Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

Stolper, D.A., Martini, A.M., Clog, M. , Douglas, P.M., Shusta, S.S., Valentine, D.L., Sessions, A.L. and Eiler, J.M. (2015) Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, pp. 219-247. (doi: 10.1016/j.gca.2015.04.015)

Full text not currently available from Enlighten.

Abstract

Sources of methane to sedimentary environments are commonly identified and quantified using the stable isotopic compositions of methane. The methane “clumped-isotope geothermometer”, based on the measurement of multiply substituted methane isotopologues (13CH3D and 12CH2D2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic–thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (∼50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Clog, Dr Matthieu
Authors: Stolper, D.A., Martini, A.M., Clog, M., Douglas, P.M., Shusta, S.S., Valentine, D.L., Sessions, A.L., and Eiler, J.M.
College/School:College of Science and Engineering > Scottish Universities Environmental Research Centre
Journal Name:Geochimica et Cosmochimica Acta
Publisher:Elsevier
ISSN:0016-7037
ISSN (Online):1872-9533
Published Online:17 April 2015

University Staff: Request a correction | Enlighten Editors: Update this record