Examining associations of environmental characteristics with recreational cycling behaviour by street-level Strava data

Sun, Y. , Du, Y., Wang, Y. and Zhuang, L. (2017) Examining associations of environmental characteristics with recreational cycling behaviour by street-level Strava data. International Journal of Environmental Research and Public Health, 14(6), 644. (doi:10.3390/ijerph14060644) (PMID:28617345)

[img]
Preview
Text
142545.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Policymakers pay much attention to effectively increasing frequency of people’s cycling in the context of developing sustainable and green cities. Investigating associations of environmental characteristics and cycling behaviour could offer implications for changing urban infrastructure aiming at encouraging active travel. However, earlier examinations of associations between environmental characteristics and active travel behaviour are limited by low spatial granularity and coverage of traditional data. Crowdsourced geographic information offers an opportunity to determine the fine-grained travel patterns of people. Particularly, Strava Metro data offer a good opportunity for studies of recreational cycling behaviour as they can offer hourly, daily or annual cycling volumes with different purposes (commuting or recreational) in each street across a city. Therefore, in this study, we utilised Strava Metro data for investigating associations between environmental characteristics and recreational cycling behaviour at a large spatial scale (street level). In this study, we took account of population density, employment density, road length, road connectivity, proximity to public transit services, land use mix, proximity to green space, volume of motor vehicles and traffic accidents in an empirical investigation over Glasgow. Empirical results reveal that Strava cyclists are more likely to cycle for recreation on streets with short length, large connectivity or low volume of motor vehicles or on streets surrounded by residential land.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sun, Mr Yeran and Zhuang, Liyuan and Wang, Dr Yu
Authors: Sun, Y., Du, Y., Wang, Y., and Zhuang, L.
College/School:College of Social Sciences > School of Social and Political Sciences
College of Social Sciences > School of Social and Political Sciences > Urban Studies
Journal Name:International Journal of Environmental Research and Public Health
Publisher:MDPI
ISSN:1660-4601
ISSN (Online):1660-4601
Published Online:15 June 2017
Copyright Holders:Copyright © 2017 The Authors
First Published:First published in International Journal of Environmental Research and Public Health 14(6):644
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
651921Urban Big Data Research CentrePiyushimita ThakuriahEconomic and Social Research Council (ESRC)ES/L011921/1SPS - URBAN STUDIES