

Hajji, W., Tso, F. P., Cui, L. and Pezaros, D. (2017) Experimental

Evaluation of SDN-Controlled, Joint Consolidation of Policies and Virtual

Machines. In: 22nd IEEE Symposium on Computers and Communications

(IEEE ISCC), Heraklion, Crete, Greece, 3-6 July 2017, ISBN

9781538616291 (doi:10.1109/ISCC.2017.8024710)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/140739/

Deposited on: 08 May 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ISCC.2017.8024710
http://eprints.gla.ac.uk/140739/
http://eprints.gla.ac.uk/

Experimental Evaluation of SDN-Controlled, Joint
Consolidation of Policies and Virtual Machines

Wajdi Hajji∗, Fung Po Tso∗, Lin Cui†, Dimitrios P. Pezaros‡

∗Department of Computer Science, Liverpool John Moores University, UK
†Department of Computer Science, Jinan University, Guangzhou, China
‡School of Computing Science, University of Glasgow, Glasgow, UK

Email: w.hajji@2015.ljmu.ac.uk; p.tso@ljmu.ac.uk; tcuilin@jnu.edu.cn; dimitrios.pezaros@glasgow.ac.uk

Abstract—Middleboxes (MBs) are ubiquitous in modern data
centre (DC) due to their crucial role in implementing network
security, management and optimisation. In order to meet net-
work policy’s requirement on correct traversal of an ordered
sequence of MBs, network administrators rely on static policy
based routing or VLAN stitching to steer traffic flows. However,
dynamic virtual server migration in virtual environment has
greatly challenged such static traffic steering.

In this paper, we design and implement Sync, an efficient
and synergistic scheme to jointly consolidate network policies
and virtual machines (VMs), in a readily deployable Mininet
environment. We present the architecture of Sync framework
and open source its code. We also extensively evaluate Sync
over diverse workload and policies. Our results show that in
an emulated DC of 686 servers, 10k VMs, 8k policies, and 100k
flows, Sync processes a group of 900 VMs and 10 VMs in 634
seconds and 4 seconds respectively.

I. INTRODUCTION

DC management complexity has grown rapidly in recent
years due to the increased virtualisation of both networking
and server resources [1]. In addition, introduction of a variety
of network functions or MBs as intermediaries for traffic
control and shaping [2], their management has become critical
since otherwise DC network security and performance can be
jeopardised [3].

In such a dynamic environment, the aforementioned prob-
lems have been disjointedly addressed. For instance, several
studies have focused on proposing a VM consolidation without
consideration of the impact on policies or the governed traffic
flows [4][5]. Others have tackled policy management issues
through MB placement approaches [6]. To holistically remedy
policy violation in dynamic VM migration environments, our
previous work, Sync, a Synergistic policY and virtual machiNe
Consolidation scheme jointly consolidate network policies and
VMs [5] in DC environments. Sync has primarily focused
on legacy hardware-based MBs as they are broadly adopted
in today’s data centres. It firstly models a network-wide
communication cost with respect to MBs and VMs in tree-
based topologies. Following that, it applies stable-matching
approach to jointly migrate VMs and policies for reducing
the network-wide communication cost while preventing policy
violation.

In this paper, we aim, through a Mininet-based test-bed

implementation1, to evaluate Sync and understand which fac-
tors determine its performance in terms of execution time and
resource consumption. Unlike ns-3 based Sync simulation in
[5], Mininet based implementation gives realistic results and
is readily deployable on real hardware2.

The rest of the paper is organised as follows. In Sec. II, we
introduce the principal algorithms that comprise its processing
mechanism. Then, we present our system design in Sec. III.
Particularly, we discuss the controller implementation and how
SDN capabilities have been extended to reflect VMs, flows and
policies characteristics. In Sec. IV, we describe our experiment
set-up and evaluate Sync based on several criteria. We survey
related works in Sec. V. Finally Sec. VI concludes the paper.

II. SYNC ALGORITHM

Sync is a synergistic scheme for dynamic VM and policy
consolidation runnable on top of an SDN-based environment.
The problem formulation and the proposed model primarily
deal with hardware-based MBs due to their popularity, better
performance compared with their virtualised counterpart, and
their flexibility and support for in-network policy and service
deployment. In modelling the problem, we consider a multi-
tier DC network, which is structured under a multi-root tree
topology. Our experiments are running atop of k-ary fat-tree.

