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Results
Notch3 Is Differentially Activated in Human CC. We used a targeted
NOTCH PCR array in five surgically resected samples paired with
matched noncancerous liver (Fig. 1A and Table S1; four perihilar
and one mass-forming intrahepatic CC, all moderately differen-
tiated adenocarcinoma). NOTCH3 was highly up-regulated: 18.2-
fold (P ≤ 0.000025); NOTCH1, 1.9-fold (P = 0.105153); NOTCH2,
1.8-fold (P = 0.076917), and NOTCH4, 1.6-fold (P = 0.076371).
Up-regulation of JAG1 (8.4-fold, P = 0.000426) and JAG2 (12.6-
fold, P = 0.003088) indicated that signaling may be triggered by
nearby ligand. This preliminary screen suggested pathway activity,
with up-regulation of the Hes/Hey family of effectors: HEY1,
10.25-fold, (P = 0.016558); and HEYL, 6.0-fold (P = 0.000829),
although in this cohort, there was no change in the archetypal
effector of classical Notch, HES1 (0.9-fold, P = 0.687197; Fig. 1A).
We expanded the analysis to a larger cohort of 48 CC cases and
compared them with healthy livers using quantitative RT-PCR
(qRT-PCR; n = 42). NOTCH3 was again up-regulated 38-fold
(P ≤ 0.0001), with NOTCH1, 1.1-fold (P ≤ 0.0001); NOTCH2, 7.5-
fold (P ≤ 0.0001); NOTCH4, 2.0 fold (P ≤ 0.0001); JAG1, 363.3-
fold (P ≤ 0.0001); JAG2, 938.6-fold (P ≤ 0.0001); HES1, 483.7-fold

(P ≤ 0.0001); HES4, 304.2-fold (P ≤ 0.0001); HEY1, 46.8-fold (P ≤
0.0001); HEY2, 384.4-fold (P = 0.0005), HEYL, 160.6-fold (P ≤
0.0001) (Fig. 1B). We stained the cohort and a tissue CC micro-
array for Notch receptors with a panel of cell-specific markers.
In the healthy liver, we observed little expression of NOTCH1
(Fig. 1C and Fig. S1 A and B) in contrast to NOTCH3, which
was consistently seen on vascular smooth muscle (Fig. S1A) and
on many, although not all, bile ducts (Fig. 1C and Fig. S1A). Large
regions of almost all tumors stained positively for NOTCH3 (19 ±
0.77% displayed >10% coverage; 31 ± 0.84% displayed >20%;
1.6 ± 5.40% displayed >40%). Pixel analysis showed mean cov-
erage of each core was 56.2% greater in tumors compared with
noncancerous controls (Fig. 1C). NOTCH1 positivity was also
greater in tumors, but not to the same extent (mean coverage,
4.49 ± 3.17% tumors vs. 2.03 ± 0.43% nontumors). In all CC
samples, positivity colocalized with CK19, and a subset of tumors
also exhibited stromal positivity, colocalizing with the myofibro-
blast marker α-SMA (Fig. 1D and Fig. S1D). NOTCH3 did not
colocalize with endothelial or inflammatory cell markers (CD31
and CD68) (Fig. 1D). In malignant ductules, NOTCH3 was fre-
quently nuclear; reactivity of the intracellular domain (N3-ICD)
suggested functionality (Fig. 1E). To corroborate this, we per-
formed N3-ICD immunoblotting: the mean signal of N3-ICD
(normalized to β-actin) was 95 ± 74.66 times greater in tumor vs.
matched nontumor lysates (P = 0.0286; Fig. S1E). Almost all tu-
mors exhibited stromal expression of JAGGED1 (Fig. S1F).

