
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/130967/

Deposited on: 26 January 2017
The effectiveness of Dietary Approaches to Stop Hypertension (DASH) counselling on estimated 10-year cardiovascular risk among patients with newly diagnosed grade 1 hypertension: a randomised clinical trial

Martin CS Wong, MD a; Harry HX Wang, PhD b, c, *; Mandy WM Kwan, MSc a, d; Shannon TS Li, MPH a; Miaoyin Liang, MPH b; Franklin DH Fung, BHSc a; Ming Sze Yeung, BSc a; Brian CY Fong, MPH a, c; De Xing Zhang, PhD a; David KL Chan, BSc a; Bryan P Yan, FRACP, FESC, FACC f; Andrew JS Coats, FRCP, FRACP, FESC f, g, h; Sian M Griffiths, FFPH, FRCP a

a JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
b School of Public Health, Sun Yat-Sen University, Guangzhou 510080, P.R. China
c General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 9LX, UK
d Department of Family Medicine, Hospital Authority, Hong Kong
e Department of Health, The Government of the Hong Kong Special Administrative Region, Hong Kong
f Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
g Monash University, Australia
h The University of Warwick, UK

Running Title: DASH counselling on cardiovascular risk

Grant Support: Health and Medical Research Fund, Hong Kong Government

Disclosures: None declared

Key words: Dietary Approaches to Stop Hypertension (DASH); cardiovascular risk; dietary counselling; associated factors; primary care

*Corresponding author: Harry HX Wang BS, MS, PhD

School of Public Health, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou 510080, P.R. China; JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, NT., Hong Kong; General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, 1 Horselethill Road, Glasgow G12 9LX, UK

Tel: +852 2252 8784; E-mail: haoxiangwang@163.com; Haoxiang.Wang@glasgow.ac.uk
Abstract

Background: The Dietary Approaches to Stop Hypertension (DASH) has been shown to lower blood pressure in the West. However, the real-life impact of DASH on reducing cardiovascular (CV) risk in routine clinical setting has not been studied.

Methods: A parallel-group, open-labelled, physician-blinded, randomised controlled trial was conducted in January-June 2013 and followed up for 6- and 12-months in primary care settings in Hong Kong. Patients newly diagnosed with grade 1 hypertension (aged 40-70 years) who had no concomitant medical conditions requiring dietary modifications were consecutively recruited. Subjects were randomised to standard education (usual care) (n=275), or usual care plus dietitian-delivered DASH-based dietary counselling in a single one-to-one session (intervention) (n=281). Primary outcomes were the changes in estimated 10-year CV risk.

Results: Outcome data were available for 504 (90.6%) and 485 (87.2%) patients at 6 and 12 months, respectively. There was no difference in the reduction of 10-year CV risk between the two groups at 6 months (-0.13%, 95% confidence interval [95%CI] -0.50% to 0.23%, \(p=0.477 \)) and 12 months (-0.08%, 95%CI -0.33% to 0.18%, \(p=0.568 \)). Multivariate regression analyses showed that male subjects, younger patients, current smokers, subjects with lower educational level, and those who dined out for main meals for \(\geq 4 \) times in a typical week were significantly associated with no improvements in CV risk.

Conclusions: The findings may not support automatic referral of newly diagnosed grade 1 hypertensive patients for further one-to-one dietitian counselling. Patients with those risk factors identified should receive more clinical attention to reduce their CV risk. (250 words)

Clinical Trial Registration: ChiCTR-TRC-13003014 (http://www.chictr.org.cn/enindex.aspx)

Abbreviations: DASH, Dietary Approaches to Stop Hypertension; CV, cardiovascular; CI, confidence interval
Introduction

Uncontrolled high blood pressure (BP) remains a leading cause of cardiovascular disease (CVD), which plays a role in more than 31% of all global deaths [1]. The Dietary Approaches to Stop Hypertension (DASH) diet has been recommended in international guidelines for hypertension management [2-5]. Evidence mostly come from the original landmark trial [6] and subsequent feeding studies which demonstrated that short-term BP changes could lead to substantial reductions in BP [7-9]. Multi-factorial lifestyle components with multiple intervention sessions and frequent reminders were also adopted in DASH-series trials [10, 11], yet the long-term effectiveness of the DASH diet per se, if introduced into routine practice, is unclear.

Existing guidelines including the Seventh Report of the Joint National Committee, however, do not explicitly recommend how DASH should be delivered [2]. Trials that were designed to provide food to patients from research kitchens were relatively less applicable and feasible to clinical practice, wherein the one-off dietary counselling is most common in routine patient care. A previously described randomised controlled trial among grade 1 hypertensive patients in Hong Kong showed that one-off dietary counselling did not confer additional benefits on BP, body mass index, and lipid profiles [12]. Nevertheless, in light of the increasing atherosclerotic burden [13], it is uncertain whether DASH diet counselling could benefit patients in terms of reducing long-term cardio-vascular (CV) risks [14, 15]. To the best of our knowledge, no evidence exists as to whether patients newly diagnosed as having grade 1 hypertension should be referred to dietitian care for early DASH counselling, or just be offered brief advice on fundamental dietary principles from primary care physicians. A trial with CV risk as an outcome is important as it is widely recognised that patients with an estimated 10-year CV risk greater than 20% should be prescribed lipid-lowering agents, amongst other more intensive interventions.

