
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/142190/

Deposited on: 6 July 2017
Healthy Vascular Aging

Gemma Currie, Christian Delles

BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.

Decisions on preventative treatments can be based on single parameters, but in most cases, clinicians take more than one risk factor into account, as some negative indicators of risk can be outbalanced by other more favorable factors. This concept has led to the development of risk scores that integrate a multitude of cardiovascular risk factors; the Framingham Risk Score is one notable example. Although these scores work well on the population level, they are of limited use for individual risk prediction. A tendency to overestimate risk; differences in risk between populations, ethnicities, and social classes; general changes in population health from derivation of scores in historic samples and application to modern societies; and the fact that not all damaging and protecting factors that could play a role in an individual patient are taken into account explain why as clinicians we are often confronted with patients at seemingly high risk who do perfectly well even at advanced age and with patients at seemingly low risk who are struck by premature cardiovascular disease. In this era of precision medicine, we would like to offer not only individualized treatment options but also individualized preventative strategies to our patients.

An alternative approach is, therefore, based on early detection of cardiovascular disease rather than prediction of cardiovascular disease risk. The concept of the cardiovascular continuum where advanced disease develops not without earlier functional and structural subclinical changes forms the theoretical basis of this approach. One can assume that an individual’s position on the continuum from health to overt cardiovascular disease is determined by the integrated action of genetic, environmental, and other risk factors and could, therefore, inform decision rules on initiation of preventative and therapeutic strategies.

Assessment of vascular function and structure is a key element of the mapping of an individual’s cardiovascular health. For example, it is well established that pulse wave velocity (PWV; a measure of vascular stiffness) is an independent predictor of cardiovascular events. The clinical experience that vascular function and structure can be disproportionally impaired compared with an individual’s risk profile has led to the concept of early vascular aging, describing the development of cardiovascular diseases from a vascular perspective. Other measures of vascular function and structure include assessment of endothelial function (eg, by flow-mediated dilation or peripheral artery tonometry); pulse wave analysis (to study features of the waveform and to estimate central blood pressure); and imaging studies to assess atherosclerotic changes (eg, ultrasound studies into carotid intima–media thickness and carotid plaques) and vascular calcification (eg, coronary calcium scores assessed by computed tomography). The European Society of Hypertension and European Society of Cardiology, therefore, suggest that comprehensive assessment of the vascular phenotype can help in the assessment of an individual’s cardiovascular risk and thereby in the choice of antihypertensive treatment strategies. However, the idealized view of a stepwise and continuous development of vascular damage from early functional to advanced structural changes is not what we observe in individual patients where these processes can develop in parallel and at different rates. Moreover, most of the noninvasive tests that could be used in large clinical studies and
ultimately in clinical practice assess large vessels and do not directly study the microvasculature, thereby neglecting the essential cross-talk between large and small vessels. It is, therefore, not surprising that the European Society of Hypertension and European Society of Cardiology, other than providing a list of techniques, cannot recommend a specific hierarchy or order of tests and how they should exactly be interpreted.

In this issue of Hypertension, Niiranen et al have taken a simple and pragmatic approach to assess vascular health in participants of the Framingham Heart Study. They took advantage of this well-characterized, longitudinal general population cohort to confirm that a marker of vascular structure (PWV) is independently associated with cardiovascular outcomes when adjusted for traditional risk factors. What makes the article unique is that the authors looked at the flip side of the coin and focused on individuals with a healthier vascular phenotype to show that they experience a lower cardiovascular event rate compared with participants whose vessels are less healthy. The other unique feature is that Niiranen et al have gone beyond PWV to define the condition of the vasculature and defined healthy vascular aging (HVA) as a composite of low PWV and normal blood pressure where blood pressure is an indirect readout of a variety of vascular, including microvascular, changes. Maybe not surprisingly, HVA was associated with a favorable profile of traditional risk factors both when these markers were studied individually using multiple regression models and when they were combined categorically using a cardiovascular health score. However, a beneficial profile of traditional risk factors did not fully explain a healthy vascular phenotype, and other features including genetic and environmental factors will help to explain why some people have healthier vessels than others despite similar traditional risk factors. Niiranen et al provide some clues in their article by looking at a range of biomarkers and genetic risk. These additional data and a range of sensitivity analyses make the present paper more convincing and will stimulate future research in this field.

