Loss Characterisation of Piezocrystals Under Elevated Environmental Conditions

Liao, X., Jiang, T., Huang, Z. and Cochran, S. (2016) Loss Characterisation of Piezocrystals Under Elevated Environmental Conditions. In: 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt, Germany, 21-25 Aug 2016, ISBN 9781509018710 (doi: 10.1109/ISAF.2016.7578082)

[img]
Preview
Text
136415.pdf - Accepted Version

910kB

Abstract

Relaxor-based piezoelectric single crystals have experienced three generations of development, from binary (e.g. PMN-PT) through ternary (e.g. PIN-PMN-PT) to doped ternary (e.g. Mn:PIN-PMN-PT). With improved composition and other relevant factors, these materials exhibit an extraordinary degree of piezoelectricity and ultrahigh electromechanical coupling coefficients, making them suitable for applications requiring high sensitivity and high bandwidth. With further increases in rhombohedral-to-tetragonal phase transition temperature (TRT), coercive field (EC) and mechanical quality factor (Qm), these piezocrystals can now be expected to work at elevated temperature, T, and pressure, P, and with high electric field drive. However, in operation, material properties can vary and performance can degrade significantly because of these elevated conditions, and the situation can be exacerbated by losses in the materials, necessitating proper characterisation of loss factors. In this paper, we report an investigation of three different loss characterisation methods then propose one combined method, demonstrating its use on TE-mode plates of PIN-PMN-PT and Mn:PIN-PMN-PT. Characterisation was performed using impedance spectroscopy for 20°C ≤ T ≤ 100°C and 0 MPa ≤ P ≤ 60 MPa. Results relating to dielectric, elastic and piezoelectric losses are reported, with detailed analysis and comparisons.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cochran, Professor Sandy and Liao, Mr Xiaochun
Authors: Liao, X., Jiang, T., Huang, Z., and Cochran, S.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
ISBN:9781509018710
Published Online:29 September 2016
Copyright Holders:Copyright © 2016 IEEE
First Published:First published in 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM)
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
610721Ultrasonic Needles based on Mn-doped Ternary PiezocrystalsMargaret LucasEngineering & Physical Sciences Research Council (EPSRC)EP/K020013/1ENG - ENGINEERING SYSTEMS POWER & ENERGY