Supplementary Material

1. BriTROC investigators and Trial Management Group

Sites, investigators and numbers recruited
Beatson West of Scotland Cancer Centre, Glasgow – Rosalind M Glasspool, Iain McNeish, 52
Addenbrooke’s Hospital, Cambridge – James D Brenton, 29
St Bartholomew’s Hospital, London – Michelle Lockley, Elly Brockbank, 28
Hammersmith Hospital, London – Hani Gabra, Christina Fotopoulou, 27
Mount Vernon Cancer Centre, Northwood – Marcia Hall, 20
Western General Hospital, Edinburgh – Charlie Gourley, 16
St James University Hospital, Leeds – Geoff Hall, 11
The Christie Hospital, Manchester – Andrew Clamp, 11
Guy’s and St Thomas’ Hospitals, London – Ana Montes, 6
St Mary’s Hospital, Manchester – Richard Edmondson, 6
Bristol Haematology and Oncology Centre, Bristol – Axel Walther, 5
City Hospital, Birmingham – Sudha Sundar, 4
Queen Elizabeth Hospital, Gateshead – Raj Naik, 3
Belfast City Hospital – Richard Kennedy, 2

Lead pathologists
Queen Elizabeth University Hospital, Glasgow – David Millan
Addenbrooke’s Hospital, Cambridge – Mercedes Jimenez-Linan

Trial Management Group
Iain McNeish (co-Chief Investigator), James Brenton (co-Chief Investigator) Liz-Anne Lewsley (Project Manager), James Paul (Study Statistician), Hani Gabra (Investigator), Darren Ennis (Translational Research Scientist), Cheryl Wilson (study co-ordinator), Paul Dearie (Sponsor Representative).
2. Full inclusion and exclusion criteria

Inclusion
1. Patients with recurrent histologically-proven ovarian cancer, primary peritoneal carcinoma or fallopian tube cancer of high grade serous and high grade endometrioid subtypes. Patients who have a diagnosis of ovarian cancer with a known germline mutation in *BRCA1* or *BRCA2* will also be eligible for inclusion regardless of histological subtype. Patients who are having a diagnostic image-guided biopsy maybe consented and study biopsy taken while awaiting pathological review. Eligible patients who have had samples collected under generic research consent may be registered retrospectively only after full discussion between the site, Chief Investigator and the co-ordinating trials unit (and BriTROC-1 specific consent obtained).
2. Patients must have received at least one line of platinum-containing chemotherapy
3. Availability of formalin-fixed, paraffin-embedded tissue taken at the time of original diagnosis of high grade serous ovarian cancer. This may be primary surgical debulking specimen OR core biopsy. For those with only a core biopsy from time of diagnosis, availability of specimen taken at interval debulking surgery is desirable, but not essential.
4. Patients must have disease deemed suitable for imaging-guided biopsy (ultrasound or CT) by an experienced radiologist or suitable for intra-operative biopsy during secondary debulking surgery as determined by an experienced gynaecological oncology surgeon. Other biopsies, such as skin deposits, are also acceptable. However, this must be confirmed with the Cancer Research UK Clinical Trials Unit prior to patient registration.
5. Age ≥ 18 years.
6. Written informed consent.
7. Able to apply with study procedures.
8. Life expectancy > 3 months
9. No contraindication to biopsy as appropriate.

Exclusion
1. Ovarian, primary peritoneal or fallopian tube cancer of low grade serous, grades 1 or 2 endometrioid, clear cell or carcinosarcoma/malignant mixed mesodermal (MMMT) subtypes unless associated with known germline mutation in *BRCA1* or *BRCA2*.
2. Borderline/low malignant potential tumours
3. Any non-epithelial ovarian malignancy
4. Patients with asymptomatic rising CA125 with no radiological evidence of recurrent ovarian cancer.
5. Original diagnosis of high grade serous cancer made on cytology only
3. Ineligibility and declining to participate

<table>
<thead>
<tr>
<th>BriTROC-1 Screening Logs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Patient ineligible</td>
<td>182</td>
</tr>
<tr>
<td>2. Patient declined as unhappy with proposed trial</td>
<td>38</td>
</tr>
<tr>
<td>3. Patient declined for other reason</td>
<td>79</td>
</tr>
<tr>
<td>TOTAL</td>
<td>299</td>
</tr>
</tbody>
</table>