A. Get Communicating VM Groups

Handling all VM instances at the same time could incur
an intolerable running time for Sync algorithms and it would
hinder the scalability characteristics for the whole solution. In
real data centres, several tenants share or own a set of VMs
or resources, and there are groups of VMs that communicate
between each other performing a logically similar operation.
The algorithm partitions all VMs into isolated groups in which
VMs do not communicate with a VM outside their group.
These VM groups will be the input of other algorithms.

A group G is defined as the VMs that communicate
between each other, and none has a connection/relationship
with other VMs outside the group.

1Source code available on GitHub https://github.com/wajdihajji/sync.git
2https://mininet.org/

B. Policy Migration

This algorithm focuses on migrating the policies, in other
words defining again the MBs; replace them with the same type
of MBs as the deployed ones. In the meantime, it prepares
for the VM migration by updating the preference matrix
responsible for rating best candidate source and destination
servers for VM pairs. Prior to policy migration, the algorithm
should have a complete view on the Cost Network trees related
to each flow and each policy. The Cost Network graphs will
be the search space of the shortest paths related to policies.

The function responsible for getting the shortest path aims
at reducing the Communication Cost through the migration of
policies.

We define the Communication Cost of all traffic from VM
vi to vj as

C(vi, vj) =
∑

pk∈P (vi,vj)

fk.rate
∑

Ls∈Rk(vi,vj)

cs

=
∑

pk∈P (vi,vj)

{Ck(vi, pk.in)

+

pk.len−1∑
j=1

Ck(pk.list[j], pk.list[j + 1])

+ Ck(pk.out, vj)}
(1)

where Ck(vi, pk.in) = fk.rate
∑

Ls∈R(vi,pk.in)
cs is the com-

munication cost between vi and pk.in for flows which matched
pk. Similarly, Ck(pk.out, vj) is the communication cost be-
tween pk.out and vj for pk, and Ck(pk.list[j], pk.list[j + 1])
is the communication cost between pk.list[j] and its successor
MB in pk.list. Note also that R(ni, nj) is the routing path
between nodes (i.e., servers, MBs or switches).

C. VM Migration

Each server has a preferred VM list (which is constructed
in Policy migration algorithm) to host according to the corre-
sponding preference matrix and list. In addition, VM migra-
tion incurs a utility cost depending on the server destination
location. Besides, each server has a limited capacity, which de-
termines whether it can host more VMs. These parameters are
considered in the VM migration decision. Since VM and server
preferences might be in some cases contradicting, a modified
version of a Gale-Shapley algorithm has been adopted to
address this challenge and guarantee a stable matching all the
time.

The utility of migration A(vi) → ŝ is defined to be the
expected benefit through migration:

U(A(vi)→ ŝ) = Ci(A(vi))− Ci(ŝ)− Cm(vi) (2)

where Cm(vi) is an estimated migration cost related to the
VM, and Ci(sj) is defined, in turn, as:

Ci(sj) =
∑

pk∈P (vi,∗)

Ck(vi, pk.in) +
∑

pk∈P (∗,vi)

Ck(vi, pk.out)

(3)

The VM migration algorithm, for a given VM group,
initialises and obtains the preference list (where no policy

Network resources

Server resources

Mininet

SDN Controller

Core

Aggregation

Edge

VM VM VM VM VM VM

Host 1 Host 2 Host n

Topology
Discovery

Cost
Network

Migration
Utility

SPF
Flow

Recognition

Communicating
VMs Groups

Policy
Migration

VMs
Migration

OpenFlow switches

V
M

 a
n

d
Po

lic
y

m
an

ag
em

en
t

d
ec

is
io

n
s

O
p

en
Fl

o
w

 1
.3

 p
ro

to
co

l

So
ck

et
s

co
m

m
u

n
ic

at
io

n

...

Fig. 1: Architecture design

violation or overused server capacity) of all servers. It sets
all VMs as unmatched (no server yet chosen to migrate to).
First, it starts with getting the most preferred server through
calculating the migration utility and it subsequently checks
that the selected server has enough capacity to host the VM.
If that’s the case then it moves to the next VM in the
group, otherwise, it rejects less preferable VMs that were
located to the server in question. Following that, it updates
the best rejected variable with the most preferred that has been
rejected by the server. Lastly, it adds the server to the blacklists
of all lower ranked VMs than best rejected.

III. SYSTEM DESIGN AND IMPLEMENTATION

A. System Architecture

In Fig. 1, topology and the controller are running on
separated environments, they communicate through OpenFlow
to add rules to switches and via out-of-band control channel
(network sockets) to exchange or update information related
to flows, MB and VM placement, in case a migration decision
is made. The controller is composed of mainly 8 modules
that work collaboratively to identify VM groups, migrate
VMs and policies. In Mininet, OpenFlow switches ensure
the communication between VMs and servers in a Fat-tree
topology.

