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Abstract

In a recent analysis of metabolic scaling in solid tumours we found a scaling law

that interpolates between the power laws µ ∝ V and µ ∝ V 2/3, where µ is the

metabolic rate expressed as the glucose absorption rate and V is the tumour

volume. The scaling law fits quite well both in vitro and in vivo data, however we

also observed marked fluctuations that are associated with the specific biological

properties of individual tumours. Here we analyse these fluctuations, in an

attempt to find the population-wide distribution of an important parameter

(A) which expresses the total extent of the interface between the solid tumour

and the non-cancerous environment. Heuristic considerations suggest that the

values of the A parameter follow a lognormal distribution, and, allowing for the

large uncertainties of the experimental data, our statistical analysis confirms

this.
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1. Introduction

The allometric laws of biology are power laws that describe in simple and

universal terms some of the features that are common to the vast diversity of

living organisms [1, 2, 3]. Their simplicity hides the ambitious aim of encap-

sulating in a single equation the huge variability and diverse dynamics that5

belong to living systems. Sometimes, their purely empirical character has pro-

duced controversy, and some of these laws are not universally accepted [4, 5, 6].

Kleiber’s law is one such scaling law: it states that the basal metabolic rate of

an organism of mass M scales as M3/4 = M0.75 [7]instead of the naive estimate

M2/3 ≈M0.67, and it has both supporters and opponents. Kleber’s law has long10

been mysterious and only in recent years it has found the backing of a biological

argument based on fractal structure of microcirculation [8], which is however

still controversial [9, 10, 11, 11]. Nonetheless, the law has been applied also

outside the domain of validity of the supporting argument, as in the case of the

metabolism of solid tumours [12]. Indeed, microcirculation in tumour tissues15

is quite different from normal tissues, with an ensuing wide-ranging variability

of cellular phenotypes and local microenvironments. However, it is well-known

that there is a strong correlation between tumour microenvironment and aggres-

siveness, and this provides a strong motivation to study the microscopic origin

of any metabolic scaling law that may arise in this context.20

We have recently proposed a metabolic scaling law for solid tumours that

describes quite well both in vitro and in vivo experimental data (see figure 1)

[13]. Its peculiarity is that it has been obtained with the help of a computational

description of metabolism at the single-cell level which provides the link with

the microscopic features of tumours [14, 15, 16]. The law is not quite a power

law, and it is given by the following expression:

µ =

(
c

vc

)
3λV

3λ+ (V/A)1/3
(1)

where µ is the metabolic rate expressed as the glucose absorption rate, V is the

tumour volume, vc is the mean cell volume, c is the cell-specific consumption rate
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Figure 1: Metabolic rate data µ̂N = µ/ηA1/3 vs. V/A(µm3). The figure shows a breakdown

of the data originally presented in [13]. Upper panel: tumor spheroids cultured in vitro using

different cell lines. Lower panel: data from human tumours, that include breast, uterine and

ovarian carcinomas, melanomas, thyroid carcinomas, colon and lung carcinomas. All of these

human tumours correspond presumably to different cell-specific metabolic rates η. The dotted

line is µ̂N = V , while the dashed line is µ̂N = V 2/3, which are the extreme behaviours derived

from equation (1).

of a single cell [13], and A is a non-dimensional parameter whose meaning will

be clarified below. The λ parameter is a characteristic length in an exponential

law that describes the decay of the fraction of live cells with increasing distance

from the blood vessels (see [16] for details). The ratio η = c/vc in equation (1) is

independent of cell size, since c is roughly proportional to cell volume. Equation

(1) shows that the metabolic rate interpolates between the two power-laws

µ ≈
(
c

vc

)
V (2)
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at small volume and

µ ≈
(
c

vc

)
3λ

(3/4π)
1/3

V 2/3 (3)

at large volume, and if we take the middle value of the exponent (0.84) we note

that it is not very far from the exponent of Kleiber’s law.