Notch3 Is Differentially Up-Regulated During CC Development. To
determine the contribution of Notch to CC development, we used
a well-characterized toxin-induced model in rat using the
hepatocarcinogen thioacetamide (TAA) to induce injury followed
by cancer (9). After 16 wk, multifocal foci of the invasive CC are
seen with mucin production and desmoplasia. The model has a
penetrance of 100% at 20 wk, when tumors are numerous, large,
and coalescent (Fig. S2A). We used a Notch PCR array to compare
expression in uninjured animals to those with inflammation (8- to
10-wk TAA) (Fig. 2A, Left), fibrosis (12–14 wk), early malignancy
(20 wk), and invasive adenocarcinoma (26 wk) (Fig. 2A, Right, and
Table S2). An induction in transcription was observed in line with
tumor development as confirmed with qPCR (Fig. 2B); Notch3 was
a highly up-regulated receptor at 26 wk (52.01-fold by qRT-PCR;
P = 0.0022), contrasted by modest up-regulation of Notch1 (5.32-
fold, P = 0.0411), Notch2 (4.75-fold, P = 0.0022), and Notch4
(9.67-fold, P = 0.0022). Jag1 was up-regulated 24.00-fold (P =
0.0022). We saw nonsignificant up-regulation of Jag2 (2.35-fold,
P = 0.3095), and unlike in human disease, no change in effector
transcription: Hes1, 0.67-fold (P = 0.3095); Hey1, 0.70-fold (P =
0.3095); Hey2, 0.77-fold (P = 0.3939); and HeyL, 2.10-fold (P =
00649). Immunostaining the time course mirrored these data; up-
regulation occurred in line with tumor expansion, with Jagged1
and Notch3 in stroma and malignant ducts (Fig. 2C).

Reports demonstrated an inhibitory effect using γ-secretase
inhibitors (GSIs) in CC cell lines and xenograft models. We aimed
to evaluate efficacy on in vivo CC growth in a model where des-
moplastic CC arises from the liver without transgenic overactivation
of Notch. We administered N-[N-(3,5-difluorophenacetyl)-L-alanyl]-
S-phenylglycine t-butyl ester (DAPT) to rats on the TAA protocol,
treating animals during the last 5 wk of injury, i.e., once tumors had
established (Fig. S3A). TAA damage was equivalent in the two
groups (Fig. S3B). Following DAPT, liver-to-body weight ratio was
reduced by 19 ± 0.53% (P = 0.0121; Fig. S3C), and the proportion of
liver infiltrated by the tumor was reduced by 78 ± 0.84% (P = 0.0148;
Fig. 3B). There was no apparent difference in the microscopic ap-
pearance of DAPT-treated tumors; all cancerous foci exhibited
features of well-differentiated adenocarcinoma with mucin pro-
duction and desmoplasia, with no apparent difference in cell death
or necrosis histologically. Moreover, tumor number was unchanged,
consistent with the observation that by 21 wk, tumors are established
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Fig. 1. Notch3 is differentially activated in human CC. ( A) Volcano plot of rt-
PCR Notch array in human CC and patient-matched liver ( n = 5, n = 5). Gray
line represents P value of 0.05. Red labels, up-regulation at least fourfold;
green, down-regulation at least fourfold. ( B) Notch expression in human CC
(n = 48) and healthy liver ( n = 42) (RT-PCR). Medians compared with Mann –

Whitney U test. (C) Tissue microarray human CC (n = 77) and noncancerous
liver (n = 47). Representative Notch1 and Notch3 immunostaining (positive
and isotype controls; Fig. S1B and C). Filled arrowheads, Notch3 + ductules
and vascular smooth muscle in healthy liver. Pixel analysis of CC and controls
compared with Mann –Whitney U test. (D) Dual fluorescence of Notch3
(green) in human CC with αSMA, CD31+, or CD68+ (red) (Scale bar, 100 μm.)
(E) N3-ICD (green) in human CC (white filled arrowheads). (Scale bar, 50 μm.)
Data are means ± SEM. *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001.
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and DAPT after this point slows CC growth. To establish that in-
hibition of the γ-secretase complex resulted in a reduction in sig-
naling via Notch3, we stained for the Notch3 protein and looked for
nuclear positivity, i.e., Notch3 intracellular domain (Fig. S3D).
Immunostaining for the proliferation marker Ki67 demonstrated a
38.15% reduction in cycling cells in tumor cells (P = 0.0005; 244.14 ±
10.03 vehicle vs. 150.99 ± 20.40 DAPT; Fig. 3D).