Reasons for ineligibility

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the patient over 18 years of age?</td>
<td>0</td>
</tr>
<tr>
<td>Has the patient given written informed consent?</td>
<td>0</td>
</tr>
<tr>
<td>Does the patient have recurrent histologically proven ovarian cancer, primary peritoneal carcinoma or fallopian tube cancer of high grade serous and high grade endometrioid subtypes. Patients who have a diagnosis of ovarian cancer with a known germline mutation in BRCA1 or BRCA2 will also be eligible for inclusion regardless of histological subtype. Patients who are having a diagnostic image-guided biopsy may be consented and study biopsy taken while awaiting pathological review. Eligible patients who have had samples collected under generic research consent may be registered retrospectively only after full discussion with the site, Chief Investigator and CR-UK CTU (and BriTROC-1 specific consent obtained)</td>
<td>8</td>
</tr>
<tr>
<td>Has the patient received at least one line of platinum-containing chemotherapy</td>
<td>0</td>
</tr>
<tr>
<td>Please confirm that there is formalin-fixed, paraffin embedded tissue taken at the time of original diagnosis of high grade serous ovarian cancer available?</td>
<td>11</td>
</tr>
<tr>
<td>Does the patient have disease deemed suitable for imaging-guided/intra-operative or other suitable biopsy*</td>
<td>90</td>
</tr>
<tr>
<td>Is the patient able to comply with study procedures?</td>
<td>11</td>
</tr>
<tr>
<td>Does the patient have a life expectancy of > 3 months?</td>
<td>0</td>
</tr>
<tr>
<td>Is it confirmed that there is no contraindication to biopsy?</td>
<td>23</td>
</tr>
<tr>
<td>Does the patient have an ovarian, primary peritoneal or fallopian tube cancer of low grade serous, grades 1 or 2 endometrioid, clear cell or carcinosarcoma/MMMT subtypes unless associated with known germline mutation BRCA1 or BRCA2</td>
<td>10</td>
</tr>
<tr>
<td>Does the patient have a borderline/low malignant potential tumour?</td>
<td>0</td>
</tr>
<tr>
<td>Does the patient have a non-epithelial ovarian malignancy</td>
<td>0</td>
</tr>
<tr>
<td>Does the patient have an asymptomatic rising CA125 with no radiological evidence of recurrent ovarian cancer?</td>
<td>4</td>
</tr>
<tr>
<td>Was the original diagnosis of high grade serous cancer made on cytology only?</td>
<td>9</td>
</tr>
<tr>
<td>Declined – other reason</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Patient did not want biopsy</td>
<td>5</td>
</tr>
<tr>
<td>Commencing chemotherapy treatment asap</td>
<td>12</td>
</tr>
<tr>
<td>Felt she had ‘too much going on’</td>
<td>8</td>
</tr>
<tr>
<td>Patient opted for treatment with another study</td>
<td>1</td>
</tr>
<tr>
<td>Patient prefers supportive care locally therefore not approached</td>
<td>1</td>
</tr>
<tr>
<td>Did not wish to undergo biopsy due to previous painful biopsy experience at another hospital</td>
<td>2</td>
</tr>
<tr>
<td>Patient did not want extra tests/visits</td>
<td>4</td>
</tr>
<tr>
<td>Patient too unwell for chemo or biopsy</td>
<td>2</td>
</tr>
<tr>
<td>Patients family not happy for her to participate</td>
<td>2</td>
</tr>
<tr>
<td>Patient accepted but started treatment sooner than planned</td>
<td>1</td>
</tr>
<tr>
<td>Area to be biopsied too painful</td>
<td>1</td>
</tr>
<tr>
<td>Patient cannot commit</td>
<td>1</td>
</tr>
<tr>
<td>Patient too distressed by progression</td>
<td>2</td>
</tr>
<tr>
<td>Not well enough</td>
<td>2</td>
</tr>
<tr>
<td>Patient's husband is ill</td>
<td>2</td>
</tr>
<tr>
<td>Psychologically not able to cope with anything else (depression)</td>
<td>1</td>
</tr>
<tr>
<td>Not happy to take part in any research</td>
<td>1</td>
</tr>
<tr>
<td>Patient not feeling up to it</td>
<td>2</td>
</tr>
<tr>
<td>Unable to attend for biopsy on only day available</td>
<td>1</td>
</tr>
<tr>
<td>Not interested in participation</td>
<td>2</td>
</tr>
<tr>
<td>Biopsy at diagnosis and found it very traumatic</td>
<td>1</td>
</tr>
<tr>
<td>Eligible but having urgent radiotherapy</td>
<td>1</td>
</tr>
<tr>
<td>Patient discussed at MDT - Research Nurses not informed - pt proceeded to surgery</td>
<td>2</td>
</tr>
<tr>
<td>Consultant decided trial not appropriate</td>
<td>1</td>
</tr>
<tr>
<td>Patient transferred to another hospital</td>
<td>3</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Patient entered another trial</td>
<td>2</td>
</tr>
<tr>
<td>Unspecified</td>
<td>11</td>
</tr>
<tr>
<td>No information received</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>79</td>
</tr>
</tbody>
</table>
4. Prior chemotherapy lines and time from diagnosis to recruitment

