
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/133460/

Deposited on: 18 May 2017

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk33640
The carbon dioxide evasion cycle of an intermittent first-order stream: Contrasting water-air and soil-air exchange

Arún Looman a,b *, Damien T. Maher a,b, Elise Pendall c, Adrian Bass c,d, Isaac R. Santos a,b

a National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia.

b School of Environment, Science, and Engineering, Southern Cross University, Lismore, New South Wales, Australia.

c Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia.

d Department of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom.

Corresponding author E-mail address: arun.looman@hotmail.com

Keywords: Ephemeral, Greenhouse gas, Methane, Headwater stream, Air-water flux

Journal name: Biogeochemistry.

Acknowledgements: Special thanks are given to V. Kumar and C. Barton of Western Sydney University (UWS), the Blue Mountains City Council (BMCC), C. Holloway (SCU), and W. Davis for their assistance with logistics. We acknowledge funding from the Australian Research Council (LE120100156, DE140101733 and DE150100581).
Abstract

Ephemeral streams and wetlands are characterized by complex cycles of submersion and emersion, which influence the greenhouse gas flux rates. In this study we quantify the spatiotemporal variability in CO$_2$ and CH$_4$ concentrations and fluxes of an intermittent first-order stream over three consecutive wet and dry cycles spanning 56 days, to assess how hydrologic phase transitions influence greenhouse gas evasion. Water column excess CO$_2$ ranged from -11 to 1600 µM, and excess CH$_4$ from 1 to 15 µM. After accounting for temporal changes in the ratio of wet versus dry streambed hydraulic radius, total CO$_2$-C fluxes ranged from 12 to 156 mmol m$^{-2}$ d$^{-1}$, with an integrated daily mean of 61 ± 25 mmol m$^{-2}$ d$^{-1}$. Soil-air evasion rates were approximately equal to those of water-air evasion. Rainfall increased background water-air CO$_2$-C fluxes by up to 780% due to an increase in gas transfer velocity in the otherwise still waters. CH$_4$-C fluxes increased 19-fold over the duration of the initial, longer wet-cycle from 0.1 to 1.9 mmol m$^{-2}$ d$^{-1}$. Temporal shifts in water depth and site-specific ephemerality were key drivers of carbon dynamics in the upper Jamison Creek watercourse. Based on these findings, we hypothesize that the cyclic periodicity of fluxes of biogenic gases from frequently intermittent streams (wet and dry cycles ranging from days to weeks) and seasonally ephemeral watercourses (dry for months at a time) are likely to differ, and therefore these differences should be considered when integrating transient systems into regional carbon budgets and models of global change.
The exchange of carbon dioxide (CO$_2$) and methane (CH$_4$) between inland waters and the atmosphere is a dynamic process. Variability in the fluxes of CO$_2$ and CH$_4$ at the water-and soil-to-air interfaces is influenced by multiple factors including seasonality (Rudorff et al. 2011; Peter et al. 2014), atmospheric forcing (e.g. rainfall, wind velocity; Frew et al. 2004; Ho et al. 2007; Dinsmore and Billett 2008), stream hydraulics (Alin et al. 2011; Raymond et al. 2012), groundwater discharge (Jones and Mulholland 1998; Sadat-Noori et al. 2015), and metabolism (Tamooh et al. 2013). In flowing waters, the partial pressure of CO$_2$ (pCO$_2$) can vary over orders of magnitude both spatially (Koprivnjak, et al. 2010; Weyhenmeyer et al. 2012; Teodoru et al. 2015), and temporally (Johnson et al. 2007; Bass et al. 2014; Ruiz-Halpern et al. 2015; Looman et al. 2016; Tweed et al. 2016). This variability, along with a limited extent of available data and the lack of a modelling framework for many aquatic systems (Raymond et al. 2013; Regnier et al. 2013), complicates the quantification of greenhouse gas (GHG) emissions from inland waters as well as our understanding of their role in the global carbon (C) cycle (Battin et al. 2009). Seasonally ephemeral and frequently intermittent low order streams are components of the fluvial network, and to date there is limited understanding on the spatial and temporal variability of water- and soil-to-air GHG exchange rates in these systems (von Schiller 2014).

Temporary watercourses can comprise more than 50% of the total drainage network length within water catchments (Hansen et al. 2001; Nadeau and Rains 2007), and are particularly common to headwaters (Costigan et al. 2015). The extent of
perennial vs. non-perennial segment length in these systems is, however, not constant, due to a cyclic continuum of network extension, contraction and fragmentation (von Schiller et al. 2015). In landscapes where discontinuity of flow is particularly pronounced even Strahler order delineations (Strahler 1957) can be dynamic, shifting by up to two orders between seasonal extremes (Datry et al. 2014; Godsey and Kirchner 2014). For unregulated rivers, Haines et al. (1988) described 15 seasonally-based flow regime classes, of which three describe the natural zero-flow sequences commonly found in Australia (McMahon and Finlayson 2003): (i) perennial streams with high annual variability that cease to flow in extreme years; (ii) ephemeral streams that regularly cease to flow in the dry season; and (iii) arid zone streams with long and erratic periods of no flow.

In non-perennial watercourses the frequency and duration of natural hydrologic fragmentation relates to site-specific attributes such as annual precipitation, ambient temperature, riparian vegetation-streamflow interactions, watercourse shade dynamics, topography, slope, geomorphology, groundwater levels and sedimentology (Leopold and Maddock, 1953; Shaw and Cooper 2008; Salemi et al. 2012; Snelder et al. 2013). In anthropogenically-modified environments, the wet and dry cycle recurrence interval can be further influenced by factors such as urbanization (impermeable surfaces), the presence/absence of serial discontinuities (e.g. weirs, impoundments), and groundwater or surface water abstraction (Holmes 1999; Stanford and Ward, 2001; Steward et al. 2012). McMahon and Finlayson (2003) use the term “anti-drought” to describe the regulated addition of larger or more persistent flows to the natural hydrologic regime during dry or low-flow intervals, resulting in artificial wet and dry cycle intermittence.
Hydrologic phase transitions such as that from baseflow to stormflow can give rise to hot spot and hot moment phenomena of accelerated rates in the spiralling of dissolved carbon and nutrients in perennial inland waters (McClain et al. 2003; Hook and Yeakley 2005; Raymond and Saiers 2010; Janke et al. 2014; Raymond et al. 2016). In ephemeral watercourses, other transitions such as streambed drying and rewetting can alter the rates of macromolecular decomposition (Dieter et al. 2011), biofilm metabolism and community structure (Timonser et al. 2012; Fazi et al. 2013; Sabater et al. 2016), as well as connectivity between adjacent pools (Larned et al. 2010; Bernal et al. 2012; Casas-Ruiz et al. 2016). The coupled influence of such transition processes on the rate of GHG fluxes from ephemeral waters, however, remains largely unknown. In the present study, we quantify the spatial flux as well as temporal changes to the CO₂ and CH₄ dynamics of an intermittent first-order stream (Jamison Creek, Blue Mountains, Australia) over three consecutive wet and dry cycles occurring over a 56-day period. Our primary objectives were: (i) to quantify variability in CO₂ emissions from wet versus dry portions of the stream reach during episodes of expansion and contraction; (ii) to assess changes in CO₂ and CH₄ fluxes within the study segment over time; and, (iii) to evaluate the significance of rain events on GHG emissions.