Genetic Deletion of Notch3 Reduces CC Formation and Progression.
γ-Secretase is a large protease complex, and, although blockade
results in total loss of Notch signal (single point mutation causes
embryonic lethality) (10), Notch is only one of its substrates. Notch3
is an atypical receptor with structural differences to Notch1 and 2
and can be targeted without disrupting normal development (11).
We therefore aimed to evaluate its potential as a nonredundant CC
driver using genetic Notch3 deletion. Loss of the tumor suppressor
p53 is a common occurrence in CC (12). CC arises following chronic
inflammation as in primary sclerosing cholangitis. We there-
fore used a mouse model in which loss of Tp53 is conditionally
targeted to enhanced yellow fluorescent protein (eYFP)-labeled
CK19+ epithelia using tamoxifen inducible Cre recombinase
(CK19CreERTeYFPp53f/f) followed by injury with TAA to induce
oncogenic stress (13). At 26 wk, multifocal invasive CC was observed
in livers of CK19CreYFPp53f/f mice at 80% penetrance, but not

CK19CreYFPp53wt/f or CK19CreYFPp53wt/wt mice (Fig. S4A). Tu-
mors stained for ductular markers CK19 and Sox9, and these fre-
quently but not exclusively colocalized with eYFP (Fig. 4A), in line
with the weak efficiency of Cre recombination in this model (14). In
tumors, eYFP+ epithelia were almost always positive for NOTCH3,
although not all NOTCH3+ cells carried the heritable eYFP label,
indicating p53 loss is not required for Notch3 induction. In
mice, we observed apparently less stromal Notch3 positivity
(Fig. 4A, Bottom).

Notch3 mRNA and to a lesser degree Notch2, but not Notch1 or
Notch4 (undetectable), was overexpressed in CC in CK19CreYFPp53f/f

mice compared with CK19CreYFPp53wt/f and CK19CreYFPp53wt/wt

mice, as well as CK19CreYFPp53f/f mice without CC (Fig. 4B).
When normalized to CK19CreYFPp53wt/wt mice with 26 wk of TAA,
Notch3 is up-regulated 85.92-fold (P = 0.0286) in CK19CreYFPp53f/f

mice with CC, compared with Notch1 at 24.28-fold (P = 0.0286).
In CK19CreYFPp53f/f mice that did not develop CC, Notch3 was
up-regulated 41.35-fold (P = 0.0286), compared with Notch1 at
14.94-fold (P = 0.0381). Nonsignificant increases in Jag1 and Jag2
were observed and the only effector to reach significance was Hey2:
45.47-fold (P = 0.0286; Fig. 4B).

We then compared tumor burden in CK19CreERTeYFPp53f/f

mice on the TAA protocol to mice carrying constitutive deletion
of the Notch3 gene (CK19CreERTp53f/fN3). A difference in livers
in N3+/+ mice compared with N3+/− and N3−/− animals was seen
at 26 wk (Fig. 5A). Although macroscopic cancerous nodules
were not numerous on the liver surface of mice of any genotype,
microscopic foci of invasive CC were clearly evident in all groups
(Fig. 5 A and C). A 99.14 ± 0.48% reduction was seen in liver
infiltrated by tumor in N3+/− mice, as well as a reduction in the
mean tumor number [28.78 ± 15.37 N3+/+ mice (n = 9) vs. 0.875
± 0.38 N3+/− mice (n = 8)], indicating single copy loss of Notch3 is
sufficient to inhibit CC formation (Fig. 5B and Fig. S5A). N3−/− mice
exhibited a similar phenotype; there was no statistical difference in
tumor burden to N3+/− animals (N3+/− mice, 0.035 ± 0.01 mean%
tumor area vs. 0.086 ± 0.05 N3−/−). Staining for pan-cytokeratin and
pERK demonstrated an apparent reduction in proliferating malignant
ductules in mice with Notch3 deletion (Fig. 5C). No significant com-
pensatory up-regulation of Notch1, Notch2, or Notch4 was observed in
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Fig. 2. Notch3 is differentially up-regulated during CC development. ( A) PCR
Notch pathway array in rats after 600 mg/L TAA for 8 –10 wk (inflamed) ( n = 6)
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CK19 (DAB). Notch3, green; Jagged1, red; αSMA, green. (Scale bar, 100 μm.)
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are not overexpressed or mutated in human cancer. Consistent
with the role of Notch as a cell fate determinant, transgenic
overactivation of Notch1 (N1-ICD) in albumin-expressing cells
results in biliary tumor formation (6, 7). In an almost identical
model, however, N1-ICD expression under albumin and α-feto-
protein promoters produce HCC at 100% penetrance (16).
Studies of KRAS and MYC show precise expression levels are
critical to biological outcome. Because genomic analyses of CC
conclude transforming Notch mutations are infrequent (17) and
antibodies blocking Notch1 increase the number and extent of
tumors (18), we aimed to elucidate the contribution of endoge-
nous WT Notch to CC and identify components with potential
for targeting.

