Study of J/ψ Production in Jets

R. Aaij et al.*
(LHCb Collaboration)

(Received 19 January 2017; published 8 May 2017)

The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, $z(J/\psi) \equiv p_T(J/\psi)/p_T(jet)$, is measured using jets with $p_T(jet) > 20$ GeV in the pseudorapidity range $2.5 < \eta(jet) < 4.0$. The observed $z(J/\psi)$ distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the p_T fraction carried by prompt J/ψ mesons in jets at any experiment.

DOI: 10.1103/PhysRevLett.118.192001

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
simulation, \(pp \) collisions are generated using PYTHIA8 [38] with a specific LHCb configuration [39]. Decays of hadronic particles are described by EVTGEN [40], in which final-state radiation is generated using PHOTOS [41]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [42] as described in Ref. [43].

The online event selection is performed by a trigger [44], which consists of a hardware stage using information from the calorimeter and muon systems, followed by a software stage, which performs the \(J/\psi \) candidate reconstruction. The hardware stage selects events with at least one dimuon candidate with \(\sqrt{p_T(\mu^+)p_T(\mu^-)} \) greater than a threshold that varied between 1.3 and 1.5 GeV during the 2016 data taking. In the software stage, two muon candidates with \(p_T(\mu) > 0.5 \) GeV are required to form a \(J/\psi \) candidate whose invariant mass is within 150 MeV of the known \(J/\psi \) mass [45]. Additional selection criteria are applied offline to the \(J/\psi \) candidates: the tracks are required to satisfy stringent muon-identification criteria; and the muon and \(J/\psi \) candidates are required to be within the fiducial region of this analysis, where the detector is well understood.

A new data-taking scheme was introduced by LHCb in 2015 that enables offline-like performance in the online system. The alignment and calibration are performed in near real time [46] and are available in the trigger reconstruction [47]. Furthermore, an increase in the online CPU resources makes it possible to run the offline track reconstruction in the online system. This analysis is based on a data sample where all online-reconstructed particles in the event are stored, but most lower-level information is discarded, greatly reducing the event size. This data-storage strategy makes it possible to record all events containing a \(J/\psi \) candidate without placing any requirements on \(p_T(J/\psi) \), or on the displacement of the \(J/\psi \) decay from the primary vertex (PV).

Jet reconstruction is performed offline on this data sample by clustering the \(J/\psi \) candidates with charged and neutral particle-flow candidates [48], all reconstructed online, using the anti-\(k_T \) clustering algorithm as implemented in FASTJET [49]. This is the first LHCb analysis to use online-reconstructed particles that were not involved in the trigger decision. The \(J/\psi \) candidates, rather than their component muons, are used in the clustering to prevent muons from a single \(J/\psi \) decay being clustered into separate jets. Reconstructed jets with \(p_T(jet) > 15 \) GeV and \(2.5 < \eta(jet) < 4.0 \) are kept for further analysis, where jets in the \(p_T(jet) \) range \(15-20 \) GeV are retained for use in unfolding the detector response. The \(\eta(jet) \) requirement, which is included in the fiducial region definition, ensures a nearly uniform resolution of 20%–25% on the \(p_T \) of the non-\(J/\psi \) component of the jet, with minimal \(p_T \) dependence above 10 GeV. This is similar to the resolution achieved on data events [48] when using offline reconstruction for \(p_T \) below 20 GeV, but worse at higher \(p_T \) where the resolution in such events is about 15%. This degradation arises largely because calorimeter information not associated with particle-flow candidates is not stored in this data sample.