Methods

Study site

Field investigations were performed in the headwaters of the upper Jamison Creek water
catchment in the Greater Blue Mountains World Heritage Area of New South Wales, Australia (33°42'S, 150°22'E; 867 mASL; Fig. 1), west of the Sydney Basin. The mean annual ambient temperature at the nearest meteorological station in Katoomba is 12.4 ± 4.4 °C and mean annual precipitation 1405 ± 35 mm (1885–2016 period; Station #063039; BoM 2015a). There are on average 162 days influenced by rainfall annually, with mean rainfall rates of ≥1, ≥10 and ≥25 mm d⁻¹ for 108, 39 and 15 days, respectively.

The catchment sediments are derived from Hawkesbury and Narrabeen Group sandstones and are predominantly siliceous, with localised peat deposits and claystone interbeds (Fryirs et al. 2016). Streambed sediments are of sandy-loam textural class, with occasional Fe mottles indicative of changeable hyporheic zone redox chemistry. In-stream flora was dominated by *Cyperus eragrostis* and *Rumex obtusifolius*. Vegetative coverage of the less-frequently inundated upstream study segments (sites S1 and S2, see below for details) varied from ~20% in winter to ~50% by the end of the sampling period in mid-spring. The more-frequently inundated downstream study segments were, in contrast, void of in-stream vegetation. During the wet cycles, biofilms and filamentous chlorophytes were also present.

Experimental approach

Measurements were taken from the uppermost 100 m of the watercourse, which has been modified (e.g. straightened) to connect a 36 ha golf course to Lake Wentworth, a flooded Temperate Highland Peat Swamp on Sandstone (an endangered ecological community; TSSC 2005). The study segment was further reduced to five shorter sub-reaches spanning
5.7 to 20.1 m in length (sites S1-S5; Fig. 1) according to conditions of observed disconnection during periods of low stage height. For time series observations, all data were collected at the upstream S1 site over a 56-day time period during the winter-spring transition (23 August – 17 October, 2015; modified channel), and, for spatial observations, all sites were surveyed during two separate wet-cycles when the stream was disconnected (11/9 and 21/09; Table 1). Study segment S2 was located inside a roadway culvert and sites S3-S5 represented a channelised, non-flooded section of the peat swamp.

We sampled pH, conductivity, temperature, and dissolved oxygen (DO) concentrations \textit{in-situ} with a Hydrolab DS5X multiparameter sonde. pH and conductivity were calibrated against pHNBS buffers 4.00 and 7.00 and conductivity against a 1410 \(\mu \text{S cm}^{-1} \) solution. The sonde was recalibrated at the start and end of each rewetting cycle.

Ambient temperature, wind speed, rainfall rate and barometric pressure were measured with a portable weather station fitted with a cup anemometer (Davis Instruments, USA), located central to the Jamison Creek catchment 1.2 km from the study site. Evapotranspiration data was obtained from the Mount Boyce meteorological station (33°36’S, 150°16’E; Station #063292; BoM, 2015b), 14.5 km away.

To account for temporal changes in the ratio of wet versus dry surface area, we measured stream depth and width at 30 x 30 cm intervals under conditions of high stage (i.e. using the water level as a reference datum) to create a detailed bathymetric digital elevation model (DEM) of the study segment. Relative change in stage height (positive or negative) was recorded at a fixed datum in sub-reach S1, and, using this datum, we then determined the subsequent mean wetted channel width \((w, \text{m})\), mean water depth \((d, \text{m})\), water volume \((V, \text{m}^3)\), and water-to-soil ratios for each sampling interval. To estimate
streamwater velocity, we formulated a discharge-rating curve from the continuity relationship \(Q = dwv \) and interpolated \(v \) from gauge heights above \(Q = 0 \) via cubic polynomial function (Xia et al. 2010), where \(Q \) is the discharge in m\(^3\) s\(^{-1}\) and \(v \) is velocity in m s\(^{-1}\).

Dissolved gas analyses

Streamwater \(p\text{CO}_2 \) and \(p\text{CH}_4 \) were sampled 1-7 times daily from half the depth of the water column using a syringe headspace method (Borges et al. 2015) whereby four replicate syringes (Terumo, Japan), each fitted with a three-way stopcock, were used to equilibrate 30 ml of bubble-free sample water with 30 ml of N\(_2\) gas. To reduce permeability to gas, each syringe was periodically coated with a thin film of petroleum jelly (Vaseline, Unilever). Replicate samples were equilibrated by shaking for 5-10 min and end-temperature measured with a mercury thermometer. The partial pressure of CO\(_2\) in the equilibrated headspace gas was measured using an IRGA (LiCor LI-820), then converted to the fugacity of CO\(_2\) \((f\text{CO}_2) \) using:

\[
f\text{CO}_2 = p\text{CO}_2 \cdot f(g)
\]

where \(f(g) \) is the fugacity coefficient (unitless; Millero 2007). The optical path of the IRGA was kept dry between measurements using a desiccant (Drierite). We then calculated \([\text{CO}_2^*]\) \{i.e. the sum of [CO\(_2\)] and [H\(_2\text{CO}_3\)]\} according to Henry’s Law:
\[[\text{CO}_2^*] = K_{0,\text{CO}_2} \cdot f\text{CO}_2 \]