Time to recruitment from diagnosis for platinum sensitive relapse (left) and platinum resistant relapse (right) patients, grouped by lines of prior chemotherapy. Each point (•) represents one patient.
5. Overall survival

Overall survival of patients recruited in Glasgow (n=52) and Edinburgh (n=16) from time of consent. Pt_sensitive - platinum-sensitive (relapse ≥6 months following previous platinum-based chemotherapy). Pt_resistant (relapse <6 months following previous platinum-based chemotherapy).
6. Adverse events

<table>
<thead>
<tr>
<th>Trial No</th>
<th>Complications Following</th>
<th>Biopsy type</th>
<th>AE</th>
<th>Grade</th>
<th>Relationship To Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>2</td>
<td>Probable</td>
</tr>
<tr>
<td>14</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Probable</td>
</tr>
<tr>
<td>14</td>
<td>2nd biopsy</td>
<td>Image-guided biopsy</td>
<td>Postoperative Haemorrhage (post biopsy)</td>
<td>1</td>
<td>Probable</td>
</tr>
<tr>
<td>14</td>
<td>2nd biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Probable</td>
</tr>
<tr>
<td>16</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>2</td>
<td>Possible</td>
</tr>
<tr>
<td>25</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Postoperative Haemorrhage (post biopsy)</td>
<td>2</td>
<td>Definite</td>
</tr>
<tr>
<td>25</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>2</td>
<td>Definite</td>
</tr>
<tr>
<td>54</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>59</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>79</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>General disorders and administration site conditions – Other (haematoma)</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>106</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>116</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>123</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>130</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>136</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>148</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Probable</td>
</tr>
<tr>
<td>179</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Postoperative Haemorrhage (post biopsy)</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td>179</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Vaginal discharge</td>
<td>2</td>
<td>Definite</td>
</tr>
<tr>
<td>183</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1</td>
<td>Definite</td>
</tr>
<tr>
<td></td>
<td>biopsy</td>
<td>Pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1 Possible</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Postoperative Haemorrhage (post biopsy)</td>
<td>1 Definite</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Baseline biopsy</td>
<td>Image-guided biopsy</td>
<td>Pain</td>
<td>1 Definite</td>
<td></td>
</tr>
</tbody>
</table>
7. R Markdown

Teodora Goranova, Iain A. McNeish, James D. Brenton

2017-01-10

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

Please use the Google R style guide, see https://google.github.io/styleguide/Rguide.xml.

We first load required libraries and define Useful functions.

