i =N0q0(θ0

i ; γ̂0),w0
i = f(θ0

i )
¡
q0(θ0

i ; γ̂0)

(3) Estimate γ̂1 of q1(θ; γ̂1) using the weighted samples ({θ0
1,w

0
1}, ...,

{θ0
N0 ,w

0
N0
}) and a well-chosen efficiency criterion for estimation.

• At iteration t= 1, ..., T −1,
(1) Generate Nt independent samples θti(1≤ i≤Nt) from qt(θ; γ̂t)
(2) For 1≤ i≤Nt, compute the multiple mixture at θti

δti =N0q0(θti; γ̂0) +
t∑
l=1

Nlql(θti; γ̂t)

and derive the importance weights of θti

wti = f(θti)
¡ï

δti

¡ t∑
j=0

Nj

ò
(3) For 1≤ l ≤ t−1 and 1≤ i≤Nl, update the past importance weights as

δli← δli +Ntqt(θli; γ̂t) and wli← f(θli)
¡ï

δli

¡ t∑
j=0

Nj

ò
(4) Estimate ’γt+1 using all the weighted samples

({θ0
1,w

0
1}, ...,{θ0

N0 ,w
0
N0}, ...,{θ

t
1,w

t
1}, ...,{θtNt

,wtNt
})

and the same efficiency criterion for estimation.

γ̂t = (µ̂t,Σ̂t) using the self-normalized AMIS estimator:

µ̂t =
∑t
l=0

∑Nl
i=1w

l
iθ
l
i∑t

l=0
∑Nl
i=1w

l
i

and Σ̂t =
∑t
l=0

∑Nl
i=1w

l
i(θli− µ̂t)(θli− µ̂t)T∑t
l=0

∑Nl
i=1w

l
i

Despite the efficiency brought by AMIS compared with other AIS techniques, proving
convergence of this algorithm is not straightforward. The work in [43] proposed a modified
version of AMIS (named as MAMIS in this paper), aimed at obtaining a variant of AMIS
where convergence can be more easily established. In MAMIS, the updated parameters γ̂t
are estimated based on samples produced at iteration t only, i.e., θt1, ...,θ

t
Nt

, with classical
weights f(θti)/q(θti; γ̂t). The weights of all simulations are then updated according to
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Equation (10) to give the final output, and it is recommended to increase the sample size
Nt so as to improve the accuracy of γ̂t. MAMIS effectively solves any convergence issues
of AMIS, but using less samples to update the importance distribution may lead to slower
convergence, as we report in the results.

3.1. Pseudo-marginal AMIS

The above AMIS/MAMIS estimators are designed for the general analytically computable
marginal likelihood, such as in the case of GP regression. In this paper, we propose AMIS
to sample from the posterior over model parameters where the likelihood is analytically
intractable but can be unbiasedly estimated. In practice, we modify AMIS by replacing the
exact calculation of the marginal likelihood with an unbiased estimate, giving an unbiased
estimate of the posterior up to a normalizing constant:

f̃(θ) = p̃(y | θ)p(θ) (11)

We refer to this as Pseudo-Marginal AMIS (PM-AMIS), inspired by the name pseudo-
marginal MCMC that was given to the class of MCMC algorithms replacing exact cal-
culations of the likelihood with unbiased estimates [25]. The pseudo-code of PM-AMIS is
similar to that of AMIS described in Algorithm 1, except that the target distribution up
to a constant f(θ) = p(y | θ)p(θ) is replaced by the above unbiased estimate f̃(θ).

It is known that despite the fact that calculations are approximate, Pseudo-Marginal
MCMC methods yields samples from the correct posterior distribution over covariance
parameters, so a natural question is whether the same argument holds for our proposal. In
the remainder of this section, we provide an analysis of the properties of Pseudo-Marginal
AMIS, discussing the conditions under which it yields unbiased expectations with respect
to the posterior distribution over covariance parameters. As in [26, 27], we introduce a
random variable z whose distribution (denoted by p(z | θ) herein) is determined by the
randomness occurring when carrying out the unbiased estimation of the likelihood p(y | θ).
Define:

z = log p̃(y | θ)− logp(y | θ) (12)

that is,

p̃(y | θ) = p(y | θ)ez (13)