We consider an MB as Mininet host attached to an aggre-
gation switch. In the experiment, any type of MB only receives
and forwards packets with no modification. So when a packet
travels from source A to destination B through three MBs (e.g.
mb1, mb2, and mb3), it only goes through and the forwarding
rules are set, in advance, in the OpenFlow switches. We assume
MBs are hardware-based and hence their positions are fixed. In
addition, we have modelled the VM as a user process running
on a Mininet host (a server in the topology), each process has
an ID which is also considered as the ID of the VM. Upon
creation or migration, the user process will be created or killed
and instantiated accordingly. The policy is defined as a set of
3 MBs, each one governing one or many flows, which are in
turn modelled as Netperf 3 traffic between VM pairs.

3http://www.netperf.org/netperf/

B. Controller Modules

In this section, we describe the main components of the
controller, their roles, and the interactions between them.

1) Topology Discovery: It is a built-in feature in Ryu4

controller. It keeps track of switches registration/de-registration
and added/removed links. We construct the topology as a
graph using Ryu topology api app module where vertices
emulate switches and edges/links are the connections. A major
limitation of this function is that it does not have a view of the
instantiated VMs, flows, or policies. For this reason we have
designed and created, in parallel, a communication channel to
make the controller aware of the above information useful for
Sync’s usage.

2) Cost Network Construction: In order to make a decision
of policy migration for a given flow, Sync needs to construct
a Cost Network tree in which hosts and MBs are represented
with links and corresponding weights.

For sake of improved performance, we build in advance all
the Cost Network trees. This preliminary task is justified as the
positions of MBs are meant to be fixed (hardware-based) and
over a limited period of time, the flows characteristics are still
unchanged. In addition, the weight of each edge can updated
when used (in case flow rates are changed), and we can also
prune the cost network (removing some nodes and edges) if
some MBs are not available.

3) Shortest Path First (SPF): This module deals with the
Cost Network tree of flows related to a given VM group. It
gets the shortest path for a flow traversing a chain of MBs
according to a specific policy. It returns the optimum positions
of server source and server destination and the set of MBs in
between.

4) Flow Recognition: In the controller, a flow database is
built following the reception of information from the network
regarding communicating VMs, therefore their IPs and the
used protocol and ports are stored to match against entries
in the policy database.

Flow information can be obtained by querying the net-
work in which presumably we know in advance what traf-
fic are initiated in a period of time, as the set of flows
have been generated randomly in the experiment. In addi-
tion, Ryu can get real-time statistics by using the function
“ofp event.EventOFPFlowStatsReply”.

5) Utility Of Migration: This module is essential to help
with VM Migration decision, it aims to evaluate what is
the impact on the Communication Cost when migrating a
VM from source server to destination server. This module is
used to get the maximum utility of migration, which helps in
identifying the candidate servers for the VM to migrate to.

6) Get Communicating VM Groups: This module operates
on a Python list of VMs and flows to output n VM groups,
which are the input of Policy Migration and VM Migration
modules.

4https://osrg.github.io/ryu/

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Gr
ou

p
ra

tio

Av
er

ag
e

tim
e

to
 id

en
tif

y
th

e
gr

ou
p

(s
)

Group size

group ratio

avg time

Fig. 2: Group distribution

7) Policy Migration: For a given VM group, this module
works on a Python list of flows. Using output from SPF
module, it migrates policies by updating the corresponding
Python dictionary. Finally, it updates the Preference Matrix
by incrementing the value that corresponds to the key (server,
VM) in a Python dictionary as well.

8) VM Migration: It takes as input a VM group and
outputs the new allocations for the VMs. It calls other sub-
functions such as “Get Maximum Utility”, “Initialise Black
List”, “Check Server Capacity”, “Get Unprocessed VMs”, and
“Obtain Preference List”. For each VM in the group, it looks
for an optimum location based on the Utility Cost and server
capacity metrics. In the end, it constructs a Python dictionary
that contains the new allocations of VMs and sends it to the
topology environment via a Network Socket.

C. Communication

The communication between the topology and the con-
troller is ensured by two channels, one via OpenFlow used by
Ryu to get acknowledged of the switches and links introduced,
updated, or removed, and the second one through Network
Sockets used by Sync to get information on instantiated VMs,
flows, MBs, and service chains (corresponding to policies).