Load data files

We first load the raw data from 6 tables and derive factors.

```r
## Parsed with column specification: cols(    ##
##   trialno = col_double(),    ##
##   platinum.status = col_character(),    ##
##   site = col_character(),    ##
##   reg.date = col_datetime(format = ""),    ##
##   diag.age = col_double(),    ##
##   study.age = col_double(),    ##
##   histo = col_character(),    ##
##   diagdate = col_datetime(format = ""),    ##
##   time.since.diag = col_double(),    ##
##   prior.lines.chemo = col_integer(),    ##
##   registration = col_character(),    ##
##   brca.status = col_character(),    ##
##   censor.date = col_datetime(format = ""),    ##
##   os.status = col_integer(),    ##
##   os.diag.months = col_double(),    ##
##   os.entry.months = col_double()    ## )

## Parsed with column specification: cols(    ##
##   trialno = col_double(),    ##
##   start.date = col_datetime(format = ""),    ##
##   end.date = col_datetime(format = ""),    ##
##   numberof.cycles = col_double(),    ##
##   line.no = col_double(),    ##
##   drug = col_character(),    ##
##   dose = col_double(),    ##
##   units = col_character(),    ##
##   comment = col_character()    ## )
```
Parsed with column specification:
cols(
trialno = col_double(),
biopsy.sequence = col_character(),
ae = col_character(),
grade = col_double(),
relationship.to.biopsy = col_character(),
ae.details = col_character()
)

Parsed with column specification:
cols(
trialno = col_double(),
biopsy.type = col_character(),
needle.size = col_character(),
biopsy.site = col_character(),
biopsy.sequence = col_character(),
needle.size.bin = col_character(),
biopsy.site.recode = col_character()
)

Parsed with column specification:
cols(
trialno = col_double(),
histo.no = col_character(),
jblab.id = col_character(),
biorepository.no = col_double(),
biorepository.no.h.e = col_character(),
nbf.umfix = col_character(),
tumour.cellularity.comments = col_character(),
tumour.cellularity = col_double(),
tumour.cellularity.in.dissected.area = col_double(),
dissection.method = col_character(),
sections.for.dna.extraction = col_double(),
dna.extraction.date = col_date(format = ""),
kit.used.for.extraction = col_character(),
elution.buffer = col_character(),
dna.qubit.ng.ul = col_double(),
volume.ul = col_double(),
total.dna.ug = col_double(),
comments.1 = col_character(),
biopsy.sequence = col_character()
)

Parsed with column specification:
cols(
.default = col_character(),
trialno = col_integer(),
chromosome = col_integer(),
position = col_integer(),
af1 = col_double(),
af2 = col_double(),
depth1 = col_integer(),
depth2 = col_integer(),
depth3 = col_integer(),
depth4 = col_integer(),
depth5 = col_integer()
Patients

Table 1: Demographic and disease characteristics

Total number of patients

```r
## # A tibble: 1 × 1
##   n
##   <int>
## 1  220
```

Are there any duplicate trial no?

```r
## # A tibble: 1 × 1
##   n
##   <int>
## 1  220
```

```r
## # A tibble: 2 × 3
## registration     n rel.freq
##           <chr> <int>    <dbl>
## 1   Prospective   198      0.9
## 2 Retrospective    22      0.1
```

How many NA are there in the clin.data table?

```r
## # A tibble: 1 × 16
## trialno platinum.status  site reg.date diag.age study.age histo diagdate
##     <int>           <int> <int>    <int>    <int>     <int> <int>    <int>
## 1       0               0     0        0        0         2     0        2
## # ... with 8 more variables: time.since.diag <int>,
## #   prior.lines.chemo <int>, registration <int>, brca.status <int>,
## #   censor.date <int>, os.status <int>, os.diag.months <int>,
## #   os.entry.months <int>
```

How many platinum sensitive vs. resistant?
A tibble: 2 × 3
platinum.status n rel.freq
<chr> <int> <dbl>
1 Platinum resistant/refractory relapse 49 0.2227273
2 Platinum sensitive relapse 171 0.7772727

Key variables by platinum sensitivity.

A tibble: 2 × 10
platinum.status study.age_median_ study.age_min_
<chr> <dbl> <dbl>
1 Platinum resistant/refractory relapse 65.84658 25.04110
2 Platinum sensitive relapse 69.44658 37.18904
... with 7 more variables: study.age_max_, time.since.diag_median_, time.since.diag_min_, time.since.diag_max_, prior.lines.chemo_median_, prior.lines.chemo_min_, prior.lines.chemo_max_

Key variables in whole group.