Turning to parameter A, we note that is related to the total extent of the

interface between solid tumour and surrounding environment, see fig.2: if x is

a diameter (chosen between two recognizable features of the tumour) then the25

total interface area S scales as S = Ax2 (see also ref [13] ). The analysis of

existing data – both in vitro and in vivo – points to a strong dependence of the

metabolic rate on A. In particular, we attribute the spread of data about the

theoretical expression shown in figure 1 to the fluctuations of A in populations

of histologically similar tumours. Since the interface area of a tumour with the30

normal tissue environment influences both its growth rate and its metastatic

potential, these fluctuations are clinically relevant.

In this paper we argue that the probability distribution of A is lognormal, and

we show that the experimental data support this conjecture.

2. Theory35

The A parameter is directly related to the complexity of the interface be-

tween tumour and environment (see figure 2), and the interface growth can be

pictured as a gradual buildup of new features that appear on already existing el-

ements, in a way that is multiplicative rather than additive – as in a Kolmogorov

process [17]. Such a process has already been assumed in simple simulations of

biological growth based on analogs of diffusion limited aggregation [18, 19], and

if growth can be mapped on a Kolmogorov process this leads to a lognormal

distribution [17, 20, 21]

p(A;m,σ) =
1

A
√

2πσ2
exp

[
− (lnA−m)

2σ2

2
]

(4)

where m and σ are the parameters that define the shape of the distribution.

This type of growth has already been used in an attempt to explain the complex

4



structure of human lungs [22]. In this section we demonstrate the plausibility

of the lognormal conjecture and show how to obtain values of A from the data

shown in figure 1.40

BV
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MTS M
T

Live tumor cell

Dead tumor cell

Red blood cell

Endothelial cell

1.

2.

3.

4.

Figure 2: Schematic view of the tumour-environment interface in solid tumours and in tumour

spheroids. 1. Cross section of a solid tumour at low magnification. Live tumour cells (T) wrap

around blood vessels (BV) to form tumour cords. Because of the limited diffusion of nutrients,

tumour cells that are distant from blood vessels die and become necrotic (N). 2. Enlarged

view of a single tumour cord. The density of live cells decreases at increasing distance from

blood vessels as dead cells mix with live cells. 3. A multicellular tumour spheroid (MTS) – an

important in vitro model of avascular tumours – surrounded by culture medium (M) at low

magnification. Live tumour cells (T) proliferate in the external layers, while dead cells form

a necrotic core (N). 4. Enlarged view of the MTS section shown in 3: live cells mix with dead

cells just as in real tumours. In both real tumours and MTS live cells wrap and fold around

the nutrient supply system, i.e. blood vessels and the external environment, respectively. The

value of A is determined by the interface between the bulk of the living tumour cells and

the non cancerous environment, and this includes the network of blood vessels that supply

the tumour with nutrients. Therefore A is expected to be much higher in vascularised solid

tumours than in avascular tumour spheroids.
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2.1. The distribution of the A parameter

Figure 2 contains two classes of solid tumours: solid tumours in vivo and

tumour spheroids in vitro, and we consider the lognormal arguments separately

for each class.

2.1.1. The case of in vivo solid tumours45

In this case the conjecture that the A parameter follows a lognormal dis-

tribution is made plausible by the following considerations. In a solid tumour

with total volume V and total interface area S, the interface corresponds to

all the surface where tumour cells exchange oxygen, nutrients and metabolites

with the environment, and can be identified with the set of blood vessels that

traverse the tumour mass. This corresponds to a large area, and if we make

the simplifying assumption that the radius r of blood vessels is fixed, then it

is given by S ≈ 2πrL, where L is the total length of the blood vessel network.