(2)

where \(K_{0,\text{CO}_2} \) is the \(\text{CO}_2 \) solubility constant at given temperature and salinity in \(\text{mol L}^{-1} \text{atm}^{-1} \) (Weiss 1974). The IRGA was calibrated using five gas standards ranging from zero to 18,100 ppm \(\text{CO}_2 \) in nitrogen (±2%). To correct for spatial and temporal thermal variability, \(\text{CO}_2 \) partial pressures reported herein were normalised to the mean daily water temperature of 11.8 °C. \(\text{CH}_4 \) was also sampled using the above-described syringe headspace method, whereby 240 ml of headspace gas from eight co-equilibrated syringes was transferred to an evacuated 0.5 L Tedlar bag (Restek, USA) and stored at 5 to 10 °C for transportation to the lab where analyses were performed on a calibrated Cavity Ring-down Spectrometer (G2201-i, Picarro, USA) within two hours of sampling. To account for variations of the range in aqueous \(\text{O}_2 \) and \(\text{CO}_2^* \) concentrations occurring over a 24-hour time period, samples were collected at least two times per day for 50% of sampling days and included morning and evening sampling. Additional sampling was conducted to characterise natural diel fluctuations at the S1 site during conditions of disconnect, as well as shorter-term variability induced by rainfall. Where only one sample was collected per day samples were preferentially collected late morning to approximate the diel mean (Supplementary Table A2).

We present dissolved gas concentrations as excess \(\text{CO}_2 \), excess \(\text{CH}_4 \) and apparent oxygen utilization (AOU), being the deviation of each of these gases from atmospheric equilibrium (\(x_{eq} \); where \(x \) is the dissolved gas of interest; Richey et al. 1988):

\[\text{Excess CO}_2 = [\text{CO}_2^*] - [\text{CO}_2_{eq}] \]

(3)
Excess CH₄ = [CH₄] – [CH₄eq] \hspace{1cm} (4)

AOU = [O₂eq] – [O₂] \hspace{1cm} (5)

where [O₂eq] was calculated from dissolved oxygen % saturation measurements and
[CO₂]eq and [CH₄]eq were calculated from atmospheric samples collected in-situ, using
barometric pressure, temperature and salinity.

Chamber deployments and modelling

Water-air CO₂ fluxes were measured in duplicate on 10 occasions using a lightweight
static free-floating chamber (diameter, 300 mm; height, 140 mm; water column
penetration, 30 mm), integrated into a recirculating closed loop with the IRGA using a
microdiaphragm air pump (Parker, USA) and an inline desiccant (Drierite). Soil-to-air
CO₂ fluxes from the dry streambed were measured in duplicate on 11 occasions using a
second chamber (diameter, 150 mm; height, 100 mm), which was lowered onto a fixed
collar using the same closed-loop system. Chamber fluxes (F, mmol m⁻² d⁻¹) were
calculated from the rate of change in chamber pCO₂ over time (Frankignoulle 1998):

\[
F_{CO₂} = \left(\frac{d(pCO₂)}{dt}\right) \left(\frac{V}{RTKS}\right)
\]

(6)
where \(\frac{d(pCO_2)}{dt} \) is the slope of the CO₂ accumulation inside the chamber (µatm s⁻¹), \(V \) is the chamber volume (L), \(T_K \) is ambient atmospheric temperature in degrees kelvin (K), \(S \) is the chamber surface area (m²), and \(R \) is the universal gas constant (L atm K⁻¹ mol⁻¹).

Deployment durations were typically <5 min and observed increase of \(pCO_2 \) inside the chamber was linear for 97% of chamber measurements (\(r^2 = >0.95 \)).

For background fluxes, we derived gas transfer velocities (\(k \), in m d⁻¹) at the boundary layer interface from our floating chamber measurements, and converted \(k-CO_2 \) to \(k-CH_4 \) using temperature-dependent Schmidt numbers (\(Sc_T \)) suitable for freshwater (Jähne et al. 1987; Wanninkhof 2014):

\[
k_{600} = \frac{k_{CO_2}}{(Sc_T / 600)^n}
\]

(7)

\[
k_{CO_2}/k_{CH_4} = (Sc_{CO_2}/Sc_{CH_4})^n
\]

(8)

where \(n \) is the Schmidt number exponent depending on the condition of the aquatic boundary layer, which was set at 0.67 for lentic waters or 0.5 for flowing waters applying an arbitrary cut off value of a mean daily \(\nu \) of 0.1 m s⁻¹. We used the measured \(k-CO_2 \) and calculated \(k-CH_4 \) to estimate the flux for each gas according to:

\[
F_{CO_2} = k_{CO_2} \cdot K_{0,CO_2} \cdot (f_{CO_2,\text{water}} - f_{CO_2,\text{air}})
\]

(9)

\[
F_{CH_4} = k_{CH_4} \cdot K_{0,CH_4} \cdot (p_{CH_4,\text{water}} - p_{CH_4,\text{air}})
\]

(10)
where $CO_{2,\text{water}}/CH_4,\text{water}$ and $CO_{2,\text{air}}/CH_4,\text{air}$ are the fugacity (f) or partial pressures (p) of each gas in the surface water and overlying atmosphere, respectively (Bakker et al. 2014), and K_{0,CH_4} is the CH$_4$ solubility according to the coefficients of Yamamoto et al. (1976).

Direct water-air flux measurements using floating chambers were excluded during hydrologic phase transitions as this method does not account for the influence of physical forcing by rainfall on the aquatic boundary layer and because anchored chambers tend to over-estimate fluxes in turbulent waters (Lorke et al. 2015). Thus, to account for the influence of rewetting events on k we also modelled our data empirically using two approaches, “HO” and “RAY”, based on rainfall rate, Ho et al. (1997) and event-induced water velocity, Raymond et al. (2012), respectively:

\[
k^{600}_{(HO)} = 0.929 + 0.679R_n - 0.0015R_n^2 \tag{11}
\]

\[
k^{600}_{(RAY)} = (v_s)^{0.89} \cdot d^{0.54} \cdot 5037 \tag{12}
\]

where R_n is the rain rate (mm hr$^{-1}$), v is the water velocity (m s$^{-1}$), s is the slope of the study segment (unitless), and d is water depth (m).

