Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

Zhang, H. et al. (2015) Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films. Scientific Reports, 5, 13066. (doi:10.1038/srep13066) (PMID:26272264) (PMCID:PMC4536528)

[img]
Preview
Text
140085.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15) 3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:MacLaren, Dr Ian
Authors: Zhang, H., Reaney, I. M., Marincel, D. M., Trolier-McKinstry, S., Ramasse, Q. M., MacLaren, I., Findlay, S. D., Fraleigh, R. D., Ross, I. M., Hu, S., Ren, W., and Rainforth, W. M.
College/School:College of Science and Engineering > School of Physics and Astronomy
Journal Name:Scientific Reports
Publisher:Nature Publishing Group
ISSN:2045-2322
ISSN (Online):2045-2322
Copyright Holders:Copyright © 2015 The Authors
First Published:First published in Scientific Reports 5: 13066
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record