Due to the unbiased property (E[p̃(y | θ)] = p(y | θ)), we readily verify that E[ez] = 1.
For the sake of clarity, it is useful to define the unnormalized joint density of z and θ as:

f(z,θ) = p(y | θ)ezp(z | θ)p(θ) (14)

with a corresponding normalized version

π(z,θ) = f(z,θ)
Z

(15)
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Marginalizing this joint density with respect to z

∫
π(z,θ)dz =

∫
f(z,θ)
Z

dz = p(y | θ)p(θ)
Z

E[ez] = f(θ)
Z

(16)

yields the target posterior π(θ) of interest defined in Equation (4).
Recall that our objective is analyzing expectations under the posterior over the param-

eters π(θ) of some function h(θ)

Eπ(θ)[h(θ)] =
∫
h(θ)π(θ)dθ =

∫
h(θ)f(θ)

Z
dθ (17)

We begin our analysis by substituting Equation (16) into Equation (17), obtaining

Eπ(θ)[h(θ)] =
∫
h(θ)f(z,θ)

Z
dθdz (18)

In PM-AMIS, let Nt denote the number of samples generated at each iteration t, qt(θ)
denote the importance density at each iteration for π(θ). We also define

qt(z,θ) = p(z | θ)qt(θ) (19)

as the joint importance density at each iteration for π(z,θ), (zti ,θti) as samples drawn from
qt(z,θ) with 0≤ t≤ T,1≤ i≤Nt.

Since in a practical setting f(z,θ) is the only function that we can evaluate, the expec-
tation defined in Equation (18) is estimated by the self-normalized PM-AMIS estimator:

Eπ(θ)[h(θ)]≈ 1∑T
t=0

∑Nt
i=1wi

t

T∑
t=0

Nt∑
i=1

wi
th(θti) (20)

where the weights of this estimator are computed as

wi
t = f(zti ,θti)

1∑T
j=0Nj

∑T
l=0Nlql(zti ,θti)

(21)

Expanding the terms in the computations of the weights, namely substituting Equations
(14) and (19) into Equation (21), we have

wi
t = p(y | θti)ez

t
ip(zti | θti)p(θti)

1∑T
j=0Nj

∑T
l=0Nlp(zti | θti)ql(θti)

= p(y | θti)ez
t
ip(θti)

1∑T
j=0Nj

∑T
l=0Nlql(θti)

(22)

which can be rewritten in terms of the unbiased estimate of the marginal likelihood as
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wi
t = p̃(y | θti)p(θti)

1∑T
j=0Nj

∑T
l=0Nlql(θti)

= f̃(θti)
1∑T

j=0Nj

∑T
l=0Nlql(θti)

(23)

Equation (23) shows how the importance weights can be computed by the unbiased esti-
mator of the marginal likelihood.

We now appeal to Lemma 1 in [24], which gives the conditions under which the self-
normalized estimator of AMIS will converge to Equation (17). Following the conditions in
Lemma 1 in [24], when T and N0, ..., NT−1 are fixed, and when NT goes to infinity, wit
(Equation (21)) becomes:

wi
t ' f(zti ,θti)

qT (zti ,θ
t
i)

(24)

Then we have

Eqt(z,θ)

 1∑T
t=0

∑Nt
i=1wi

t

T∑
t=0

Nt∑
i=1

wi
th(θti)

 = 1
Z
∑T
t=0Nt

T∑
t=0

Nt

∫
h(θ) f(z,θ)

qT (z,θ)qT (z,θ)dθdz

= 1∑T
t=0Nt

T∑
t=0

Nt

∫
h(θ)f(z,θ)

Z
dθdz

= 1∑T
t=0Nt

T∑
t=0

Nt

∫
h(θ)f(θ)

Z
dθ

=
∫
h(θ)f(θ)

Z
dθ = Eπ(θ)[h(θ)]

where the normalizing constant Z is estimated by
∑T

t=0
∑Nt

i=1wi
t∑T

t=0Nt
.