This study tested the a priori hypothesis that one-off dietary counselling by dietitian based on the DASH recipe could reduce the estimated 10-year cardiovascular risk among hypertensive patients in real clinical setting. We also studied the factors independently associated with no improvements in cardiovascular risk among the same cohort of hypertensive patients recruited in primary care clinics.
Methods

Study design

A detailed description of the trial design has been reported [12]. This was a parallel-group, open-labelled, physician-blinded, randomised clinical trial with enrolment (January-March 2013) at two General Outpatient Clinics or at community health seminars through a primary care network in the New Territories East Cluster, Hong Kong. The study was approved by the Joint Chinese University of Hong Kong-New Territories East Cluster Clinical Research Ethics Committee, Hong Kong. The study protocol complied with the Declaration of Helsinki. The trial was prospectively registered (ChiCTR-TRC-13003014). Each trial participant provided written informed consent.

Patients

To be eligible, subjects had to be (1) Chinese patients aged 40-70 years; (2) newly diagnosed with grade 1 hypertension by trained clinical staffs according to a standard protocol [4]; and (3) currently receiving no antihypertensive drug therapies. The exclusion criteria were the presence of (1) medical conditions which required dietary control (e.g. diabetes and gout); (2) diseases with drug treatments that potentially interfered with the effectiveness of diet on the changes of blood lipid levels (e.g., obstructive sleep apnoea syndromes or dyslipidemia); (3) previous cardiovascular event. All participants verbally agreed to attend follow-up appointments at 6 and 12 months.

Randomisation and masking

Computer-generated numbers with a block size of 6 and an allocation ratio of 1:1 were used for group allocation. The research nurse opened the opaque envelope in which the randomised sequence was sealed, and then notified patients into either intervention or control group. The dietitian and study subjects were not masked to group allocation, but the attending physicians, research assistants, and clinical staff involved in the outcome data collection were blinded.

Procedures and risk factor measurement

Patient screening was performed to ascertain the subject eligibility. BP was determined by an automated sphygmomanometer device (ALPK2 DS-182) which was validated regularly. The BP was
measured in the right arm with the use of an appropriately sized cuff according to standardised protocol that was used in prior studies [16, 17]. BP measurements were obtained after the participants sat quietly for 5 minutes, at least one hour after the subject’s last meal intake, and at least 30 minutes after cigarette smoking or consuming caffeinated beverages. The average of three BP measurements separated by at least 30 seconds were taken. Those with SBP of 140-159 mmHg and/or DBP of 90-99 mmHg were diagnosed as having grade 1 hypertension [4, 5]. A weight scale under periodic calibration was used to measure body weight in light clothing, and a wall-mounted stadiometer was used to measure body height without shoes. Usual care was provided to all participants (both groups).

A DASH dietary counselling appointment was arranged immediately after usual care in the intervention arm only. Blood samples after an 8-hour fast were taken from all participants for measuring lipid profiles. The laboratory analysis was centrally undertaken at the Lek Yuen Health Centre, Hospital Authority, Hong Kong.

Usual care advice

Usual care was offered by the attending physician, following a standard educational pamphlet in which contents were tailored for hypertensive patients in all public primary care clinics in Hong Kong. The core components consisted of (1) the definition and aetiology of hypertension; (2) the diagnosis and possible complications of grade 1 hypertension; (3) annual assessment to ensure satisfactory BP control; and (4) general recommendations including smoking cessation, moderation of alcoholic consumption, weight reduction as appropriate, regular aerobic exercise, balanced diet with sodium reduction and reduced fat, as well as adequate sleep and rest. The format was standardised in a training workshop by the principal investigator (MCSW). The usual care lasted for 3-5 minutes, resembling the routine clinic practice.

DASH dietary counselling

Only subjects in the intervention arm received a further 25-minute one-off dietary counselling, offered by an experienced, registered dietitian (MKWM). The counselling was based on the DASH recipe [18] and were standardised in a pilot study to ensure that the counselling was feasible and intelligible to all participants. The contents included: (1) the nature and major components of the
DASH diet, (2) benefits of the diet, and (3) individualised meal plans that were tailored in Asia [19].

The individualised DASH diet goals were recommended with respect to high consumption of fruits (4-5 serves/day) and vegetables (4-5 serves/day), low-fat dairy products (2-3 serves/day), lean meats, poultry, and fish (<6 serves/day), and nuts, seeds, and legumes (4-5 serves/week). The goals also included the achievement of limited intake of sweets, added sugars (<5 serves/week), and fats and oils (2-3 serves/day) [18]. Reducing salt intake to less than 5 grams per day with no added salt use was also encouraged [19]. Participants were examined regarding their experiences with the counselling and the extent of understanding the DASH principles. The counselling process was documented for quality assurance.

