Molecular insights into bacteroid development during Rhizobium–legume symbiosis

Haag, A. F. , Arnold, M. F.F., Myka, K. K., Kerscher, B., Dall'Angelo, S., Zanda, M., Mergaert, P. and Ferguson, G. P. (2013) Molecular insights into bacteroid development during Rhizobium–legume symbiosis. FEMS Microbiology Reviews, 37(3), pp. 364-383. (doi: 10.1111/1574-6976.12003) (PMID:22998605)

Full text not currently available from Enlighten.

Abstract

Rhizobial soil bacteria can form a symbiosis with legumes in which the bacteria fix atmospheric nitrogen into ammonia that can be utilized by the host. The plant, in turn, supplies the rhizobia with a carbon source. After infecting the host cell, the bacteria differentiate into a distinct bacteroid form, which is able to fix nitrogen. The bacterial BacA protein is essential for bacteroid differentiation in legumes producing nodule-specific cysteine-rich peptides (NCRs), which induce the terminal differentiation of the bacteria into bacteroids. NCRs are antimicrobial peptides similar to mammalian defensins, which are important for the eukaryotic response to invading pathogens. The BacA protein is essential for rhizobia to survive the NCR peptide challenge. Similarities in the lifestyle of intracellular pathogenic bacteria suggest that host factors might also be important for inducing chronic infections associated with Brucella abortus and Mycobacterium tuberculosis. Moreover, rhizobial lipopolysaccharide is modified with an unusual fatty acid, which plays an important role in protecting the bacteria from environmental stresses. Mutants defective in the biosynthesis of this fatty acid display bacteroid development defects within the nodule. In this review, we will focus on these key components, which affect rhizobial bacteroid development and survival.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Haag, Dr Andreas
Authors: Haag, A. F., Arnold, M. F.F., Myka, K. K., Kerscher, B., Dall'Angelo, S., Zanda, M., Mergaert, P., and Ferguson, G. P.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:FEMS Microbiology Reviews
Publisher:Blackwell
ISSN:0168-6445
ISSN (Online):1574-6976
Published Online:01 May 2013

University Staff: Request a correction | Enlighten Editors: Update this record