IV. EXPERIMENTAL EVALUATION

A. Experiment Set-up

We ran our experiments on two identical servers (8
Cores/1.2Ghz and 8GB Memory). Ubuntu 14.04 is running
atop of them and they belong to the same network and have
directly a physical connection through a 1Gbps switch.

In server A, there are Mininet version 2.3.0d1, OpenFlow
1.35 and Python 2.7.6. Initially, we create and set OpenFlow
switches and hosts, we also construct topology tree, VMs
and flows database, which will be shared with the controller
modules later on. In server B, we have installed and configured
Ryu controller 4.10.

We run Sync with different combinations of VMs, flows,
policies and MBs. We have fixed our topology size in every run
with fat-tree’s k=14. That means the number of edge switches
equals to 98, the number of aggregation switches is 98, the

5https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(a) Get Communicating VMs algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

CD
F

of
 g

ro
up

s

Runtime (s)

20k flows
60k flows

100k flows

(c) VM Migration

Fig. 3: Sync performance evaluated with growing number of flows, group sizes in the three levels are 36, 31, 19, respectively.

number of core switches is 49, so the number of switches in
total is 245, and the number of hosts is 686.

We have run all experiments 10 times to get average
results so that we mitigate measurement irregularity and noisy
statistical data. Variations in results can be caused by OS tasks
running in background or logging processes executed to collect
the results.

B. Group Formation

Sync is designed to operate on VM groups. In order to
better understand the performance of Sync, it is important for
us to show how groups are distributed in the topology. We will
then show the efficiency of Sync’s Getting Communicating VM
Groups algorithm for forming these groups. We particularly
show results of 100k flows, 10k VMs, and 80 MBs, which is
the most representative set-up in our experiment as it involves
many VMs and consequently many groups.

In Fig. 2, almost every group represents 5% of the set of
groups. The curve of average time to form the group evolves
linearly with growing number of group sizes, that is expected
since, as explained in Section II-A, the run time is affected
by the group size. However, a slight dip appears for group
size 915 which takes about 0.7534s to get identified. This
change is due to the difference in order of appearance of
groups. To explain this, we look at the group in question and
its two neighbours in Fig. 2, whose sizes are 912, 915, 921
VMs, they take 0.805s, 0.7534s, 0.8017s, and their order of
appearance are first, twelfth, and ninth, respectively. So group
of 915 VMs appears lastly in the three groups, that means Get
Communicating VMs operates on less number of VMs and
flows at the order twelfth than at the first and ninth iterations.
The aforementioned information are read from logs related to
the experiment. Same explanation are still applicable on the
two groups of sizes 912 and 921 VMs.

C. Overall Performance Results

In this section, we study the impact of topology character-
istics on Sync performance. However, we do not present the
consumed network resources as Sync is mainly a workload
intensive task, and the only network activity induced by it can
be seen when sending VM and policy migration decisions to
the Mininet topology.

Firstly, we fix the number of VMs and MBs (we set them
at the maximum values of the experiment; 10k VMs and 80

MBs in a Fat-tree topology with k=14), at the same time, we
change the number of flows starting from 20k to 100k flows.
In each case, we measure the time taken for each group to
run Sync algorithms, Get communicating VM Groups, Policy
migration, and VM migration.

In Fig. 3, we observe how the growing number of flows
causes longer runtime for Sync algorithms. For instance, where
the number of flows is set at 20k, all groups finish in 0.08s,
0.01s, and 38s in the three algorithms respectively, at 60k
flows, all of them finish in 0.28s, 0.035s, and 90s, and with
100k flows, the run-times of all groups reach nearly 0.75s,
0.12s, and 80s respectively. In Sync design, flows have always
been involved in all algorithms. For example, in getting the
communicating VMs, Sync looks for associated flows to each
VM to conclude the relations between VMs and therefore
recognise and define groups. This means that when the number
of flows grows, the search space becomes larger and more
importantly, the VM could have more associated flows. This
also leads to an increase in the runtime of other algorithms.
The discrepancy seen for VM migration when runtime is 80s
for 100k flows, and 90s for 60k flows is due to the fact that the
algorithm in question considers, besides the number of flows,
the policy violation constraints. The latter depends on the MB
positions which are initially set in a random way.