A tibble: 1 × 9
study.age_median_ study.age_min_ study.age_max_ time.since.diag_median_
<dbl> <dbl> <dbl> <dbl>
1 68.21644 25.0411 92.52329 31.00275
... with 5 more variables: time.since.diag_min_, time.since.diag_max_, prior.lines.chemo_median_, prior.lines.chemo_min_, prior.lines.chemo_max_

What was BRCA status by platinum status?

Source: local data frame [10 x 4]
Groups: platinum.status [2]

A tibble: 10 × 4
platinum.status brca.status n rel.freq
<chr> <chr> <int> <dbl>
1 Platinum sensitive relapse BRCA1 11 6.432749
2 Platinum sensitive relapse BRCA2 7 4.093567
3 Platinum sensitive relapse Missing 63 36.842105
4 Platinum sensitive relapse Not tested 71 41.520468
5 Platinum sensitive relapse Wild-type 19 11.111111
6 Platinum resistant/refractory relapse BRCA1 3 6.122449
7 Platinum resistant/refractory relapse BRCA2 5 10.204082
8 Platinum resistant/refractory relapse Missing 14 28.571429
9 Platinum resistant/refractory relapse Not tested 13 26.530612
10 Platinum resistant/refractory relapse Wild-type 14 28.571429

What was BRCA status across whole group?

A tibble: 5 × 3
brca.status n rel.freq
<chr> <int> <dbl>
1 BRCA1 14 6.363636
2 BRCA2 12 5.454545
3 Missing 77 35.000000

13
Not tested 84 38.181818
Wild-type 33 15.000000

What were histologies by platinum status?

```r
# Source: local data frame [5 x 4]
# Groups: platinum.status [2]
#
#                         platinum.status                  histo     n
#                                   <chr>                  <chr> <int>
# 1            Platinum sensitive relapse      High grade serous   160
# 2            Platinum sensitive relapse Endometrioid (grade 3)     5
# 3            Platinum sensitive relapse                Missing     5
# 4            Platinum sensitive relapse         Carcinosarcoma     1
# 5 Platinum resistant/refractory relapse      High grade serous    49
## # ... with 1 more variable: rel.freq <dbl>
```

What were histologies across whole group?

```r
# # A tibble: 4 × 3
#         histo     n   rel.freq
#          <chr> <int>      <dbl>
# 1      High grade serous   209 95.0000000
# 2 Endometrioid (grade 3)     5  2.2727273
# 3                Missing     5  2.2727273
# 4         Carcinosarcoma     1  0.4545455
```

What were prior treatment regimes by platinum status?

```r
# Source: local data frame [13 x 4]
# Groups: platinum.status [2]
#
#                          platinum.status prior.lines.chemo     n
#                                    <chr>             <int> <int>
# 1             Platinum sensitive relapse                 1   120
# 2             Platinum sensitive relapse                 2    39
# 3             Platinum sensitive relapse                 3     6
# 4             Platinum sensitive relapse                 4     1
# 5             Platinum sensitive relapse                 5     3
# 6             Platinum sensitive relapse                NA     2
# 7  Platinum resistant/refractory relapse                 1    17
# 8  Platinum resistant/refractory relapse                 2    23
# 9  Platinum resistant/refractory relapse                 3     1
#10  Platinum resistant/refractory relapse                 4     2
#11  Platinum resistant/refractory relapse                 5     4
#12  Platinum resistant/refractory relapse                 6     1
#13  Platinum resistant/refractory relapse                12     1
## # ... with 1 more variable: rel.freq <dbl>
```

What were prior treatment regimes across whole group?

```r
# # A tibble: 8 × 3
# prior.lines.chemo     n   rel.freq
#               <int> <int>      <dbl>
```
Biopsy features

How many biopsies were performed?

```r
## Source: local data frame [7 x 3]
## Groups: biopsy.type [?]
##
##    biopsy.type biopsy.sequence     n
##          <chr>           <chr> <int>
## 1 image-guided        baseline   118
## 2 image-guided          second     7
## 3      missing        baseline     1
## 4        other        baseline     1
## 5        other          second     1
## 6     surgical        baseline    96
## 7     surgical          second     3
```