When the linear size of the volume increases by a factor α, we find that the

volume increases by a factor α3 and the surface area by a factor α2, however

this also means that the total length of the blood vessel network also increases

by the same factor α2. This tells us that blood vessels sprout new vessels, and

the contribution of these new blood vessels to the total network length is the

difference between the quadratic growth and a simpler linear growth

α2L− αL = αL(α− 1) (5)

The same reasoning works also in the more general case where the growth of the

interface area is not exactly quadratic, but has a fractional exponent S′ = αβS,

then the contribution of new vessels to the growth of the network length is

αβL− αL = αL(αβ−1 − 1) (6)

Whatever the case, there cannot be a continuos growth, and the evolution of the

tumour mass must be punctuated by discrete sprouting events, with a random

distribution of α at each step. We can also write

S =
dV

dx
=
d(α3V0)

d(αx0)
= 3α2V0

x0
= 3α2A0x

2
0 (7)

6



in the case of growth over many sprouting events, where subscripted values are

fixed at a given time t0, or also

S =
dVn+1

dx
=
d(α3

n+1Vn)

d(αn+1xn)
= 3α2

n+1

Vn
xn

= 3α2
n+1Anx

2
n (8)

for growth between two sprouting events. Then we see from this equation that

the actual value of A at any given time fluctuates about an average, and that

it is given by

A = α2A0 =
∏
k

α2
kA0 (9)

where α is the combined, multiplicative result of many blood vessel sprouting

events. This means that

lnA = 2
∑
k

lnαk + lnA0 (10)

so that lnA is a (large) sum of variates, and if the assumptions of the central

limit theorem hold, then A has a lognormal distribution.

2.1.2. The case of in vitro tumour spheroids

The previous considerations do not apply to avascular tumours like the tu-

mour spheroids, however we can pinpoint processes that contribute to a sim-50

ilar multiplicative structure in the determination of the actual interface area.

Indeed, it has long been known that tumour spheroids grown in identical con-

ditions can have widely differing sizes at saturation [23, 24], and that this is

closely related with the spheroid structure, in particular with the formation

of the necrotic core: this fact underscores the importance both of the random55

events at the single-cell level – the only difference in the development of these

spheroids – and of the structural elements. Another hint is provided by obser-

vations of the surface of tumour spheroids, which is often rough and marked by

hills and valleys; this fact has recently been exploited in a study of the delivery

of nanoparticles into tumour tissue [25]. Irregularities such as these are again60

the result of discrete and at least partially random events, like cell death in the

necrotic core and the mitoses in the outer cell layer of tumour spheroids, and

7



the previous reasoning applies again – although we expect to find a lognormal

distribution with different parameters.

2.2. Finding A from metabolic data65

Here we remark that we can use the metabolic scaling law to determine A

when the other parameters are fixed

A ≈ V

(3λ)3(ηV/µ− 1)3
(11)

and we do so both for cultured tumour spheroids, where it is easier to estimate

η, and for human tumours, using an average η. For a given histological type,

both η and λ are nearly fixed, and here we take the values of λ estimated in

[13] for tumour spheroids and for human tumours. Because of the difficulty of

obtaining valid data, we also use the same datasets of [13], that we selected70

after an extensive search of the existing literature. And indeed, while there are

many data available, their usability is limited by the following requirements:

• we utilise glucose absorption to define the metabolic rate; therefore all the

data used in equation (1) or (11) must refer to glucose;

• it is difficult to find combined values of the parameters for the same cell75

line;

• we cannot use data expressed in arbitrary units. This rules out many data

like those obtained with uncalibrated imaging techniques, those obtained

with radioactive markers without any indication of the specific activity

of labelled compounds, and data normalised per gram of tumour tissue80

without any reference to the total amount of tissue used.

3. Calculation

We used the procedure of section 2.2 to obtain the A values corresponding to

the data shown in figure 1. Since these data are affected by rather large uncer-

tainties, the complete probability density function (pdf) of each measurements

8



is the convolution of the lognormal distribution with a normal distribution (we

make the usual assumption that measurement uncertainties have a normal dis-

tribution):

p(A, σ0;m,σ) =∫ A

−∞

1

(A− x)
√

2πσ2
exp

{
− [ln(A− x)−m]2

2σ2

}
1√

2πσ2
0

exp

(
− x2

2σ2
0

)
dx (12)

where σ0 is the measurement error. Then the complete log-likelihood is

lnL(D;m,σ) =
∑
i

ln p (A(i), σ0(i);m,σ) (13)