Therefore, under the conditions that T and N0, ..., NT−1 are fixed and that NT goes
to infinity, which are the same conditions mentioned in Lemma 1 in [24], the estimator
of Equation (20) proves to be an unbiased estimator of Eπ(θ)[h(θ)]. As noted in [24], we
remark that these conditions might prove restrictive in practice; however, these conditions
provide some solid grounds onto which convergence can be established for AMIS. Further-
more, we note that in a practical setting, when in doubt as to whether convergence might
be an issue, it is always possible to switch to the modified version of AMIS [43] during
execution.

4. Experiments

4.1. Competing sampling methods

In this section, we present the state-of-the-art MCMC and AIS sampling methods consid-
ered in this work. The aim is to evaluate whether AIS (AMIS/MAMIS) can improve speed
of convergence with respect to computational complexity compared to MCMC approaches.
The competing sampling algorithms considered in this work are given in Table 2.
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Table 2. Competing sampling algorithms considered in this work

Sampler Tuning parameters
Metropolis-Hastings [44, 45] (MH) Covariance matrix Σ

Hybrid Monte Carlo [29, 46] (HMC) Mass matrix Σ, Leapfrog stepsize ε,
Number of leapfrog steps L

No-U-Turn Sampler [47] (NUTS) Mass matrix Σ, Leapfrog stepsize ε
NUTS with Dual Averaging [47] (NUTSDA) Mass matrix Σ
Slice Sampling [48] (SS) Width of the initial bracket

4.2. Data sets

The sampling methods considered in this work are tested on six benchmark datasets from
the University of California, Irvine (UCI) repository [49]. The Concrete, Housing and
Parkinsons datasets are for GP regression, whereas the Glass, Thyroid and Breast datasets
are for GP classification. The number of data points and features for each dataset are given
in Table 3. For the original Parkinsons dataset we randomly sampled 4 records for each of
the 42 patients, resulting in 168 data points in total.

Table 3. Data sets

Data sets for regression Data sets for classification
Concrete Housing Parkinsons Glass Thyroid Breast

n 1030 506 168 214 215 682
d 8 13 20 9 5 9
Notes: n denotes the number of data points and d denotes the number of
features.

4.3. Experimental setup

4.3.1. Settings for GP regression
We compare three different covariances for the proposals of the MH algorithm. The first
is proportional to the identity matrix. The second and third covariances are proportional
to the inverse of the negative Hessian of the log-posterior (denoted by H) evaluated at
the mode (denoted by m); one uses the full Hessian matrix, whereas the other uses its
diagonal only, namely diag((−H)−1). The mode m is found by the maximum likelihood
optimization using the ’BFGS’ method.

Thus the proposals that we compare in this work take the form of N (θ |m,αI), N (θ |
m,α(−H)−1), and N (θ |m,α diag((−H)−1)), where α is a tuning parameter. We tune
α in pilot runs until we get the desired acceptance rate (around 25%), as suggested by
Roberts et al. [20].

The approximate distributionN (θ |m,(−H)−1) is used as the initial importance density
for AMIS/MAMIS. This approximation is also used to initialize several other samplers
considered in this work (listed in Table 2). In this way, valid summary inference from
multiple independent sequences can be obtained [31]. For AMIS/MAMIS, we explored
two different strategies to update the covariance of the importance density. One updates
the full covariance, whereas the other updates the diagonal of the covariance only. The
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first two rows of Table 4 show the experimental settings for AMIS/MAMIS.
Motivated by the fact that knowledge of the scales and the correlations of the position

variables can improve the performance of HMC [22], we also chose three types of mass ma-
trices for HMC, namely the identity matrix, the inverse of the approximate covariance, and
the inverse of the diagonal of the approximate covariance. We set the maximum leapfrog
steps to be 10. We then tune the stepsize ε until a suggested acceptance rate (around 65%)
is reached [21, 22]. The three forms of mass matrix apply to NUTS, NUTSDA as well;
a full description of the pseudo codes of these algorithms can be found in Algorithms 3
and 6 in [47], respectively. NUTS requires the tuning of a stepsize ε. After a few trials,
we set the stepsize of NUTS to 0.1. Although tuning leapfrog steps and stepsize is not
an issue in NUTSDA, the parameters (γ,t0,κ) for the dual averaging scheme therein have
to be tuned by hand to produce reasonable results. After trying a few settings for each
parameter, we decided to proceed with the values γ = 0.05, t0 = 30, and κ= 0.75 in both
the RBF and ARD covariance cases.