Statistical analyses and hydrologic delineations

For statistical analyses of C-gas species with environmental and morphological variables we used Pearson’s least square regression for linear covariance (StatPlus, AnalystSoft Inc.), with significance herein implied at the 95% confidence interval ($p<0.05$). Wet and
dry cycles at the S1 study site were delineated using a water-to-soil ratio of 0.5, which coincided with a daily mean stage height of 0.0 m.

Results

Stream morphometry and ancillary variables

Throughout the 56-day sampling period stream depth, width and volume at the primary S1 study segment ranged from to 0.0 to 0.3 m, 0.0 to 1.4 m and 0.0 to 7.1 m3. The minimum depth of the water table below the level of the streambed was -0.23 m occurring on the final day of the second, longer dry-cycle. pH ranged from 4.57 to 7.15 and was typically neutral during rainfall trending to acidic post-stormflow, exhibiting a significant negative relationship with $[\text{CO}_2^{*}]$ ($r^2 = 0.78$, $n = 26$, $p < 0.05$). The measured ambient atmospheric and water temperatures ranged from 2.0 to 30.9 °C and 3.9 to 20.4 °C, with maximum 36-hour range in variability of up to 23.1 and 9.8 °C, respectively. Rainfall intensity ranged from 0.0 to 77.8 mm hr$^{-1}$ with a daily mean of 0.7 ± 0.9 mm hr$^{-1}$ (\pm SD herein) (Supplementary Table A1 and A2).

Dissolved gas concentrations and net fluxes

In-situ water column excess CO$_2$ at the upstream S1 timeseries station fluctuated over two orders of magnitude from -11 to 1600 µM (289 to 30,800 µatm pCO$_2$), with a daily mean of 756 ± 427 µM (15,300 ± 8380 µatm; Fig. 2). Concentrations decreased towards atmospheric equilibrium during stormflow. Undersaturation was evident only during a
hailstorm event that occurred at the onset of the initial wet-cycle, coinciding with the
temperature-dependent CO$_2$ solubility maxima (0.067 mol L$^{-1}$ atm$^{-1}$). The diel evolution
of dissolved oxygen concentrations with respect to atmospheric equilibrium increased
over the duration the wet cycles, with AOU ranging from -177 to 323 µM (daily mean,
106 ± 86 µM; Fig. 2 and Fig. 3). Daily Δ[CO$_2$] was consistently greater than Δ[O$_2$] by a
factor of 1.5 to 4.7, with both variables exhibiting a linear increase over time throughout
the initial, longer wet-cycle ($r^2 = 0.84$ and 0.87, respectively, $n = 12$, p < 0.05; Fig. 4)
indicating net production of CO$_2$ via both in-stream processes and hyporheic exchange.

Over the two days of spatial sampling between-site variability in excess CO$_2$
within the 100 m study segment ranged up to 1200 µM (23,900 µatm; with samples
collected at the same stage height and time of day). The highest excess CO$_2$
concentrations occurred at the S3 station, situated at the inlet of the man-made peat
swamp channel at 1390 ± 227 µM (28,400 ± 4720 µatm; Table 1). The less-frequently
inundated upstream sites with vegetation exhibited the greatest excess CO$_2$ variability
between wet-cycles (S1 and S2, 700 and 550 µM, respectively), whereas the more-
frequently inundated downstream sites that were void of vegetation were least variable
(S3-S5, 322, 86 and 45 µM, respectively).

Excluding the influence of rainfall-induced turbulence and based on temporal
changes in concentrations alone, the measured instantaneous diffusive water-air CO$_2$-C
fluxes ranged from 11 to 80 mmol m$^{-2}$ d$^{-1}$ (mean, 45 ± 28 mmol m$^{-2}$ d$^{-1}$; $n = 6$).
Measurements of the gas transfer velocity (k_{600}) averaged 0.26 ± 0.10 m d$^{-1}$, decreasing 2-
fold at the S1 timeseries station during the initial wet-cycle from 0.33 to 0.16 m d$^{-1}$.
Applying the average k-value obtained from all chamber measurements, instantaneous
Diffusive water-air CO₂-C fluxes ranged from -1 to 78 mmol m⁻² d⁻¹ (mean, 37 ± 21 mmol m⁻² d⁻¹; n = 59; Fig. 5). The measured instantaneous inter-site spatial variability in water-air CO₂-C fluxes ranged up to 76 mmol m⁻² d⁻¹, being similar in magnitude to the in-situ temporal variability observed at the S1 timeseries station.

The influence of rainfall on k and CO₂-C fluxes during hydrologic transitions was calculated in this study via empirical equations. Considering only occasions influenced by precipitation >1 mm (n = 9 days), instantaneous k₆₀₀ (HO) values ranged from 0.22 to 10.72 m d⁻¹, with a daily mean of 0.38 ± 0.17 m d⁻¹. Corresponding CO₂-C fluxes ranged from 0 to 567 mmol m⁻² d⁻¹, with a daily mean of 26 ± 23 mmol m⁻² d⁻¹. Considering only occasions with flow velocities ≥0.05 m s⁻¹ (n = 9 days), the slope-velocity parameterisation of Raymond et al. (2012) produced k₆₀₀ values ranging from 0.27 to 1.40 m d⁻¹, with a daily mean of 0.53 ± 0.39 m d⁻¹. The corresponding CO₂-C fluxes on these occasions ranged from -3 to 173 mmol m⁻² d⁻¹, with a daily mean of 67 ± 38 mmol m⁻² d⁻¹ (Fig. 5; Supplementary Table A3). The influences of boundary layer condition on gas transfer velocities from both direct (e.g., physical forcing) and indirect disturbance (e.g., changes to stream turbulence) may be approximately linearly additive, as with rainfall and wind speed (Ho et al. 2007). Under this assumption, the mean daily evasion rate during rainfall-induced hydrologic transitions was ~2 times higher than the mean background flux rate determined using floating chambers during still waters (59 ± 46 and 33 ± 24 mmol m⁻² d⁻¹, respectively).