The jet momenta are not corrected for reconstruction bias. Instead, the effect of the detector response on the \(z(J/\psi) \) distributions is removed using an unfolding procedure. This involves first determining the reconstructed \(J/\psi \) yields in bins of \([z(J/\psi), p_T(jet)] \), then correcting them for detection efficiency. Bin migration, which occurs largely due to the resolution on the non-\(J/\psi \) component of the jet, is accounted for by unfolding the \(z(J/\psi), p_T(jet) \) distributions of corrected \(J/\psi \) yields using an iterative Bayesian procedure [50,51]) (see the Supplemental Material [52] for a detailed discussion of the unfolding). Finally, the unfolded \([z(J/\psi), p_T(jet)] \) distributions are integrated for \(p_T(jet) > 20 \) GeV to produce the measured \(z(J/\psi) \) spectra. The binning scheme employs ten equal-width \(z(J/\psi) \) bins, and three \(p_T(jet) \) bins of 15–20, 20–30, and > 30 GeV.

The yield of \(J/\psi \to \mu^+\mu^- \) decays reconstructed in each \([z(J/\psi), p_T(jet)] \) bin, which includes \(J/\psi \) mesons produced promptly and in \(b \)-hadron decays, is determined from an unbinned maximum likelihood fit to the corresponding dimuon invariant-mass distribution. The signal component is modeled as the sum of two Crystal Ball functions [53] that share all shape parameters except the width. The combinatorial background is described by an exponential function. Both the signal and background shapes are allowed to vary in each bin independently. An example of the invariant-mass distribution from one \([z(J/\psi), p_T(jet)]\) bin is shown in Fig. 1 along with the fit result. The total \(J/\psi \) signal yield in the data sample is almost \(2 \times 10^6 \).

The fraction of \(J/\psi \) mesons that originates from \(b \)-hadron decays is determined by fitting the distribution of the pseudo-decay-time \(\tau = 2m(J/\psi) / p_T(J/\psi) \), where \(\lambda \) denotes the difference in position along the beam axis between the \(J/\psi \) decay and primary vertices, \(m(J/\psi) \) is the known \(J/\psi \)

![FIG. 1. Example dimuon invariant-mass distribution with the fit result superimposed from the bin \(0.4 < z(J/\psi) < 0.5, \) \(20 < p_T(jet) < 30 \) GeV. The signal is modeled as the sum of two Crystal Ball functions, while the background is described by an exponential function.](image-url)
mass \cite{45}, and \(p_\perp(J/\psi) \) is the component of the \(J/\psi \) momentum longitudinal to the beam axis. Only candidates with \(|\vec{r}| < 10 \) ps, corresponding to about seven \(b \)-hadron lifetimes, and a mass consistent with the known \(J/\psi \) mass are used in these unbinned maximum likelihood fits. The \(\vec{r} \) distribution from one \(\{z(J/\psi), p_\perp(J/\psi)\} \) bin is shown in Fig. 2. The prompt-\(J/\psi \) component is modeled by a Dirac \(\delta \) function, while the \(b \)-hadron component is modeled by an exponential decay function with a variable lifetime parameter; both are convolved with a double-Gaussian resolution function. A long and nearly symmetric tail in the \(\vec{r} \) distribution arises due to \(J/\psi \) candidates produced in additional \(p\bar{p} \) collisions that are not reconstructed. The shape of this component, the contribution of which is found to be \(O(0.1\%) \) in all bins, is modeled by constructing the distribution with \(\vec{r} \) calculated using \(J/\psi \) and PV candidates from different data events. Finally, the shape of the non-\(J/\psi \) component in each bin is parametrized using an empirical function obtained from a fit to the \(\vec{r} \) distribution observed in the \(m(\mu^+\mu^-) \) sidebands, while its normalization is fixed from the \(m(\mu^+\mu^-) \) fit in the bin. The fraction of \(J/\psi \) mesons that are produced in \(b \)-hadron decays is determined to be in the range 20\%–60\%, depending on the \(\{z(J/\psi), p_\perp(J/\psi)\} \) bin.