Probably the strongest and most reassuring message from this article is that HVA can be achieved and that it can be found also in the elderly, albeit much less commonly than in younger people. Age remains the main determinant of vascular age, and we probably have to accept the fact that vascular aging cannot be prevented indefinitely. The Lancet Commission on Hypertension has recently used the concept of normal (cardio)vascular aging to identify clinical and research priorities in order to avoid the accelerated development of cardiovascular diseases in some patients and to push the normal lifecourse of disease development toward an ideal lifecourse that provides a much longer disease-free life span. Niiranen et al have provided an important piece of research by defining some of the factors that are associated with HVA and probably even more so by identifying what we do not know about HVA yet. The fact that the Framingham cohort may not be fully representative of the general population in the United States and elsewhere probably limits the generalizability of the results.

There are further limitations of the present article by Niiranen et al. First, although there are good reasons for including blood pressure in their definition of vascular age, it mixes up a risk factor (blood pressure) with its consequences (altered vascular phenotype). We appreciate that the interaction between blood pressure and vascular function/structure is particularly complex and that blood pressure can at the same time be a cause and consequence of vascular changes. However, the assumed notion that a healthy vasculature is impossible in people with high blood pressure contradicts clinical experience where we see patients who have surprisingly little vascular damage despite their high blood pressure—presumably because of the strong influence of other protective factors.
Second, the authors have only assessed PWV and no other vascular phenotypes. Clearly, a simple number in meters per second cannot fully represent the complexity of vascular disease, and low PWV does not mean that all function and structure of all vascular beds are normal or healthy. More comprehensive assessment using a variety of markers applied to a variety of vascular beds would give a more precise picture. Interpretation of such complex data will, however, be challenging and could result in more confusion than in useful guidance. The pragmatic approach in the present article may, therefore, have its clinical advantages.

Third, how will information on HVA inform clinical practice? It is reassuring that HVA can be observed in some, and although we should strive to achieve it in all people, it remains unclear which advice we should give to people with HVA. Would we withhold preventative therapy in those with HVA despite an unfavorable traditional risk profile or high risk score? Specific algorithms that integrate subclinical phenotypes and traditional risk factors will have to be developed, and these will require studies in additional and larger cohorts. In this context, the timing of vascular assessments would be particularly important: a healthy vasculature in the elderly will indeed indicate lower risk, whereas its predictive value in younger people will be more limited. Given the low costs and low adverse effect rate of drugs used for cardiovascular protection, one would need good reasons for not offering such treatment to a group of people.

So what do we learn from the article by Niiranen et al? First and foremost, HVA is possible. This is good news for our patients even if they have multiple risk factors. Second, HVA is associated with a beneficial profile of traditional risk factors, but other yet unidentified factors contribute significantly. Third, there is no uniform definition of HVA and no generally accepted best practice on how to assess vascular age. Niiranen et al have to be congratulated on their pragmatic approach even if it is far from perfect. Fourth, the immediate clinical consequences of this work are not fully clear yet.

Most importantly, the present article encourages us to perform studies that focus on a particularly healthy cohort to understand the factors that are associated with their phenotype. This is in contrast to the traditional approach where researchers studied the most diseased in order to understand risk factors for disease. In fact, the latter is where the Framingham Heart Study made major contributions in the past. The present study by Niiranen et al paves the way for future research into protective factors that will not only improve our understanding of the pathophysiology of vascular diseases but also offer new predictive, diagnostic, and therapeutic tools. There is a bright future for the Framingham cohort, and the acronym FHS already points in this direction as the Framingham Health Study.

**Source of Funding**

We are grateful to the British Heart Foundation (Centre of Research Excellence Award RE/13/5/30177) and the European Commission (Cooperative Research Projects sysVASC [603288] and PRIORITY [101813]) for supporting our work.

**Disclosures**

None.
References