Integrated water- and soil-air fluxes
The measured daily mean CO$_2$-C evasion rate from dry portions of the streambed was 72 ± 27 mmol m$^{-2}$ d$^{-1}$ (range, 27 to 115 mmol m$^{-2}$ d$^{-1}$), and was ~20% higher than the calculated mean daily water-air evasion rate encompassing changes from lotic to lentic waters. The peak-measured soil-air efflux occurred four-days after the onset of the second, longer dry-cycle when the mean stage height was -0.06 m. Factored for temporal changes to the water/soil ratio, the [CO$_2^*$] saturation status, and water-air boundary layer condition over time the integrated daily mean flux of CO$_2$-C from the S1 study segment was 61 ± 24 mmol m$^{-2}$ d$^{-1}$ (range, 12 to 156 mmol m$^{-2}$ d$^{-1}$; Fig. 5). This analysis employs the mean soil CO$_2$ flux obtained from all measurements to fill data gaps, thus assuming inhomogeneity throughout the streambed with progressive drying due to variable negative stage height and subsurface oxygen dynamics, and, that the mean soil CO$_2$ flux rate represents the average of all partial fluxes.

Water column excess CH$_4$ and net fluxes

Excess CH$_4$ increased from 0.6 to 14.6 µM (349 to 8700 µatm pCH$_4$) at the S1 station over the initial wet-cycle, with a median concentration of 2.1 µM (1200 µatm) and median calculated background CH$_4$-C evasion rate of 0.3 mmol m$^{-2}$ d$^{-1}$ (range, 0.1 to 1.9 mmol m$^{-2}$ d$^{-1}$). The maximum water column CH$_4$ concentrations occurred towards the end of the initial, longer wet-cycle (Fig. 2). Spatial variability in excess CH$_4$ ranged from 0.4 to 12.9 µM (239 to 7940 µatm), with resultant background water-air CH$_4$-C evasion rates ranging from 0.1 to 1.7 mmol m$^{-2}$ d$^{-1}$ (overall mean, 0.7 ± 0.6 mmol m$^{-2}$ d$^{-1}$).
A decrease in wet-cycle duration (T_W) coincided with a decrease in daily mean water column excess CO$_2$ concentrations (wet-cycle 1-3, 949 ± 322, 298 ± 203 and 213 ± 155 µM; $T_W = 19$, 5 and 2 d, respectively, $r^2 = 0.99$, p < 0.05; Fig. 6a) and integrated water and soil-air CO$_2$-C evasion rates (wet-cycle 1-3, 65 ± 32, 30 ± 10, and 21 ± 14 mmol m$^{-2}$ d$^{-1}$, respectively; Fig. 6b). Stage height correlated significantly with daily evapotranspiration rate ($r^2 = 0.49$, $n = 56$, p < 0.05), daily Δ[CO$_2$] and Δ[O$_2$] (wet-cycle 1, $r^2 = 0.73$ and 0.77, respectively, $n = 12$, p < 0.05), water/soil ratio-corrected fluxes (water, $r^2 = 0.52$; soil, $r^2 = 0.93$; p < 0.05; Fig. 7), as well as with water temperature ($r^2 = 0.23$; p < 0.05).

Discussion

Water-air versus soil-air exchange

Our results from an intermittent stream supports recent research from seasonally ephemeral aquatic systems which show that mean soil-air CO$_2$-C fluxes typically exceed those from the same watercourses when inundated (Table 2). Based on in-situ measurements when the stream study sites were disconnected, the contributions of soil-air CO$_2$-C fluxes at the S1 timeseries station exceeded water-air fluxes by a factor of ~2. However, this does not account for changes to the emerged/submerged area over time, or to stream flow dynamics during dry-to-wet and baseflow-stormflow hydrologic transitions. In the case of the upper Jamison Creek watercourse, integrating these factors
into the analyses produced contrasting results; with the contributions of water- and soil-air evasion to total CO$_2$-C fluxes being approximately equal (43 and 40 mol, respectively).

System-specific dissimilarities in wet and dry cycle intermittence in this study influenced areal water-soil distributions, spatial flux dynamics, and, consequently, the relative magnitude of total C-gas fluxes. Further, antecedent soil moisture conditions linked to the length of the preceding dry-cycle and consequent negative stage height influences the duration of each rewetting-cycle (Mohanty et al. 2015) and nutrient hydrochemistry (Biron et al. 1999), in conjunction with prevailing meteorological conditions (e.g. rain event intensity and duration; percent cloud cover). Considering this, we hypothesize that GHG fluxes in frequently intermittent watercourses are likely to display contrasting characteristics to seasonally ephemeral watercourses over annual time scales. Accordingly, it may prove more accurate to apply a distinction between the wet and dry fraction periods of seasonally ephemeral watercourses (typically dry for months at a time) and other more frequently intermittent aquatic systems (wet and dry cycles ranging from days to weeks) for the future integration of non-perennial fluvial systems into global carbon budget models.

The rates of GHG evasion from low-order streams can be disproportionately high in magnitude compared to other fluvial systems of the lower catchment, with a general trend of decreasing gas transfer velocities and pCO$_2$ with increasing stream order (Butman and Raymond 2011). For example, in a paraglacial mixed forest watershed (Québec, Canada), the smallest first-order streams represented $<$20% of the total river network surface and contributed $>$35% of the total fluvial GHG emissions (Campeau et
The CO₂ evasion rates reported for an intermittent watercourse in this study and reported for both wet and dry cycles in seasonally ephemeral watercourses in semi-arid environments (von Schiller et al. 2014; Gómez-Gener et al. 2016), are typically lower than evasion rates reported for perennial flowing waters (Butman and Raymond 2011; Raymond et al. 2013) and are more similar to evasion rates reported for still waters (Raymond et al. 2013; Catalán et al. 2014; Weyhenmeyer et al. 2015; Holgerson 2016) and wetlands (Sonentag et al. 2010; Sjögersten et al. 2014) (Table 2).