The \(J/\psi \) yields are corrected for detection efficiency by applying per-candidate weights of \(\epsilon_{\text{tot}}^{-1} \), where \(\epsilon_{\text{tot}} \) is the total detection efficiency determined as the product of the reconstruction, selection, and trigger efficiencies. The use of per-candidate weights within a fiducial region where the efficiency is nonzero throughout produces accurate efficiency-corrected yields without requiring knowledge of the \(J/\psi \to \mu^+\mu^- \) angular distribution or, equivalently, the \(J/\psi \) polarization. The weights, which are similar for nearly all candidates, are rarely greater than 5 and never greater than 20. Consequently, there is negligible impact on the statistical variance due to the use of weighted candidates, since the vast majority of events in each \(\{z(J/\psi), p_\perp(J/\psi)\} \) bin contribute nearly equally.

The muon reconstruction efficiency is obtained from simulation in bins of \(\{p(\mu), \eta(\mu)\} \). Scale factors that correct for discrepancies between the data and simulation are determined using a data-driven tag-and-probe approach on an independent sample of \(J/\psi \to \mu^+\mu^- \) decays \cite{54}. A small \(p_\perp(J/\psi) \)-dependent correction is applied to the yields of \(J/\psi \) mesons produced in \(b \)-hadron decays to account for a drop in the efficiency at large \(b \)-hadron flight distances. Within the fiducial region of this analysis, the \(J/\psi \) reconstruction efficiency is on average about 90\%.

The dominant contribution to the selection inefficiency is from the muon-identification performance, which is measured in bins of \(\{p_\perp(J/\psi), \eta(J/\psi)\} \) using a highly pure calibration data sample of \(J/\psi \to \mu^+\mu^- \) decays. The efficiency of selecting a reconstructed \(J/\psi \) candidate varies from 80\% for \(z(J/\psi) < 0.1 \) to nearly 100\% for \(z(J/\psi) > 0.5 \). The trigger efficiency is measured in bins of \(\sqrt{p_\perp(\mu^+)p_\perp(\mu^-)}, \eta(J/\psi) \) using a subset of this \(J/\psi \) calibration sample. Events selected by the hardware trigger independently of the \(J/\psi \) candidate, e.g., due to the presence of a high-\(p_\perp \) hadron, are used to determine the trigger efficiency directly from the data. The fraction of \(J/\psi \) candidates in each \(\sqrt{p_\perp(\mu^+)p_\perp(\mu^-)}, \eta(J/\psi) \) bin that are selected by the dimuon hardware trigger gives the efficiency, which is about 40\% on average for \(z(J/\psi) < 0.1 \) and 80\% for \(z(J/\psi) > 0.5 \).

The effects of \(\{z(J/\psi), p_\perp(J/\psi)\} \) bin migration, which are predominantly due to the detector response to the non-\(J/\psi \) component of the jet, are corrected for using an unfolding technique \cite{50–52}. The detector-response matrices for \(J/\psi \) mesons produced promptly and in \(b \)-hadron decays are dissimilar for two reasons: the \(p_\perp \)-dependent particle multiplicities are different, and the undetected momentum carried by \(K^0 \) and \(\Lambda \) particles is, on average, larger for jets that contain a \(b \)-hadron decay. The \(p_\perp(J/\psi) \)-dependent mean and width of the reconstructed particle multiplicity distributions for jets in simulation are adjusted to match those observed in data. The detector response is studied using the \(p_\perp \)-balance distribution of \(p_\perp(J/\psi)/p_\perp(Z) \) in nearly back-to-back \(Z+\)jet events using the same data-driven technique as in Ref. \cite{48}. Small adjustments are applied to the \(p_\perp(J/\psi) \) scale and resolution in simulation obtaining the best agreement with data. The unfolding

![FIG. 2. Example pseudo-decay-time distribution from the same bin as in Fig. 1 with the fit result superimposed. The right plot shows the \([-0.2, 1] \) ps region on a linear scale.](image-url)
matrix for jets that contain a prompt J/ψ meson is shown in Fig. 3, while the corresponding matrix for b-hadron production is provided in the Supplemental Material [52].

