Long-lived foams stabilized by a hydrophobic dipeptide hydrogel

Li, T., Nudelman, F., Tavacoli, J. W., Vass, H., Adams, D. J. , Lips, A. and Clegg, P. S. (2016) Long-lived foams stabilized by a hydrophobic dipeptide hydrogel. Advanced Materials Interfaces, 3(3), 1500601. (doi: 10.1002/admi.201500601)

Full text not currently available from Enlighten.


A hydrogel of hydrophobic dipeptides can be used to create a wet foam with long-term stability. The dipeptide molecules self-assemble into fiber-like networks (due to the presence of metal ions) both at air–water interfaces and in the continuous phase. The former creates an interfacial film stabilizing the air bubbles while the latter forms a bulk gel, which prevents bubble movement and retards growth. If the storage modulus (G′) of the bulk hydrogel is sufficiently high it can stop the coarsening of the air bubbles and thus dramatically improve the stability of the foam. Cryogenic scanning electron microscopy and Raman spectra reveals the width of the fibers (200 nm) and that they are held together by hydrogen bonds. In the absence of bubbles, phase separation is observed between a hydrogel and a water-rich phase; in the foam this can be suppressed provided that the concentration of dipeptides and metal ions are sufficiently high. It is speculated that the resistance of the bubble arrangement to compaction and hence further drainage arrests the process of phase separation. This foam system has the advantages of long stability, low cost, as well as easy preparation; therefore, it has potential applications in food manufacturing, drug delivery, and personal care industries.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Adams, Dave
Authors: Li, T., Nudelman, F., Tavacoli, J. W., Vass, H., Adams, D. J., Lips, A., and Clegg, P. S.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Advanced Materials Interfaces
ISSN (Online):2196-7350
Published Online:30 November 2015

University Staff: Request a correction | Enlighten Editors: Update this record