‘Hot’ and ‘cold’ phenomena in C-gas evasion cycle

Spatial and temporal patterns in stream hydrologic status alter biotic assemblage composition and ecosystem metabolism (Hall et al. 2015; Sabater et al. 2016), nutrient biogeochemistry (Birch 1958; Mohanty et al. 2015), soil diffusivity (Davidson and Janssens 2006), benthic redox dynamics (Harrison et al. 2005; Knorr et al. 2009; Gallo et al. 2014), as well as dissolved organic matter composition and lability (Buffam et al. 2001; Raymond and Saiers 2010; Jeanneau et al. 2015). Such changes can drive spatially variable ‘hot’ and ‘cold’ moments in the dry-wet-dry C-gas evasion cycle (i.e., increased and decreased fluxes, respectively; McClain et al. 2003). For example, in urbanized ephemeral waterways in Arizona, USA Gallo et al. (2014) found CO₂-C emissions to increase following temporary rewetting of the dry streambed sediments (soil moisture content ≤18±3% and t ≤6-hours; pre-wetting, 65 ± 53 mmol m⁻² d⁻¹; post-wetting peak, 706 ± 453 mmol m⁻² d⁻¹; sandy-loam soil group); with the flux magnitude correlated to soil moisture status. Our soil chamber measurements did not detect a notable increase in
dry-cycle soil fluxes following partial rewetting. However, the empirical modelling
presented herein considering complete cycles of inundation and emersion (e.g., stage
height during rewetting >0 m; \(T_w = >1 \text{ d} \)), demonstrated that intense physical forcing by
transient meteorological events can also produce further hydrologically mediated ‘hot
moment’ phenomena during which water-air fluxes can equal or exceed soil fluxes.

Of the two models used to calculate the influence of environmental variables on
the rates of water-air CO\(_2\)-C fluxes, we found the parameterisation given by Ho et al.
(1997) to closely approximate the mean background water column gas transfer velocities
as determined from floating chamber measurements (when \(R_n = 0.00 \text{ mm hr}^{-1}, \ k_{600} \text{(HO)} = 0.22 \text{ m d}^{-1} \); mean chamber-derived \(k_{600} \) in this study, \(0.26 \pm 0.10 \text{ m d}^{-1} \)). The Ho et al.
(1997) model was developed using sulphur hexafluoride (SF\(_6\)) tracer injections in a
closed system and incorporated the kinematic energy flux of natural raindrop size
distributions, which monotonically decreases as raindrop size decreases (Marshall and
Palmer 1948). Incorporating the influence of physical forcing by precipitation at the
water-air boundary layer during hydrologic phase transitions, this parameterisation
increases our mean daily background fluxes of CO\(_2\)-C on days influenced by rainfall by
30%, with the maximum instantaneous evasion rate of 567 mmol m\(^{-2}\) d\(^{-1}\) being 5 times
higher than our measured peak post-wet-cycle soil flux rate of 115 mmol m\(^{-2}\) d\(^{-1}\).

The effect of precipitation on evasion is most pronounced where wind velocity
does not dominate turbulence-driven C-gas exchange in limnological systems such as
small ponds (Ho et al. 1997; Vachon and Prairie 2013). In this study, hydrophobic
macromolecular surfactants (personal observations) may have diminished the kinematic
energy flux produced by boundary layer raindrop penetration (e.g. Frew et al. 1990,
2004; McKenna and McGillis 2004), as evidenced by the 47% decrease in measured k_{600} over the initial wet-cycle. As time progresses since rewetting, so does the thickness and extent of surfactants. This in turn limits the transfer of gases, reducing water column reaeration capacity and engendering an accumulation of CO$_2$ (e.g., Fig. 6a). Importantly, the presence of surfactants would most likely inhibit C-gas evasion rates during precipitation events that occur throughout the later term of a phytoplankton-dominated wet-cycle, prior to flushing of the system by significant rainfall. Under low-flow conditions, the slope-depth-velocity parameterisation of Raymond et al. (2012) also provided a reasonable approximation of the gas transfer velocities determined from our chamber measurements (mean k_{600} difference, ± 0.1 m d$^{-1}$). This model was formulated from 563 purposeful tracer experiments in running waters of varying stream order and flow conditions. Overall, k_{600} (RAY) was 2.1 times greater than our measured gas transfer velocities, with the discrepancy between measured and modelled k_{600} being due to the exclusion of higher flow velocities by our chamber measurements (e.g. because of inherent limitations of using floating chambers to determine k in running waters; Kremer et al. 2003; Lorke et al. 2015). Inclusive of the influence of stream hydraulics, this parameterisation increases our mean daily background CO$_2$-C fluxes on occasions with flow velocities >0.05 m s$^{-1}$ by 60%, with a maximum increase of 108 mmol m$^{-2}$ d$^{-1}$ (163%) on the first day of the initial wet-cycle post-rainfall, coinciding with a subsidence in stormflow and concurrent increase in excess CO$_2$ concentrations. For both measured and modelled fluxes, CO$_2$ degassing from the S1 segment ceased during periods of heavy rainfall when aqueous [CO$_2^*$] approached atmospheric
equilibrium, as well as during the initial hailstorm event when there was a short two-hour period of net influx of CO2 due to rapid cooling of the water and a subsequent increase in CO2 solubility. During storm events, such equilibrium and undersaturation states in typically supersaturated aquatic systems may also be preceded by a pulse of elevated CO2 degassing relative to baseflow rates (Looman et al. 2016), as increased streamwater velocity increases the gas transfer velocity due to higher streambed-generated shear stress (Beaulieu et al. 2012). The precipitation-induced dilution effect may then be succeeded by an increase in water column [CO2*] derived from soil respiration, transported by the migration of surface waters infiltrating through groundwater pathways (Johnson et al. 2007, 2008; Dinsmore et al. 2013). Thus, the combined influence on water-air gas exchange rates of rainfall induced changes in gas transfer velocity as well as CO2* concentration-discharge hysteresis patterns is temporally erratic.

Overall, dry-to-wet and baseflow-stormflow hydrological transitions represented 25% of wet-cycle days yet contributed 42% of total water-air CO2-C emissions. Evasion rates were lowest on rewetting days with precipitation >10 mm, with such cold moments decreasing fluxes by up to 100% with respect to mean non-transition phase water-air fluxes (average decrease of 20%). Conversely, fluxes were increased by an average of 12% on days with precipitation ranging from 1 to 10 mm and by 20% on days with precipitation <1 mm. Regarding the latter, this increase is primarily attributable to residual post-rainfall flow velocities of up to 0.1 m s⁻¹ compared to those fluxes occurring in otherwise still waters. Accordingly, the maximal water-air CO2 flux potential in the present study occurred as a result of short-term physical forcing by rainfall when the streambed was previously inundated and not necessarily during peak partial pressures as
might otherwise be expected. Importantly, the degree of misinterpretation for total water-air CO₂ flux accounting if non-continuous sampling methods are employed would be site-specific, and would be largely dependent upon the \(p_{CO₂} \) status; the frequency, duration and magnitude of rainfall events; relative changes to the streambed water/soil ratio during hydrologic phase transitions; and, moreover, the timing and frequency that periodic samples are taken. We highlight that additional studies are required for these findings to be generalised to other catchments.