where D = {A(i), σ0(i)}i=1,n is the set of all n data values and their mea-

surement errors. The evaluation of the log-likelihood requires the numerical

evaluation of all the individual likelihoods, since expression (12) does not have85

a closed analytical form. The log likelihood (13) is only approximate because

the large measurement errors on A cannot be Gaussian – A is a non-negative

parameter – and moreover it depends strongly on the specific measurement er-

rors σ0(i). Moreover, we have only incomplete information on the measurement

themselves and could not obtain good error estimates for many datapoints. All90

of this leads to large numerical uncertainties and to inconclusive results when

using the log-likelihood (13), so that eventually we opted to fit the values A

deduced with (11) with the lognormal pdf (4), and our results are also shown

in figures 3 and 4.

We tested the validity of the lognormal hypothesis by comparing it with95

a highly flexible phenomenological model, a Gaussian mixture model with a

variable number of components. We did this in a Bayesian framework, and we

ranked the different hypotheses using marginal likelihoods, both for cultured

spheroids and for solid tumours.

In the case of cultured spheroids we considered a total of 35 alternative100

models, the lognormal model and 34 Gaussian mixture models with a number

of components ranging from 1 to 34. We defined only 34 mixture models because

the data set contains 34 samples, and therefore any more complex model would

9
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Figure 3: Pdf of the values of A in the case of the aggregated tumour spheroid data (spheroids

from the 9L, MR1 and Rat-T1 cell lines): the original data points are shown as a “rug plot”

(the positions marked by the vertical bars in the lower part of the plot). In addition to the

glucose uptake values given in [13] we have used η = 6.5 × 10−12 and λ = 93.9 µm for 9L

spheroids, η = 4.2 × 10−12 and λ = 123.6;µm for Rat-T1 spheroids; η = 8.9 × 10−12 and

λ = 91.0 µm for MR1 spheroids. The solid curve is the lognormal fit, the dashed line is the

empirical smoothed kernel density, and the dotted line is a power-law with exponent -1.3.

���� �×��� �×��� �×���

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�

�

�
�
�

Figure 4: Pdf of the values of A in the case of human solid tumours: the original data points

are shown as a “rug plot” (the positions marked by the vertical bars in the lower part of the

plot). In addition to the glucose uptake values given in [13] we have used η = 3.7×10−12 and

λ = 99.4 µm. The solid curve is the lognormal fit, the dashed line is the empirical smoothed

kernel density, and the dotted line is a power-law with exponent -1.3.

certainly be less plausible than the one with 34 components. Thus, we have the

following likelihoods for individual data samples:105

10



Lognormal model.

p(A|m,σ) = logN(A;m,σ) (14)

Model 1.

p(A|θ) =

1∑
i=1

αnN(A;mi, σi) θ = (α1,m1, σ1) (15)

. . .

Model 34.

p(A|θ) =

34∑
i=1

αnN(A;mi, σi) θ = ({αi}i=1,34, {mi}i=1,34, {σi}i=1,34) (16)

where logN(A;m,σ) is the lognormal pdf with parameters m and σ as above,

and N(A;m,σ) is the normal pdf with parameters m and σ.

We introduced weakly informative priors for these models. For the lognormal

one, m and σ were assigned uniform priors from 0 to 200. For the mixture models110

of M components, we assigned M − 1 uniform priors for αi in the interval 0 to

1, added an extra improper prior for
∑M−1
i=1 αi < 1, define αM = 1−∑M−1

i=1 αi,

assigned all mi and σi to be independent and uniformly distributed from 0 to

200, and finally we added an improper prior for m1 ≤ m2 ≤ · · · ≤ mM .