Secondly, we set the number of flows to 100k and vary
the number of VMs. Fig. 4 demonstrates the results for this
set of experiments. Surprisingly, we can observe that all three
algorithms finish in less time for 10k VMs than for 2k VMs
and 6k VMs. With 10k VMs, groups finish in 0.6s, 0.11s, and
135s for the three algorithms, respectively. In comparison, they
take 3.8s, 0.51s, and 690s in 2k VMs settings. This is because
when there is a large number of VMs, each VM will be source
or destination for less flows than where there is a big number
of flows and a small number of VMs. In the beginning of the
experiment, we randomly allocate flows to VMs. This means,
for example, for Get communicating VM Groups in the case
of 2k VMs and 100k flows, Sync checks the flows related to a
single VM, and then constructing one group will subsequently
be more time-consuming.

This set of experiments has shown that the number of VMs
has a measurable effect on Get communicating VM Groups and
Policy migration on one hand, and VM migration on the other
hand. In Get Communication VM Groups and Policy migration,
for 6k and 10k VMs, the difference is not apparent, however,
it becomes considerable in VM Migration algorithm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(a) Get Communicating VMs algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

CD
F

of
 g

ro
up

s

Runtime (s)

2k VMs
6k VMs

10k VMs

(c) VM Migration

Fig. 4: Sync performance evaluated with growing number of VMs, group sizes in the three levels are 4, 14, 19, respectively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
50 MBs
80 MBs

(a) Get Communicating VMs algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
60 MBs
80 MBs

(b) Policy Migration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160

CD
F

of
 g

ro
up

s

Runtime (s)

20 MBs
50 MBs
80 MBs

(c) VM Migration

Fig. 5: Sync performance evaluated with growing number of MBs, group sizes in the three levels are 25, 21, 19, respectively.

Thirdly, we fix the number of flows and VMs. In Fig. 5a
and 5b, we observe how run time for Get communicating
VM Groups and Policy migration evolves linearly with the
number of MBs, albeit not too significantly. For example, Get
communicating VM Groups finishes in 0.61s, 0.65s, and 0.81s
for 20, 50, and 80 MBs, respectively. The same behaviour
is recorded in Policy Migration algorithm. However, we do
not see the same linear evolution of execution time in VM
migration. In Fig. 5c, with 80MBs, it takes less time than for
other number of MBs, and the difference is quite noticeable;
80s, 135s and 158s for 80, 20 and 50 MBs, respectively. Thus,
the number of MBs have a considerable impact on all the three
algorithms unlike the VMs and Flows factors. In VM Migration
and Policy Migration, the number of MBs is involved directly
in the processing, as in the former, it is needed to check the
feasibility of the migration process, and in the latter, Sync will
migrate MBs according to the output of SPF module described
in section III-B3.

In addition, we have recorded the group average runtime,
i.e., how much time on average groups take in each algorithm
to finish processing under various settings. In Fig. 6, there
are three histograms, each describes the evolution on run time
based on one factor. As an example, in Fig. 6a, there are 9
boxes, the first three ones present the average runtime of a
group in Get Communicating VMs when the number of flows
evolves from 20k to 60k, to 80k flows (that correspond to the
three levels level 0, level 1, and level 2). The second three
boxes are for VM levels (2k, 6k, and 10k VMs), and the last
three ones for MB levels (20, 50, and 80 MBs).

In Get communicating VM Groups, as shown in Fig. 6a,
Sync is more sensitive to the number of flows that other factors,

but in case the number of VMs is relatively small, the run
time increases dramatically to reach 2.6s when the number of
VMs, flows, and MBs are set to 2k, 100k, and 80, respectively.
Otherwise, the execution time is at most at 0.5s in all other
cases and it is, remarkably, at 0.00434s when the number of
flows is at 20k.

In VM Migration, the number of VMs has a major effect
on the runtime of a group, for instance, when the number of
VMs as 20k, the algorithm takes nearly 600s, whereas, in case
there are 10k VMs, the execution time falls dramatically to
reach about 50s.

To conclude, the three factors have a different impact on
the Sync algorithms, flows impacts more Get Communicating
VMs and Policy Migration algorithms, while the number of
VMs can alter significantly the time needed by VM migration
algorithm. Lastly, the number of MBs has a known effect on
Get communicating VM Groups and Policy migration, whereas,
in VM migration, its impact becomes unpredictable because
VM migration decision depends more on policy violation
prevention strategy.