The contribution of methane

The sustained global warming potential (SGWP; Neubauer and Megonigal 2015) of mean daily water-air CH₄ contributions to total C-gas emissions from the S1 study segment - expressed as CO₂ equivalents - were similar to the SGWPs of mean soil CO₂ emissions over a 20-year time frame and to measured background water-air emissions over a 100-year time frame (76 ± 67 and 36 ± 25 mmol m⁻² d⁻¹ CO₂ equivalents, respectively). As we only considered diffusive CH₄ fluxes in this study, additional contributions via the ebullition pathway (e.g., Prairie and del Giorgio 2013) would likely extend the contributions of CH₄ fluxes to total C-gas emissions from the S1 study segment to beyond those of CO₂ from both the soil- and water-air interfaces over the 20 and 100-year time frames, respectively.

The maximum water column excess CH₄ concentrations in the present study occurred during the final time period of the initial 21-day wet-cycle (Fig. 2), akin to the observed trends in CO₂. Low nocturnal dissolved oxygen saturations that occurred post-
wetting (25 ± 6% saturation) might have facilitated anaerobic metabolism and methane production. The hyporheic zone of the streambed represents the interface between ground and surface waters and is a dynamic ecotone for microbial metabolism (Claret and Boulton 2009), with the degradation of organic matter in surface sediments causing localised oxygen depletions. As well as the traditional pathway of microbial anaerobic methanogenesis, CH₄ production can also occur in oxic waters via acetoclastic methanogenesis, driven by algal dynamics (Bogard et al. 2014). CO₂ can be produced in turn by the oxidation of methane, both aerobically and anaerobically (Thauer et al. 2008). Thus, although stoichiometric analyses of the biogeochemical drivers of CH₄ dynamics were beyond the specific aims of the present study the temporal changes for trends in AOU and excess CO₂, as well as a significant negative relationship between excess CH₄ and [H⁺] (r² = 0.78; p < 0.05), suggest that successions in microbial and algal community composition may be responsible for an increase in CH₄ production over longer-duration wet-cycles. Such potential competitive exclusion processes most likely occur in conjunction with post-rewetting redox oscillations of oxidised iron and sulphate substrate available for anaerobic metabolism (Knorr et al. 2009). Additionally, correlations between excess CH₄ and both ambient atmospheric and water temperatures (r² = 0.67 and 0.31, respectively, p < 0.05) and water temperature with CH₄:CO₂ ratio (r² = 0.83; p < 0.05) indicate that methanogenesis may be temperature dependent over short time scales, and reflect the physiological kinetic processes generating these fluxes (see Yvon-Durocher et al. 2014).

Conclusions and implications
Our observations demonstrate that wet and dry cycle periodicity, redox processes, atmospheric forcing by rainfall, site-specific ephemerality, and small-scale spatial heterogeneity were key influential factors in controlling C-gas flux rates in the upper Jamison Creek watercourse. In non-perennial watercourses maximal and minimal fluxes may occur during hydrologic phase transitions, and, although short-lived and problematic to quantify at larger regional scales such hot and cold moments may comprise an appreciable component of the local and regional carbon budgets for aquatic systems. Up to 75% of watercourses in Australia are ephemeral (Sheldon et al. 2010) and these non-perennial watercourses are currently excluded from Australia’s carbon accounting estimates (Haverd et al. 2013; Poulter et al. 2014). Therefore, due to the high rate of emissions from dry watercourses, as well as fluctuant nature in the rate of emissions during and following complete or partial rewetting, the overall relative magnitude of this continental carbon sink and that of other semi-arid ecosystems of the southern hemisphere may be misrepresented.

Conflict of interest

The authors declare that they have no conflict of interest.
References

Fryirs KA, Cowley K, Hose GC (2016) Intrinsic and extrinsic controls on the geomorphic condition of upland swamps in Eastern NSW. Catena 137:100–112

Hall RO, Yackulic CB, Kennedy TA et al. (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–526

Holgerson MA, Raymond PA (2016) Large contribution to inland water CO₂ and CH₄ emissions from very small ponds. Nat Geosci 9:222–226

Australian subtropical estuary downstream from a modified acidic floodplain wetland. Limnol
Oceanogr 60:42–56

Rudorff CM, Melack JM, MacIntyre S, Barbosa CC, Novo EM (2011) Seasonal and spatial
variability of CO2 emission from a large floodplain lake in the lower Amazon. J Geophys Res
116:G04007

intermittency: from cells to ecosystems. Frontiers in Environmental Science 4:14.

carbon and greenhouse gases in a subtropical estuary. Estuar Coast 39:639-656

Salemi LF, Groppo JD, Trevisan R, de Moraes JM, de Paula Lima W, Martinelli LA (2012)

Shaw JR, Cooper DJ (2008) Linkages among watersheds, stream reaches, and riparian vegetation

roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar Freshwater
Res 61:885–895

Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical

Regionalization of patterns of flow intermittence from gauging station records. Hydrol Earth Syst
Sci 17:2685–2699

table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Glob Change Biol
16:1762–1776

Steward AL, von Schiller D, Tochner K et al (2012) When the river runs dry: human and

Tamoom F, Borges AV, Meysman FJ, Van Den Meersche K, Dehairs F, Merckx R, Bouillon S
(2013) Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River Basin,

Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries,
and their importance in the riverine carbon budget. Biogeosciences 12:2431–2453

Fig. 1 Map of the upper Jamison Creek watercourse and study sites S1-S5. Source: ArcGIS 10.3. (ESRI; Redlands, CA)
Fig. 2 Time series measurements of excess CO₂, AOU, excess CH₄ and [H⁺] taken over the initial two wet-cycles at the S1 study segment. Where \(n \geq 2 \), error bars indicate the range for each variable. Where \(n = 1 \), + indicates samples collected between 06:00-10:00 hrs, O indicates samples collected between 10:00-12:30 hrs, and X indicates samples collected between 12:30-19:00 hrs.
Fig. 3 Diel measurements of (a) excess CO₂, (b) the apparent oxygen utilisation (AOU), (c) the CO₂-C flux rate, and (d) water temperature at the S1 study segment during a period of low stage height, 10 days post-rewetting.