Did any patient have more than one sample obtained at baseline and second image-guided biopsy?

```r
## Source: local data frame [125 x 3]
## Groups: trialno [119]
##
##    trialno biopsy.sequence     n
##      <dbl>           <chr> <int>
## 1        1        baseline     1
## 2        2        baseline     1
## 3        4        baseline     1
## 4        5        baseline     1
## 5        6        baseline     1
## 6        7        baseline     1
## 7        8        baseline     1
## 8        9        baseline     1
## 9       10        baseline     1
## 10      12        baseline     1
## # ... with 115 more rows
```

What needle size was used for image-guided biopsies (baseline and second)?

```r
## A tibble: 3 × 3
##  needle.size     n     freq
##       <chr> <int>    <dbl>
## 1         18G    54 45.00000
```
Table 2: Biopsy locations

What were the biopsy sites?

Source: local data frame [49 x 5]
Groups: biopsy.type, biopsy.sequence [7]
##
| biopsy.type | biopsy.sequence | biopsy.site | n | freq |
##|---------------|-----------------|-------------------------|------|--------|
##| image-guided | baseline | peritoneum.abdo | 27 | 22.881356 |
##| image-guided | baseline | ln.other | 26 | 22.033898 |
##| image-guided | baseline | liver | 13 | 11.016949 |
##| image-guided | baseline | omentum | 12 | 10.169492 |
##| image-guided | baseline | subcut.abdochest.wall | 9 | 7.627119 |
##| image-guided | baseline | peritoneum.pelvic | 7 | 5.932203 |
##| image-guided | baseline | ln.retrop | 6 | 5.084746 |
##| image-guided | baseline | ln.pelvis | 5 | 4.237288 |
##| image-guided | baseline | vag.vault | 4 | 3.389831 |
##| image-guided | baseline | uterus.ov.tube | 2 | 1.694915 |
... with 39 more rows

What was the frequency by binned biopsy sites?

A tibble: 10 x 3
| biopsy.site.recode | n | freq |
##|---------------------|------|--------|
##| lymph.node | 64 | 28.193833 |
##| peritoneum | 53 | 23.348018 |
##| omentum | 26 | 11.453744 |
##| other | 19 | 8.370044 |
##| liver | 17 | 7.488987 |
##| gynae.organ | 14 | 6.167401 |
##| subcut.abdochest.wall | 14 | 6.167401 |
##| bowel.serosa.mesent | 12 | 5.286344 |
##| diaphragm | 4 | 1.762115 |
##| peri.splenic | 4 | 1.762115 |

Which biopsy sites are in the NA bin?

A tibble: 0 x 2
... with 2 variables: biopsy.site <chr>, n <int>

Which sites are included in gynae.organ bin?

A tibble: 2 x 2
| biopsy.site | n |
##|-------------|----|
##| uterus.ov.tube | 6 |
##| vag.vault | 8 |
Table 3: Adverse events

We use a left join to join the adverse event table to the biopsies table, so all adverse events have biopsy details.

```r
## Joining, by = c("trialno", "biopsy.sequence")
```

How many biopsies have adverse events?

```r
## Source: local data frame [5 x 3]
## Groups: biopsy.type [?]
##
##    biopsy.type biopsy.sequence  n
##          <chr>           <chr> <int>
## 1 image-guided        baseline    20
## 2 image-guided          second     2
## 3        other        baseline     1
## 4     surgical        baseline    14
## 5         <NA>        baseline     1
```

How many patients had adverse events after both baseline and second image-guided biopsy?

```r
## Source: local data frame [5 x 3]
## Groups: biopsy.type [?]
##
##    biopsy.type biopsy.sequence no.patients
##          <chr>           <chr>       <int>
## 1 image-guided        baseline          18
## 2 image-guided          second           1
## 3        other        baseline           1
## 4     surgical        baseline           9
## 5         <NA>        baseline           1
```