Systematic uncertainties on the $z(J/\psi)$ distributions apply to both the prompt and b-hadron production modes. Uncertainty on the J/ψ yields arises from the efficiency corrections and from possible mismodeling of the components in the invariant-mass and pseudo-decay-time fits. The uncertainty on each component of the total efficiency is assessed by repeating the data-driven efficiency studies on simulated events, where the difference between the true and efficiency-corrected J/ψ yields in bins of $[p_T(J/\psi), \eta(J/\psi)]$ is used to determine the systematic uncertainty. The relative uncertainty on the reconstruction efficiency is determined to be 2%, which includes the unknown J/ψ polarization. The relative uncertainties on the trigger and selection efficiencies are in the ranges 2%–5% and 0%–2%, respectively, depending on the $[z(J/\psi), p_T(J/\psi)]$ bin.

The uncertainty on the total J/ψ yield obtained from the invariant-mass fits (1%) is studied by replacing the nominal signal and background models with single Crystal Ball and quadratic functions, respectively. The relative uncertainty on the fraction of J/ψ mesons produced in b-hadron decays (1%) is determined by comparing the fit results obtained from simulated $t\bar{t}$ distributions to the true fractions. Potential mismodeling of the non-J/ψ and wrong-PV components is found to contribute negligible uncertainty. The total relative uncertainty on the J/ψ yields is 3%–6% depending on the $[z(J/\psi), p_T(J/\psi)]$ bin, which corresponds to a bin-dependent absolute uncertainty on $z(J/\psi)$ of 0.001–0.005.

The uncertainty associated with the detector response to the non-J/ψ component of the jet is studied by building alternative unfolding matrices, where the p_T scale and resolution are varied within the uncertainties obtained from the data-driven p_T-balance study of Z + jet events. The data are unfolded using these alternative matrices, with the differences in the $z(J/\psi)$ distribution used to assign $z(J/\psi)$-dependent absolute uncertainties of 0.001–0.014. The $p_T(J/\psi)$ and $z(J/\psi)$ spectra used to generate the unfolding matrices, along with the unfolding procedure itself, are also potential sources of uncertainty. These are studied by simulating data samples similar to the experimental data, then unfolding them using response matrices constructed from $p_T(J/\psi)$ and $z(J/\psi)$ distributions that are different from those used to generate the samples. Based on these studies, an uncertainty of 0.01 is assigned to each $z(J/\psi)$ bin due to unfolding. Finally, the uncertainties due to the fragmentation model and due to the K^0 and Λ components of the jet are found to be negligible. The total absolute systematic uncertainty in each $z(J/\psi)$ bin, which dominates over the statistical one, is 0.010–0.015.

The measured normalized $z(J/\psi)$ distributions for J/ψ mesons produced promptly and for those produced in b-hadron decays are shown in Fig. 4 (the numerical values are provided in Ref. [52]). The b-hadron results are consistent with the PYTHIA8 prediction [52], where the uncertainty shown is due to b-quark fragmentation [55,56] (other sources of uncertainty are ignored [52]). The prompt-J/ψ results do not
not agree with the leading-order (LO) NRQCD-based prediction as implemented in PYTHIA8, which includes both color-octet and color-singlet mechanisms using long-distance matrix elements determined empirically [52]. At small $z(J/\psi)$, PYTHIA8 predicts that most $p_T(j)$ rises from a parton-parton scatter other than the one that produced the J/ψ meson. The dominant source of uncertainty on the prompt-J/ψ prediction at large $z(J/\psi)$ is due to the underlying event; however, since no rigorous method exists for determining this uncertainty, no uncertainty is assigned to the prediction. Given that the underlying event at LHCb is well described by PYTHIA8, e.g., the energy flow is accurately predicted at the 5% level [57], the prompt-J/ψ results cannot be reconciled with this prediction. Furthermore, LO and partial next-to-leading-order (NLO*) calculations in both the color-singlet and color-octet models similarly fail to describe the data [52,58].