We used CC models in three species not reliant on any one
oncogenic alteration, and Notch3 is consistently overexpressed.
As reported by others, Notch1 is barely detectable in the healthy
adult liver (19). Conversely, Notch3 is consistently present
around the vasculature, making the up-regulation observed in
tumors all of the more striking. Notch3 up-regulation occurs with
disease; the greatest increase occurs late during expansion and
invasion. Overexpression is associated with functional activity as
evidenced by consistent nuclear visualization of the intracellular
domain. Inhibition in xenografted cells with shRNA or genetic
KO in mice both result in attenuated tumor growth. This target,

with many functions and interactions distinct from canonical
signaling, offers an attractive prospect for therapy. Past work
suggests antibody-mediated Notch3 inhibition has no effect on
liver cancer; however, evidence of Notch3 activity in the model
and antibody efficacy was lacking (18). In contrast, other work
acknowledges that, in addition to Notch1, Notch3 is strongly
expressed in human CC compared with the liver (7).

Notch3 drives 40% of non–small-cell lung cancers (NSCLCs) and
almost all T-cell acute lymphoblastic leukemia. Tumor-inhibiting
effects of GSIs are lost after Notch3 silencing in NSCLCs, sug-
gesting cell survival is mediated via Notch3 (20). Serial trans-
plantation studies indicate Notch3 is a regulator of self-renewal in
tumor-propagating cells, and with no essential function in devel-
opment or homeostasis (Notch3-null mice have no liver pheno-
type), Notch3 inhibition appears a safe strategy (11). GSIs have
been pursued as therapy in a range of cancers, but translation has
been hampered by toxicity. Such effects arise not due to disrupting
the GS complex; the same phenotype occurs in RBPJ- or Hes1-
deficient mice (21). Therefore, the possibility of a tumor-forming
role via an RBPJ-independent mechanism is appealing. Our data
suggest activation of AKT by Notch3 might be one such route.

Using independent techniques of blockade, we identify the
PI3K/AKT pathway as one route of Notch3-driven cell survival;
these data in line with Fan et al. who showed enhanced biliary
tumorigenesis with transgenic activation of Notch and AKT (6).
Many studies show the PI3K/AKT/mTor axis is dysregulated in
CC, with AKT phosphorylation correlating with poor survival,
and dual treatment with AKT and mTor inhibitors synergistically
slowing tumor growth (22).

Although N-ICD translocation via RBPJ to drive Hes/Hey
transcription is the most studied pathway, alternative modes of
signaling are described including GS activation independent of
ligand; N-ICD activity independent of RBPJ; or activation by
membrane-tethered receptors without GS cleavage (23). RBPJ-
independent signaling is characterized in T cells where N3-ICD
interacts with IKKα to stimulate NF-κB and drive leukemia (24).
Indeed, noncanonical Notch signaling is not uncommonly de-
scribed in cancer, triggering cascades including PI3K/AKT, Wnt,
and HIF1-α (25). Our data in rats of profound receptor over-
expression without concomitant effector up-regulation further
suggest Notch-driven CC can arise via an RBPJ-independent
route, given the restriction of tumor growth after GSI.

The stimuli for Notch3 up-regulation are as yet unknown. In our
rat time course, early ligand up-regulation by fibroblasts tempts
speculation that stroma-derived factors might be a trigger. However,
as tumors evolve, Jagged1 appears on ductules, suggesting a switch
to autonomous signaling or activation of an alternative pathway. In
ovarian carcinoma where Notch3 gene amplification is common,
Jagged1 is itself dependent on Notch3 activity; deletion and ectopic
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expression inhibit and promote Jagged1, respectively, implementing
a self-sustaining signaling loop (26). This role for Jagged1 is an
important question as ligands are attractive alternative therapeutic
targets. In Drosophila, cis interactions (receptor stimulated by ligand
from the same cell) inhibit receptor activity within the cell while
stimulating activity in neighboring cells. Potential for Jagged1 to
exert differential effects on Notch1 and Notch3 here is intriguing.