What adverse events occurred after image-guided biopsy?

```r
## Source: local data frame [6 x 3]
## Groups: ae [?]
##
##                                                                      ae
##                                                                   <chr>
## 1 General disorders and administration site conditions - Other, specify
## 2                                                                  Pain
## 3                                                                  Pain
## 4                               Postoperative Haemorrhage (post biopsy)
## 5                               Postoperative Haemorrhage (post biopsy)
## 6                                                      Vaginal discharge
## # ... with 2 more variables: grade <dbl>, n <int>
```

What adverse events occurred by needle size?

```r
## Source: local data frame [10 x 4]
## Groups: ae, needle.size [?]
##
```
Were adverse events different between needle size?

```r
## Joining, by = c("trialno", "biopsy.sequence")
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data:  foo$needle.size.bin and foo$ae.bin
## X-squared = 0.22802, df = 1, p-value = 0.633
```

Quality of biopsies

DNA extraction

We left join the tissue.dna data to the biopsies data.

```r
## Joining, by = c("trialno", "biopsy.sequence")
##
## # A tibble: 1 × 1
## #  n  <int>
## 1  142
```

How many unique samples had DNA extraction attempted?

```r
## # A tibble: 1 × 1
## #  n  <int>
## 1  184
```

What was the cellularity of dissected tumour area (irrespective of yield)?
How many dissected samples had cellularity > 0?

```r
# A tibble: 1 × 1
  n
<int>  163
```

What was dissection method for all samples?

```r
# A tibble: 3 × 2
  dissection.method     n
  <chr>      <int>
1        Macro        41
2       Micro        122
3        <NA>        21
```

NA here stand for samples with no tumour cells.

What was the type of samples that had cellularity > 0?

```r
# A tibble: 2 × 3
  biopsy.type     n     freq
  <chr>     <int>    <dbl>
1 image-guided 88 53.98773
2    surgical 75 46.01227
```

What was the yield and cellularity in samples with cellularity > 0?

NA
What was the yield by biopsy type in tumour samples?

<table>
<thead>
<tr>
<th>biopsy.type</th>
<th>min_</th>
<th>Q1_</th>
<th>median_</th>
<th>Q3_</th>
<th>max_</th>
</tr>
</thead>
<tbody>
<tr>
<td>image-guided</td>
<td>0.0000</td>
<td>0.621</td>
<td>1.955</td>
<td>3.385</td>
<td>18.72</td>
</tr>
<tr>
<td>surgical</td>
<td>0.0556</td>
<td>1.956</td>
<td>4.640</td>
<td>10.140</td>
<td>35.20</td>
</tr>
</tbody>
</table>

Plot DNA yield by biopsy type

Warning: Removed 21 rows containing non-finite values (stat_boxplot).
Warning: Removed 21 rows containing non-finite values (stat_summary).

Does the DNA yield differ by the type of biopsy?

<table>
<thead>
<tr>
<th>statistic</th>
<th>p.value</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.32916e-06</td>
<td>Wilcoxon rank sum test with continuity correction</td>
</tr>
</tbody>
</table>
How many samples with > 200ng DNA?

```r
## A tibble: 1 × 1
##   n
##   <int>
## 1  158
```

How many patients with a sample > 200ng?

```r
## A tibble: 1 × 1
##   n
##   <int>
## 1  124
```

What was dissection method for samples with > 200ng of DNA?

```r
## A tibble: 2 × 2
dissection.method  n
<chr>        <int>
1 Macro         40
2 Micro        118
```

What is the yield by needle size?

```r
Warning: Removed 14 rows containing non-finite values (stat_boxplot).
Warning: Removed 14 rows containing non-finite values (stat_summary).
```
We summarize yield using the derived column "needle.size.bin"

```r
# A tibble: 2 × 6
##     needle.size.bin  min_ Q1_ median_ Q3_  max_
##           <chr> <dbl> <dbl>   <dbl> <dbl> <dbl>
## 1         14G+16G 0.222 0.848   2.86  5.54 18.72
## 2             18G 0.000 0.472   0.88  2.92 10.96
```

Are differences in yield from needle size significant? Test hypothesis with non-parametric test.

```r
# statistic p.value method
# 1    1167.5 0.01062334 Wilcoxon rank sum test with continuity correction
# alternative
# 1   two.sided
```