To rank alternative hypotheses, we need to estimate marginal likelihoods115

for the alternative models. We estimated these likelihoods using the Thermo-

dynamic Integration method proposed by [26], and obtained the results shown

in figure 5. Together with the Bayes factor for preferring the lognormal model

over any of the mixture models having the value of 4.45 × 1018, this indicates

decisive evidence that the lognormal model should be preferred over any mix-120

ture of Gaussians. Our solid tumour dataset has just as many samples as the

tumour spheroid dataset and we repeated the same kind of analysis; we used

uniform priors from 0 to 200000 for the m’s and σ’s, since we expect a wider

range of A. In this case the lognormal hypothesis ranks only second (see figure

6), however we note that the solid tumour data are much more dependent on125

the assumptions of metabolic consumption rate, etc., and therefore they carry

11



with them potentially large systematic errors. Moreover, the Gaussian mixture

model is purely phenomenological and does not rely on laws of scaling in Bi-

ology. The better performance of this mixture model can be explained by its

relative simplicity while preserving good flexibility for matching experimental130

data. Notice that the lognormal model fares better than the large majority of

the highly flexible Gaussian mixture models and in contrast to all of them it is

biologically motivated.

2 VLAD VYSHEMIRSKY

and �i to be independent and uniformly distributed from 0 to 200, finally, we add
an improper order prior for µ1  µ2  . . .  µM .

2. Estimating Marginal Likelihoods

To rank alternative hypotheses, we need to estimate marginal likelihoods for
the alternative models. We estimated these likelihoods using the Thermodynamic
Integration method proposed by (N. Friel et al., 2008), and obtained the results
listed in Table 1. These results produce relative model probabilities as depicted in
the following chart:

Together with the Bayes factor for preferring the log-normal model over any
of the mixture models having the value of 4.448077 ⇥ 1018, this indicates deci-
sive evidence that the log-Normal model should be preferred over any mixture of
gaussians.

3. References

N. Friel, and A. N. Pettitt, 2008, Marginal likelihood estimation via
power posteriors, Journal of the Royal Statistical Society: Series B, 70(3),
589 – 607.

Figure 5: Ranking of hypotheses in the case of in vitro tumour spheroids. The numbers on

the x axis mean the number of mixture components, the y axis is the value of the marginal

likelihood.

4. Results and Discussion

As noted above, the A parameter is related to the overall shape of the tu-135

mour. It is one of the factors that set the timescale of tumour growth and has an

importance of its own, as it determines both the total tumour volume and the

size of the interface between tumour and nutrient-supplying blood vessels. This

interface also regulates the influx of drugs and influences the overall metastatic

potential because it is the place where tumour cells can enter the blood stream.140

The heuristic considerations discussed above suggest that tumour spheroids and

12
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Figure 6: Ranking of hypotheses in the case of solid tumours in vivo. The numbers on the

x axis mean the number of mixture components, the y axis is the value of the marginal

likelihood.

solid tumours in vivo both have lognormal distributions, although with differ-

ent parameters. The actual observations indicate that the distinction is correct,

and show that the A parameter becomes quite large in vascularised tumours in

vivo because of the fractal nature of the capillary network that feeds tumours145

[27]. The statistical analysis lends a support to the lognormal conjecture that

is strong in the case of in vitro tumors, but it is still inconclusive for in vivo

tumours and a compelling statement requires additional data.

Interestingly, when the σ parameter is smaller than m the tail of the lognor-

mal distribution provides a reasonable approximation of a power-law distribu-150

tion over several orders of magnitude, a fact that has prompted [20, 21] to argue

that the ubiquitous power-law distributions may actually stem from underlying

lognormals. If this turned out to be true also in this case, then in a certain

subrange of values the A parameter would display a sort of scale invariance over

the population of solid tumours – this is also illustrated in figures 3 and 4 where155

we plotted a power law ∼ 1/A1.3 ≈ 1/A4/3 to show the kind of scale-invariance

13



that we would obtain with the present data analysis.

4.1. Conclusions

The A parameter sets the extent of the interface area, and for this reason it

has an obvious correlation with tumour aggressiveness and with the structure of160

the tumour microenvironment, and a detailed knowledge of its distribution can

yield important statistical estimates on the overall behaviour of a population of

solid tumours. This requires a protocol for measuring A in a large number of

cases, and we expect that studies of A for different histological tumour types

can lead to different parameter sets. Finally, the global statistical parameters165

could be used to assess the eventual prognosis with a given dynamics of A in an

individual tumour.
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