The slice sampling algorithm adopted in this paper makes component-wise updates of the
parameters, where a new sample is drawn according to the ’stepping out’ and ’shrinkage’
procedures as described in [48]. In our implementation, we set the estimate of the typical
size of a slice w to 1.5.

Table 4. Settings for AMIS/MAMIS/PM-AMIS

RBF covariance ARD covariance
T Nt T Nt

AMIS 1120 25 280 100
MAMIS 46 26t 5 3000 + 1000t

PM-AMIS 60 400 60 400
Notes: T is the total number of iterations and Nt is the
sample size at each iteration t.

4.3.2. Settings for GP classification
As a representative example of GP models with non-Gaussian likelihoods, we consider
probit classification. Since the likelihood is analytically intractable and thus unbiasedly
estimated, the critical property of reversibility and preservation of volume of HMC, NUTS,
and NUTSDA is no longer satisfied. Also, slice sampling with the noisy estimate f̃(θ) is
still valid, but naively running standard SS with the noisy estimate f̃(θ) worked very
poorly as reported in [19]. As a result, we only compare PM-AMIS and Pseudo-Marginal
MH (PM-MH) to infer covariance parameters in GP classification.

Both the EP and LA approximations are used to obtain importance densities to un-
biasedly estimate the marginal likelihood. The last row of Table 4 shows the settings of
PM-AMIS in both the RBF and ARD cases except for the Breast dataset in the ARD case
using LA approximation, where the total number of iterations T is set to 240 for the sake of
presentation. The initial importance density is obtained by the same optimization method
as described in Section 4.3.1 except that the gradient required to perform the optimization
cannot be computed analytically but is estimated from the EP or LA approximations. We
update the full covariance of the importance density during the adaptation process. The
proposal of PM-MH also takes the form of N (θ |m,α(−H)−1) where H is the Hessian
matrix obtained again from the EP or LA approximate marginal likelihood. The collec-
tion of samples follows an initial tuning of α to reach the recommended acceptance rate
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of around 25%.

4.4. Convergence analysis

Since the classic R̂ score is for MCMC convergence analysis and not suitable for importance
sampling, convergence analysis here is performed based on the IQR (interquartile range) of
the expectation of norm of parameters (Ep(θ|y,X)[‖θ‖]) over several repetitions against the
number of O(n3) operations. This is reported to be a more reliable measure of complexity
than running time, as many other factors, which do not relate directly to the actual
computing complexity of the algorithm, can affect the running time [17]. In GP regression
the IQR is computed over 100 repetitions, whereas in GP classification it is based on 20
repetitions.

For AMIS/MAMIS/SS/MH, the computational complexity lies in the computation of
the function of f(θ), where one O(n3) operation is required to perform the Cholesky
decomposition of the covariance matrix C. For HMC/NUTS/NUTSDA where computing
the gradient is necessary, two extra O(n3) operations are needed for the computation of
the inverse of the covariance matrix C.

For PM-AMIS/PM-MH, the computational complexity largely comes from the EP or
LA approximation of the posterior of the latent variables in order to compute the unbi-
ased estimate f̃(θ). Both EP and LA approximations require two Cholesky decomposition
(O(n3) operations); one is for the decomposition of the covariance matrix K of the GP
prior, while the other is for the decomposition of the covariance of the approximating
Gaussian. Each iteration of EP and LA requires five O(n3) operations and one O(n3)
operation, respectively. In the LA approximation, two extra O(n3) operations are needed
to compute the covariance of the Gaussian approximation.

4.5. Results

4.5.1. Convergence of samplers for GP regression
In this section, we present the comparison of convergence of samplers for GP regres-
sion considered in this paper (Table 5). Details of convergence results of AMIS family
(AMIS/MAMIS), MH family (MH-I/MH-D/MH-H) and HMC family (standard HMC,
NUTS, NUTSDA) can be found in Appendices A and B. Figure 1 shows the result of AMIS
compared to the various competitors, where for the sake of brevity, we only report the re-
sults of their best configurations. The results are shown for the three regression datasets
for both the RBF and ARD covariances. It is interesting to see that AMIS/MAMIS per-
forms best among all methods in terms of convergence speed in the RBF covariance case.
In the ARD covariance case, AMIS also converges much faster than the other approaches.
However, our experiments show that in this case, although MAMIS converges faster than
the other approaches in the Concrete dataset, it converges slowly in the Housing and
Parkinsons datasets, which is probably due to the higher dimensionality compared to the
previous cases.

