Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution

Yang, H. et al. (2017) Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution. Ultramicroscopy, 180, pp. 173-179. (doi:10.1016/j.ultramic.2017.02.006) (PMID:28434783)

140638.pdf - Published Version
Available under License Creative Commons Attribution.



Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.

Item Type:Articles
Keywords:4D-STEM, phase retrieval, pixelated detectors, ptychography, Wigner distribution deconvolution.
Glasgow Author(s) Enlighten ID:MacLaren, Dr Ian
Authors: Yang, H., MacLaren, I., Jones, L., Martinez, G. T., Simson, M., Huth, M., Ryll, H., Soltau, H., Sagawa, R., Kondo, Y., Ophus, C., Ercius, P., Jin, L., Kovács, A., and Nellist, P. D.
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Ultramicroscopy
ISSN (Online):1879-2723
Published Online:01 April 2017
Copyright Holders:Copyright © 2017 The Authors
First Published:First published in Ultramicroscopy 180: 173-179
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
655181Fast Pixel Detectors: a paradigm shift in STEM imagingIan MaclarenEngineering and Physical Sciences Research Council (EPSRC)EP/M009963/1S&E P&A - PHYSICS & ASTRONOMY