Stimulation of the ductular response by Notch1 in biliary re-
generation requires classical signaling via Hes1. Further work is
needed to understand whether this signal required in CC, how it is
affected by Notch3, if at all (we see no change in Notch1 following
Notch3 inhibition), and how Hes/Hey are involved. Our data
suggest this role is complex: we observe Hes/Hey up-regulation in
human disease and mice but to a much lesser extent in rats. The
fact we observe reduced Hes/Hey expression with Notch3 silencing
and yet the observed changes in Akt-related components do not
occur with RBPJ inhibition suggests that at least two signaling
routes are active downstream of the receptor, and further mech-
anistic work is needed to understand this better. Taken together,
however, our data suggest Notch3 is an important driver in CC
and drives cell survival independently of RBPJ, opening up new
therapeutic targets for this largely untreatable cancer.

Materials and Methods
Human Tissue. Human CC and liver were collected prospectively from patients
undergoing resection at the Royal Infirmary Edinburgh with informed con-
sent. The study was reviewed and approved by the Tayside Committee in
Medical Research Ethics B. Retrospectively collected specimens were obtained
from the National Health Service Lothian Scottish Academic Health Sciences
Collaboration BioResource and healthy liver from the Edinburgh Medical
Research Council Sudden Death Tissue bank. Tissue CC microarrays were
purchased from Pantomics.

Animal Models and Xenografts. CK19CreERTR26ReYFP mice (14) were a kind
gift from Guoquaing Gu (Vanderbilt Medical Center, Nashville, TN). These mice
were cross-bred with Trp53 tm1Brn mice (p53flox/flox ) (ref. B6.129P2-Trp53tm1Brn/J),
Notch3tm1Grid (N3 −/−) mice (ref. B6.129S1-Notch3tm1Grid /J) (11), or or Notch1 fl/fl

(Notch1tmRko/Grid) from Jackson Laboratories. Trp53 tm1Brn (p53fl/fl ) and
Notch3tm1Grid (N3 −/−) mice were on a C57BL/6;C129 background; Notch1 fl/fl

mice were on a 129 background. Before experimental use, animals were cross-
bred with the CK19CreER TR26ReYFP line, which carried a CD1;C57BL/6

background. Progeny were subsequently on a mixed background and used
for experimental comparison. In studies where Notch3 is altered, all experi-
mental mice were from the same colony and had a consistent mixed background
(CD1/C57BL/6/129). Throughout, littermates were included as controls where
possible. All animals used were male and aged matched. Mice were genotyped
by Transnetyx. LoxP recombination was induced with three doses of 4 mg ta-
moxifen (Sigma) in corn oil i.p. on alternate days at 6 wk of age. CC was induced
using oral sweetened TAA (Sigma; 600 mg/mL) or vehicle for 26 wk ( n = 8).
Eight-week-old male Sprague –Dawley rats were given 600 mg/L sweetened oral
TAA or vehicle for 26 wk (9). Animals were killed at 10, 12, 14, 16, 18, 20, 22, 24,
and 26 wk ( n = 3). Rats received 10 mg/kg DAPT (Tocris) in olive oil s.c. (n = 8) or
olive oil alone ( n = 12) thrice weekly during weeks 21 –26.

Xenografts were performed on 6-wk-old CD1-nude mice with bilateral s.c.
flank injection of the commercial CC line CC-LP-1 (5 × 105) (15) or CC-LP-1 cells
transfected and stably selected for NOTCH3 targeted shRNA or scrambled
sequence control. Tumors were allowed to engraft for 28 d before mice
were either killed or exposed to one of the following treatment regimes:
DAPT (10 mg/kg), PI-103 (30 mg/kg, Selleckchem), or equivalent dose of
vehicle for 14 d ( n > 5 per group). Tumor volume was calculated using the
modified ellipsoid formula: 0.5( l × w2). Animal studies were conducted in
accordance with UK Home Office regulations under procedural guidelines,
severity protocols, and with approval from the Animal Welfare and Ethical
Approval Review Body (AWERB).

Quantification of in Vivo Tumor Burden. Rat and mouse livers were cut into
3-mm slices before embedding and sectioning. Limits of malignancy were
defined on H&E sections from each block (five per liver) by a histopathologist
blinded to the regime. Tumor area as a proportion of liver area was quan-
tified with Image J (NIH).

Statistical Analyses. Analyses were performed with Prism (GraphPad v5). Data
are presented as mean ± SEM. Data distribution was assessed using the
D’Agostino & Pearson normality test and comparisons between two groups
using the Student t test or Mann –Whitney U test; multiple groups were com-
pared with the one-way ANOVA or Kruskal –Wallis test. Post hoc testing groups
of nonparametric data were performed using Dunn ’s multiple comparison test.
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