In cases where MAMIS converges slowly, we can exploit the fact that AMIS converges
faster to construct hybrid sampling schemes where MAMIS is initialized from a run of
AMIS. In this way, we can leverage the fast adaptation of AMIS, while ensuring that the
overall scheme does not introduce any bias. In the experiments, we tested this AMIS-
MAMIS combination in cases where MAMIS converges slowly. These results are reported
in Figure B2(f), B3(f) where EOT (end of tuning) indicates the point where we switched
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Table 5. Notation for the samplers used in the experiments

AMIS/MAMIS
AMIS/MAMIS for GP regression where the full
covariance matrix of the proposal distribution is
updated at each iteration

AMIS-D/MAMIS-D
AMIS/MAMIS for GP regression where only the
diagonal of the covariance matrix of the proposal
distribution is updated at each iteration

MH-I
MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
identity matrix

MH-D

MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
diagonal of the approximate covariance from the
optimization

MH-H
MH for GP regression where the covariance of the
starting proposal distribution for tuning is the
approximate covariance from the optimization

HMC-I/NUTS-I/NUTSDA-I HMC family for GP regression where the mass
matrix is the identity matrix

HMC-D/NUTS-D/NUTSDA-D
HMC family for GP regression where the mass
matrix is the inverse of the diagonal of the
approximate covariance from the optimization

HMC-H/NUTS-H/NUTSDA-H
HMC family for GP regression where the mass
matrix is the inverse of the approximate covariance
from the optimization

PM-AMIS
AMIS for GP classification where the full
covariance matrix of the proposal distribution is
updated at each iteration

PM-MH
MH for GP classification where the covariance of
the starting proposal distribution for tuning is the
approximate covariance from the optimization

to MAMIS. Three settings (Table 6) of AMIS-MAMIS were tested for the Parkinsons
dataset.

For the Housing dataset, we tested only AMIS-MAMIS in Table 6. The results for the
Housing and Parkinsons datasets in the ARD covariance case prove the convergence of
AMIS-MAMIS. In particular, AMIS-MAMIS and AMIS-MAMIS” seem to compete well
with the other MCMC approaches in terms of convergence for the Housing dataset and
the Parkinsons dataset respectively. As shown in Figure B3(f), the best performance of
AMIS-MAMIS” for the Parkinsons dataset suggests that for higher dimensional problems,
a more accurate initialization and a larger sample size at each iteration for MAMIS are
necessary to achieve faster convergence.

Another attempt made in this paper to improve convergence speed of the adaptive
importance sampling schemes is to regularize the estimation of the parameters of the
importance distribution as illustrated in [50]. The regularization stems from the use of
an informative prior on γ of the importance distribution qt(γ) of MAMIS and treat the
update of these parameters in a Bayesian fashion [51]. This construction makes it possible
to avoid situations where the importance distribution degenerates to low rank due to
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(f) Parkinsons dataset - ARD

Figure 1. Convergence of AMIS, Best of MAMIS, Best of MH family, Best of HMC family,
SS for GP regression.

Table 6. Settings for AMIS-MAMIS

Nt for
MAMIS

? number of
tuning samples

for MAMIS

??
corresponding

tuning cost
AMIS-MAMIS 1000t 13000 4333
AMIS-MAMIS’ 5000t 13000 4333
AMIS-MAMIS” 5000t 26000 8667

Notes: Nt is the sample size at each iteration t. ? This refers to
the number of samples generated from AMIS for tuning the initial
importance density of MAMIS. ?? Unit of the tuning cost: number
of n3 operations.

few importance weights dominating all the others. In this work, we use an informative
prior based on a Gaussian approximation to the posterior over covariance parameters. We
denote this method by MAMIS-P and in the ARD covariance case it was tested only in the
Housing dataset. The result indicates that even though MAMIS-P improves on MAMIS,
its convergence is slower than AMIS-MAMIS (Figure B2(f)).