Prompt J/ψ mesons in data are observed to be much less isolated than predicted, which qualitatively agrees with the alternative picture of quarkonium production presented in Ref. [32] (after this Letter was submitted, Ref. [59] demonstrated quantitative agreement). The lack of isolation observed for prompt J/ψ production may be related to the long-standing quarkonium polarization puzzle. If high-p_T J/ψ mesons are predominantly produced within parton showers, rather than directly in parton-parton scattering, then the observed lack of both polarization and isolation could be explained [34]. Future related measurements of J/ψ production in jets should help shed light on the nature of quarkonium production [60,61].

In summary, the production of J/ψ mesons in jets is studied using pp-collision data collected by LHCb at $\sqrt{s} = 13$ TeV in the fiducial region: $p_T(j) > 20$ GeV and $2.5 < y(j) < 4.0; 2.0 < \eta(J/\psi) < 4.5$; and $p_T(\mu) > 0.5$ GeV, $p(\mu) > 5$ GeV, and $2.0 < \eta(\mu) < 4.5$. The fraction of the jet p_T carried by the J/ψ meson is measured for J/ψ mesons produced promptly and for those produced in b-hadron decays. The observed distribution for J/ψ mesons produced in b-hadron decays is consistent with the PYTHIA8 prediction; however, the prompt-J/ψ results do not agree with predictions based on fixed-order NRQCD as implemented in PYTHIA8.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

[26] A. M. Sirunyan *et al.* (CMS Collaboration), Relative modification of prompt $\psi(2S)$ and J/ψ yields from pp to PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, arXiv:1611.01438.

PYTHIA predictions, and for additional plots and numerical results.

39 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40 European Organization for Nuclear Research (CERN), Geneva, Switzerland
41 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42 Physik-Institut, Universität Zürich, Zürich, Switzerland
43 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
44 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
45 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
46 University of Birmingham, Birmingham, United Kingdom
47 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
48 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
49 Department of Physics, University of Warwick, Coventry, United Kingdom
50 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
51 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
52 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
54 Imperial College London, London, United Kingdom
55 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
56 Department of Physics, University of Oxford, Oxford, United Kingdom
57 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
58 University of Cincinnati, Cincinnati, Ohio, USA
59 University of Maryland, College Park, Maryland, USA
60 Syracuse University, Syracuse, New York, USA
61 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
 (associated with Institution Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
62 University of Chinese Academy of Sciences, Beijing, China
 (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
63 School of Physics and Technology, Wuhan University, Wuhan, China
 (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
64 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
 (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
65 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia
 (associated with Institution LPNHE, Université Pierre et Marie Curie, Université Paris Diderot,
 CNRS/IN2P3, Paris, France)
66 Institut für Physik, Universität Rostock, Rostock, Germany
 (associated with Institution Physikalisches Institut,
 Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
67 National Research Centre Kurchatov Institute, Moscow, Russia
 (associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
68 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
 (associated with Institution ICCUB, Universitat de Barcelona, Barcelona, Spain)
69 Van Swinderen Institute, University of Groningen, Groningen, Netherlands
 (associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

a Also at Università di Ferrara, Ferrara, Italy.
b Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
c Also at Università di Milano Bicocca, Milano, Italy.
d Also at Università di Modena e Reggio Emilia, Modena, Italy.
e Also at Novosibirsk State University, Novosibirsk, Russia.
f Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
g Also at Università di Bologna, Bologna, Italy.
h Also at Università di Roma Tor Vergata, Roma, Italy.
i Also at Università di Genova, Genova, Italy.
j Also at Scuola Normale Superiore, Pisa, Italy.
k Also at Università di Cagliari, Cagliari, Italy.
l Also at Università di Padova, Padova, Italy.
m Also at Università di Bari, Bari, Italy.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
Also at Università degli Studi di Milano, Milano, Italy.
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
Also at Iligan Institute of Technology (IIT), Iligan, Philippines.
Also at Hanoi University of Science, Hanoi, Viet Nam.
Also at Università di Pisa, Pisa, Italy.
Also at Università di Roma La Sapienza, Roma, Italy.
Also at Università della Basilicata, Potenza, Italy.
Also at Università di Urbino, Urbino, Italy.