Fig. 4 Time series of daily change in concentration (Δ) for [O₂] and [CO₂*] taken at the S1 timeseries station during the initial, longer wet-to-dry cycle.
Fig. 5 Time series measurements of mean daily rainfall and stage height, measured and modelled CO$_2$-C fluxes, as well as integrated water- and soil-air fluxes.

Fig. 6 The relationship between wet-cycle duration and (a) mean daily water column excess CO$_2$ concentrations, as well as (b) integrated water and soil-air CO$_2$-C fluxes. Error bars indicate the standard deviations for each cycle.
Fig. 7 Relationships between mean stage height with \(\Delta [\text{CO}_2^+] \), \(\Delta [\text{O}_2] \), evapotranspiration rate (ET), water temperature, as well as the calculated total water and soil ratio-corrected CO2-C fluxes per daily time step at the S1 study site.

Table 1 Mean between-site variability in water quality parameters (±SD), apparent oxygen utilisation (AOU), excess CO2, excess CH4, mean water-air flux rates (F) for CO2 and CH4, and water column morphology for study sites S1-S5 during the two days of spatial sampling.

<table>
<thead>
<tr>
<th>Site</th>
<th>Water temp. (°C)</th>
<th>pH</th>
<th>Sp. Cond. (µs cm(^{-1}))</th>
<th>AOU (µM)</th>
<th>Excess CO2 (µM)</th>
<th>Excess CH4 (µM)</th>
<th>F-CO2 (mmol C m(^{-2}) d(^{-1}))</th>
<th>F-CH4 (mmol C m(^{-2}) d(^{-1}))</th>
<th>Wetted length (m)</th>
<th>Wetted width (m)</th>
<th>Stage height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>14.5 ± 4.7</td>
<td>5.87 ± 0.31</td>
<td>89 ± 6</td>
<td>93 ± 91</td>
<td>733 ± 495</td>
<td>12.9 ± 2.4</td>
<td>1.7 ± 24.3</td>
<td>14.4 ± 0.3</td>
<td>1.0 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>10.2 ± 0.6</td>
<td>6.05 ± 0.43</td>
<td>101 ± 6</td>
<td>265 ± 56</td>
<td>531 ± 389</td>
<td>2.6 ± 0.9</td>
<td>0.3 ± 19.1</td>
<td>2.4 ± 0.1</td>
<td>2.1 ± 0.2</td>
<td>0.2 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>13.2 ± 1.0</td>
<td>5.52 ± 0.48</td>
<td>72 ± 3</td>
<td>155 ± 0</td>
<td>1390 ± 227</td>
<td>0.4 ± 0.0</td>
<td>0.1 ± 11.2</td>
<td>16.2 ± 0.3</td>
<td>0.5 ± 0.3</td>
<td>0.3 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>14.9 ± 0.4</td>
<td>5.63 ± 0.32</td>
<td>70 ± 3</td>
<td>114 ± 1</td>
<td>760 ± 61</td>
<td>6.4 ± 2.8</td>
<td>0.9 ± 3.0</td>
<td>8.4 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>0.4 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>15.0 ± 0.5</td>
<td>5.89 ± 0.40</td>
<td>61 ± 2</td>
<td>120 ± 23</td>
<td>326 ± 32</td>
<td>4.3 ± 0.7</td>
<td>0.6 ± 1.6</td>
<td>5.7 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Comparison summary of mean CO₂ concentration and fluxes for temporary ponds, perennial flowing rivers and streams, seasonally ephemeral watercourses, lakes, and wetlands worldwide (±SD; ranges shown in parentheses)

<table>
<thead>
<tr>
<th>Location/watercourse type</th>
<th>Flux Wet(^{f}) (mmol m(^{-2}) d(^{-1}))</th>
<th>Flux Wet(^{s}) (mmol m(^{-2}) d(^{-1}))</th>
<th>Flux Dry (mmol m(^{-2}) d(^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Fluvia, Spain/seasonally ephemeral</td>
<td>22(^{*}) (11–26)</td>
<td>7(^{*}) (6–11)</td>
<td>58(^{*}) (10–124)</td>
<td>von Schiller et al. 2014</td>
</tr>
<tr>
<td>Tucson, Arizona/seasonally ephemeral</td>
<td>-</td>
<td>-</td>
<td>44±8(^{p,se,v}) (20–3173)</td>
<td>Gallo et al. 2013</td>
</tr>
<tr>
<td>Worldwide / small ponds < <0.001 km(^{2})</td>
<td>-</td>
<td>35±5(^{m,se})</td>
<td>-</td>
<td>Holgerson 2016</td>
</tr>
<tr>
<td>Mediterranean/ temporary ponds</td>
<td>-</td>
<td>3 (1–11)</td>
<td>(2–96)(^{v})</td>
<td>Catalán et al. 2014</td>
</tr>
<tr>
<td>Worldwide/flowing waters</td>
<td>766(^{m})</td>
<td>-</td>
<td>-</td>
<td>Raymond et al. 2013</td>
</tr>
<tr>
<td>Conterminous USA/flowing waters</td>
<td>541±182(^{m}) (201–914)</td>
<td>-</td>
<td>-</td>
<td>Butman & Raymond 2011</td>
</tr>
<tr>
<td>Boreal/lakes</td>
<td>-</td>
<td>33(^{m})</td>
<td>-</td>
<td>Weyhenmeyer et al. 2015</td>
</tr>
<tr>
<td>Worldwide/lakes and reservoirs</td>
<td>-</td>
<td>7(^{m}) (1–17)</td>
<td>-</td>
<td>Raymond et al. 2013</td>
</tr>
<tr>
<td>Tropical/wetlands(^{§})</td>
<td>-</td>
<td>107±50(^{p,v}) (20–141)</td>
<td>255±111(^{p,v}) (69–493)</td>
<td>Sjögersten et al. 2014 (table 4)</td>
</tr>
<tr>
<td>Boreal/fen(^{¶¶})</td>
<td>-</td>
<td>117(^{p,v})</td>
<td>144(^{p,v})</td>
<td>Sonnentag et al. 2010</td>
</tr>
<tr>
<td>This study</td>
<td>67±38(^{m}) (9 to 349)</td>
<td>30±20 (0–62)</td>
<td>72±27(^{v}) (27–115)</td>
<td></td>
</tr>
</tbody>
</table>