4.5.2. Convergence of samplers for GP classification
The comparison of convergence of samplers for GP classification (PM-AMIS and PM-MH)
is presented in this section.

Figure 2 shows the results of PM-AMIS and PM-MH using EP and LA approximation
(in order to obtain a Gaussian approximation to the posterior of the latent variables f)
with Nimp = 64, where Nimp denotes the number of importance samples of latent vari-
ables f to estimate the marginal likelihood p(y | θ). The results indicate that PM-AMIS
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Figure 2. Convergence of PM-AMIS, PM-MH using EP and LA approximation for GP
classification.

is competitive with PM-MH in terms of convergence speed in all the EP approximation
cases and in most of the LA approximation cases. The results also seem to suggest that
PM-AMIS/PM-MH converge faster with the EP approximation than with the LA ap-
proximation in most cases, which we attribute to the fact that EP yields a more accurate
approximation to the posterior over covariance parameters than LA [12, 13]. We also tested
the performance of PM-AMIS and PM-MH with Nimp = 1, the results of which are shown
in Appendix C. As expected, both PM-AMIS and PM-MH algorithms with higher number
of importance samples converge much faster than those with lower number of importance
samples.

5. Conclusions

In this paper we proposed the use of adaptive importance sampling techniques to com-
pute expectations under the posterior distribution of covariance parameters in Gaussian
processes. The motivation for our proposal is based on a number of observations related
to the complexity of dealing with the calculation of the marginal likelihood. In GPs with
a Gaussian likelihood, calculating the marginal likelihood and the gradient of its loga-
rithm with respect to covariance parameters is expensive and the rejection of proposals of
standard MCMC algorithms leads to a waste of computations. In GPs with non-Gaussian
likelihoods, pseudo marginal MCMC approaches bypass the need to compute the marginal
likelihood exactly, but may suffer from inefficiencies due to the fact that when a proposal
is accepted and the marginal likelihood is largely overestimated, it becomes difficult for
the chain to accept any other proposal. A further motivation behind our work is that
importance sampling-based algorithms are generally easy to implement and tune, and can
be massively parallelized.

The extensive set of results reported in this paper supports our intuition that importance
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sampling-based inference of covariance parameters is competitive with MCMC algorithms.
In particular, the results indicate that it is possible to achieve convergence of expectations
under the posterior distribution of covariance parameters faster than employing MCMC
methods in a wide range of scenarios. Even in the case of around twenty parameters, where
importance sampling based methods start to degrade in performance, our proposal is still
competitive with MCMC approaches.
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Appendices

Appendices A and B show the convergence results of the samplers for GP regression with
the RBF covariance (RBF covariance case) and ARD covariance (ARD covariance case)
respectively. The top-left of figures in A and B demonstrate the result of AMIS/MAMIS. It
can be seen that AMIS/MAMIS that exploits the full covariance structure of the proposal
distribution performs better than the one that only updates the diagonal of the covariance
matrix of the proposal density. For the MH family (MH-I/MH-D/MH-H) and HMC family
(standard HMC, NUTS, NUTSDA), figures in A and B show that, the methods that make
use of the scales and correlation of the parameters, perform better than the one that does
not in most cases. Also, NUTS/NUTSDA turns out to converge much faster than the
standard HMC due to the fact that standard HMC has to be tuned costly in pilot runs.
For MH and standard HMC, the computational cost of tuning is counted when comparing
the convergence, as is shown in top-center and top-right of figures in Appendices A and B
where the end of tuning (EOT) is indicated by three vertical dotted lines, corresponding
to the three variants respectively from left to right. For NUTSDA, the computational cost
of tuning the parameters of the dual averaging scheme is also counted when determining
the convergence, as is displayed in bottom-right of figures in Appendix A, Figure B1 and
bottom-center of Figure B2, B3 with EOT indicated by three vertical dotted lines, relating
to the three variants respectively from left to right. Table 7 shows the corresponding
computational cost of tuning:

Table 7. Computational cost of tuning for HMC/NUTSDA

Concrete Housing Parkinsons

RBF ARD RBF ARD RBF ARD
HMC-I 6747 5910 4779 3924 1561 1340
HMC-D 6042 7316 7281 7726 8883 8469
HMC-H 10851 9451 10987 8860 10871 8736

NUTDA-I 1402 3528 1193 7433 1338 6488
NUTDA-D 1357 1582 1124 2424 975 1951
NUTDA-H 682 1023 670 1866 728 1794

Notes: Unit of the tuning cost: number of n3 operations.