What was the yield by biopsy location using recoded sites (both surgical and image guided)?

```r
# Source: local data frame [16 x 7]
# Groups: biopsy.type [?]
## biopsy.type biopsy.site.recode min_ Q1_ median_ Q3_ max_
## <chr>             <chr>  <dbl> <dbl>   <dbl> <dbl> <dbl>
## 1 image-guided    gynae.org 0.3800 3.1580  8.8200 13.3600 17.40
## 2 image-guided    liver 0.4720 0.6815  0.8000  1.6080  4.60
## 3 image-guided    lymph.node 0.2220 0.6270  2.3200  3.1750 18.72
## 4 image-guided    omentum 0.0520 0.7410  0.8700  2.9850  3.46
```
Plot data for total DNA by tissue site.

Are cellularity and total DNA yield correlated?

Warning: Removed 21 rows containing non-finite values (stat_smooth).

Warning: Removed 21 rows containing missing values (geom_point).
TAm-seq

Are the technical replicates consistent? For sequencing depth?

estimate statistic p.value method
1 0.3044246 502041.3 7.785379e-05 Spearman's rank correlation rho
alternative
1 two.sided

Warning: Removed 7 rows containing non-finite values (stat_smooth).
Warning: Removed 7 rows containing missing values (geom_point).
For allele fraction?

Warning: Removed 7 rows containing non-finite values (stat_smooth).

Warning: Removed 7 rows containing missing values (geom_point).
What was the sequencing depth and allele fraction (using mean of technical replicates)?

```r
# A tibble: 1 × 6
mean.depth_median_ mean.af_median_ mean.depth_min_ mean.af_min_ mean.depth_max_ mean.af_max_
<dbl>           <dbl>           <dbl>        <dbl>           <dbl>           <dbl>
1 1086.25         0.55375             154   0.01666992
```

We join tam.seq data to the dna and biopsy data.

```r
Joining, by = c("jblab.id", "trialno")
```

Are cellularity and mean allele fraction related?

```r
Warning: Removed 8 rows containing non-finite values (stat_smooth).
Warning: Removed 8 rows containing missing values (geom_point).
```
Goranova et al – Supplementary material

Are DNA yield and mean allele fraction related?

estimate statistic p.value method
1 0.3142648 623059 2.160671e-05 Spearman's rank correlation rho
alternative
1 two.sided

Warning: Removed 8 rows containing non-finite values (stat_smooth).

Warning: Removed 8 rows containing missing values (geom_point).
How many unique patients had tagged amplicon sequencing?

```r
# A tibble: 1 × 1
  n
<int> 1
```

How many patients had a mutation?

```r
# A tibble: 5 × 2
  gene  n
  <chr> <int>
1 KRAS   6
2 PIK3CA 3
3 PTEN  2
4 TP53 118
5 <NA>  4
```

How many unique samples had tagged amplicon sequencing?

```r
# A tibble: 1 × 1
  n
<int> 1
```
Which cases had multiple samples with TP53 mutations?

```r
# A tibble: 118 × 2
#  trialno     n
#      <int> <int>
# 1       32     7
# 2       27     4
# 3       45     4
# 4       74     4
# 5       88     4
# 6       94     4
# 7      103     4
# 8        1     3
# 9        2     2
# 10       5     2
# ... with 108 more rows
```

What is proportion of binned TP53 mutations?

```r
# A tibble: 3 × 3
#  tp53.type.recode     n      freq
#      <chr> <int>     <dbl>
# 1    nonsynonymous    71 60.169492
# 2       truncating    41 34.745763
# 3          inframe     6  5.084746
```

What is proportion of all TP53 mutation types?

```r
# A tibble: 9 × 3
#     type     n       freq
#      <chr> <int>      <dbl>
# 1 nonsynonymous    71 60.1694915
# 2 frameshift_del  14 11.8644068
# 3 splice_acceptor  8  6.7796610
# 4 frameshift_ins  7  5.9322034
# 5 stop_gained     7  5.9322034
# 6 inframe_deletion 5  4.2372881
# 7 splice_donor    4  3.3898305
# 8 inframe_insertion 1  0.8474576
# 9 splice_region,intron 1  0.8474576
```