D. Resources Utilisation

In all experiments, CPU usage has been nearly at 13%,
however, the memory consumption depends on the three input
of Sync algorithms (number of flows, VMs, and MBs). The
active memory increases linearly with the growing number
of the aforementioned factors, for example, it reaches 3700
Mbytes in “extreme” set-ups (all values set at the maximum
of the experiment). We also remark that memory usage grows

 0

 0.5

 1

 1.5

 2

 2.5

 3

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(a) Get Communicating VMs algorithm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(b) Policy Migration

 0

 100

 200

 300

 400

 500

 600

 700

Flow VM MB

Ru
nt

im
e

(s
)

Level0
Level1
Level2

(c) VM Migration

Fig. 6: Group average runtime measured with growing number of VMs, Flows, and MBs

significantly with increasing number of VMs, and this is ex-
plained by the fact that each VM possesses much information
that comes with (e.g. associated flows). For other factors, the
increase in memory is relatively limited (nearly 100 MBs).
Active memory consumption raises with larger topology, but
the CPU usage stands at the same level i.e. nearly 13%.

This means that Sync is very resource efficient and has
room to scale to much bigger topologies. We also note that
our implementation is a reference implementation that does
not consider optimisation techniques such as parallelism with
multi-controller paradigm, in which multiple controllers can
process individual groups concurrently.

V. RELATED WORK

VM and NF management has so far been broadly seen
as two distinct problems treated separately. Each one of
them has its benefits on the whole DC network performance.
On the one hand, VMs placement has been thought of as
one of DC management knobs that could improve general
network performance. For instance, Net-Cohort [7] has aimed
at reducing the bisection bandwidth utilisation by proposing
VM ensembles detection and placement based on information
collected about VM network interactions. On the other hand,
Policy and MB management has gained a momentum in the
last few years because of the emergence of SDN and NFV
technologies. For example, in order to reduce the number of
rules implemented on SDN switches responsible for traffic
steering, [8] has proposed a MB placement algorithm, and this
has led to reducing the ping-pong traffic.

Similar to our work, PLAN [9] proposed a joint policy
and network-aware VM migration scheme but it does not deal
with network policies. To prevent policy violation, PACE [10]
presented an online algorithm for application mapping onto
DC topology, however, it only considers one-off VM place-
ment, which poses a problem of adaptability with dynamic
workloads.

VI. CONCLUSION AND FUTURE WORK

Sync has provided a novel approach to improving DC net-
work performance by considering both VM and MB placement
synergistic-ally. In this paper, we have designed, implemented
and extensively evaluated Sync through a Mininet framework.
We have found that Sync, which is composed of three key
algorithms – Get Communicating VM Groups, Policy Migra-
tion, and VM Migration – is not only efficient but also has
fractional system resource footprint. In the future work, we

plan to improve Sync’s efficiency and performance by adopting
multiple controllers in which master node will be responsible
for forming VM groups and slave nodes will get fair share to
continue on policy and VM migration concurrently.

VII. ACKNOWLEDGMENT

The work has been supported in part by the UK En-
gineering and Physical Sciences Research Council (EP-
SRC) grants EP/P004407/1, EP/P004024/1, EP/L026015/1,
and EP/N033957/1, Chinese National Research Fund (NSFC)
Project No. 61402200, and by the European Cooperation in
Science and Technology (COST) Action CA 15127: RECODIS
– Resilient communication services protecting end-user appli-
cations from disaster-based failures.

REFERENCES

[1] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end performance isolation through virtual datacenters.” in OSDI,
2014, pp. 233–248.

[2] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A network-aware orches-
tration layer for middleboxes in the cloud,” Technical Report, Tech.
Rep., 2013.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[4] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm place-
ment and routing for data center traffic engineering,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 2876–2880.

[5] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy
and virtual machine consolidation in cloud data centers,” in Computer
Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Inter-
national Conference on. IEEE, 2016, pp. 1–9.

[6] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” ACM SIGCOMM
computer communication review, vol. 43, no. 4, pp. 27–38, 2013.

[7] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang, “Net-cohort:
Detecting and managing vm ensembles in virtualized data centers,”
in Proceedings of the 9th international conference on Autonomic
computing. ACM, 2012, pp. 3–12.

[8] A. Hirwe and K. Kataoka, “Lightchain: A lightweight optimisation
of vnf placement for service chaining in nfv,” in 2016 IEEE NetSoft
Conference and Workshops (NetSoft). IEEE, 2016, pp. 33–37.

[9] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Policy-aware
virtual machine management in data center networks,” in Distributed
Computing Systems (ICDCS), 2015 IEEE 35th International Conference
on. IEEE, 2015, pp. 730–731.

[10] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo, “Pace: Policy-aware application cloud embedding,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 638–646.