Appendix C shows the convergence results of PM-AMIS/PM-MH for the RBF (Figure
C1) and ARD (Figure C2) cases, respectively. In the figures, LA represents the case where
the Gaussian approximation to the posterior of latent variables f is obtained by LA ap-
proximation, whereas EP denotes the case where the Gaussian approximation is obtained
by EP approximation. Nimp denotes the number of importance samples of latent vari-
ables f to estimate the marginal likelihood p(y | θ). As can be seen from the figures, both
PM-AMIS and PM-MH algorithms with higher number of importance samples (Nimp=64)
converge much faster than those with lower number of importance samples (Nimp=1) in
both EP and LA approximation cases as expected. The results also indicate that PM-
AMIS is competitive with PM-MH in terms of convergence speed in most of the EP and
LA approximation cases. Moreover, PM-AMIS/PM-MH seem to converge faster with EP
approximation than with LA approximation in most cases which is probably because EP
yields a more accurate approximation than LA as reported in [12, 13].

Appendix D presents all acronyms used in this paper.
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Appendix A. Convergence of samplers for GP regression with the RBF
covariance
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Figure A1. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Concrete
dataset (RBF covariance case). EOT stands for ”end of tuning”.
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Figure A2. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Housing
dataset (RBF covariance case). EOT stands for ”end of tuning”.
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Figure A3. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Parkin-
sons dataset (RBF covariance case). EOT stands for ”end of tuning”.
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Appendix B. Convergence of samplers for GP regression with the ARD
covariance
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Figure B1. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Concrete
dataset (ARD covariance case). EOT stands for ”end of tuning”.
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Figure B2. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Housing
dataset (ARD covariance case). EOT stands for ”end of tuning”.
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Figure B3. Convergence of AMIS/MAMIS, MH, HMC, NUTS, NUTSDA for the Parkin-
sons dataset (ARD covariance case). EOT stands for ”end of tuning”.
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Appendix C. Convergence of samplers for GP classification
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(a) Glass dataset - EP
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Figure C1. Convergence of PM-AMIS, PM-MH using EP and LA approximation for the
RBF case. Nimp denotes the number of importance samples of latent variables to estimate
the marginal likelihood.
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Figure C2. Convergence of PM-AMIS, PM-MH using EP and LA approximation for the
ARD case. Nimp denotes the number of importance samples of latent variables to estimate
the marginal likelihood.
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Appendix D. Acronyms

AIS adaptive importance sampling. 7, 8, 11
AMIS Adaptive Multiple Importance Sampling. 1, 2, 7–9, 11–16, 21–25
ARD Automatic Relevance Determination. 2, 3, 13–17, 21, 24, 25, 27

EP Expectation Propagation. 6, 13, 14, 16, 17, 21, 26, 27

GP Gaussian Process. 1–4, 6, 9, 13–17, 21
GPs Gaussian Processes. 1, 2, 4, 17

HMC Hybrid Monte Carlo. 2, 12–16, 21–25

LA Laplace Approximation. 6, 13, 14, 16, 17, 21, 26, 27

MAMIS modified version of AMIS. 8, 9, 11–16, 21–25
MCMC Markov chain Monte Carlo. 1, 2, 4–7, 9, 11, 14, 15, 17, 18
MH Metropolis-Hastings. 2, 12–16, 21–25

NUTS No-U-Turn Sampler. 12–15, 21–25
NUTSDA NUTS with Dual Averaging. 12–15, 21–25

PM-AMIS Pseudo-Marginal AMIS. 2, 9, 10, 13–17, 21, 26, 27
PM-MH Pseudo-Marginal MH. 13–17, 21, 26, 27
PMC Population Monte Carlo. 7

RBF Radial Basis Function. 3, 13, 14, 16, 17, 21–23, 26

SIR Sampling Importance Resampling. 7
SMC Sequential Monte Carlo. 7
SS Slice Sampling. 12–14, 16
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