Follow-up assessment

All participants attended follow-up clinic visits at 6 and 12 months with BP measurements and fasting blood samples taken. Subjects with abnormal BP or lipid levels (judged by the physicians) were referred to specialists. The dietary component intakes of the eight food groups (grains; vegetables; fruits; dairy; meat, poultry, fish, and eggs; nuts, seeds, and legumes; fats and oils; sweets) were assessed by a locally validated food frequency questionnaire [20, 21]. No significant between-arm differences were found, except that the intervention group reported marginally higher consumption of vegetables and diary at 12 months [12].

Outcomes

Primary outcomes were the changes in estimated 10-year risk of "hard" CV events comprising acute myocardial infarction, sudden death, and other coronary deaths [22]. A recalibrated and validated Chinese version of the Framingham equation derived from the Chinese Multi-provincial Cohort Study was used [22]. The estimated 10-year CV risk (P) is:

\[P = 1 - S(t)^{\exp(f(x,M))} f(x,M) = \beta_1(x_1 - M_1) + \ldots + \beta_p(x_p - M_p) \]

where \(S(t) \) is the 10-year survival rate at the mean values of the risk factors; \(\beta_1 \ldots \beta_p \) are the coefficients in the regression model; \(x_1 \ldots x_p \) represent individual-level risk factors; and \(M_1 \ldots M_p \) are the mean values of the risk factors in the cohort. Covariates included age, gender, and a series of modifiable CV risk factors including smoking status, BP, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C). The algorithm followed the methods used in the Chinese
recalibration of the Framingham equation [22]. The effects of risk factors at differing ages and levels of the other risk factors are assumed constant [23]. The BP was categorised as optimal BP (having SBP <120 mmHg and DBP <80 mmHg with no antihypertensive medication taking), pre-hypertension (having SBP of 120-139 mmHg and/or DBP of 80-89 mmHg), grade 1 hypertension, and grade 2-4 hypertension (having SBP ≥160 mmHg and/or DBP ≥100 mmHg). Cut-off points of 200 mg/dL (5.18 mmol/L) and 240 mg/dL (6.22 mmol/L) were applied to categorise the TC level into <160, 160-199, 200-239, 240-279, and ≥280 mg/dL. The HDL-C level was classified as <35 mg/dL (0.91 mmol/L), 35-44, 45-49, 50-59, and ≥60 mg/dL.

Statistical analysis

The primary outcomes were changes in the 10-year CV risk estimated on the basis of BP, TC, and HDL-C at 6 and 12 months, respectively. Secondary outcomes consisted of gender-stratified changes in CV risk factors between baseline and follow-ups. We aimed to detect an expected difference in DBP change of 2.0 mmHg at repeated follow-ups, which was considered clinically significant between the intervention and control arms. Previous literature reported a standard deviation of the DBP change of approximately 5.3 mmHg [6], and therefore we assumed a more conservative value of 7.0 mmHg in this study. The G*Power 3.1.0 gave a sample size of 252 per group that provided at least 85% power at the two-sided 5% significance level. A cumulative frequency analysis was conducted to illustrate the gender-stratified changes in BP at 12 months by groups. We fitted a linear-regression model in which analysis of covariance was performed to compare between-group differences (intervention minus usual care) in the changes of 10-year CV risk, with adjustment for the effects of other factors and baseline outcome measures. The last observation carried forward (LOCF) imputation method was used for managing missing data in sensitivity analysis. Factors associated with no improvements in the 10-year CV risks were initially evaluated by chi-square tests in univariate analysis, followed by a binary logistic regression analysis to test the association between all potentially independent variables and the outcome variable. A final regression model was then constructed using a backward stepwise algorithm that allowed for covariate re-entry with all covariates having p values of ≤0.10 retained in the model. Data analyses were performed in accordance with the CONSORT statement [24], using IBM SPSS Statistics 20.0 (Chicago, IL, USA).
Results

Participant characteristics
A total of 556 patients met the inclusion criteria and were randomised into either usual care (n=275, 49.5%) or DASH dietary counselling (n=281, 50.5%), respectively. At 6 and 12 months, 504 and 485 patients were available for analysis of the primary end-points [CONSORT Figure 1]. The first subject enrolled in January 2013, and the last subject completed the 12-month assessment in June 2014. The average age was 55.2 years and 49.1% were male. Baseline characteristics of the two groups were comparable across the background variables [Table 1].

Changes in risk factors and estimated 10-year cardiovascular risk
None of the individual CV risk factors was significantly different between the two groups at baseline and 12 months [Table 2]. The reductions in BMI were observed in both groups with no significant between-group differences (-0.05, 95%CI -0.20 to 0.10, p=0.490). The crude cumulative percentage of subjects in the intervention group who experienced ≥2mmHg reduction in DBP or ≥3mmHg reduction in SBP were similar when compared to that in the control group. No significant between-group differences were detected for the magnitude of BP reductions [Figure 2]. Patients in both groups exhibited significant improvements in their 10-year CV risk over time simultaneously. The two groups, however, did not report any significant between-group difference in the changes of cardiovascular risk at 6 months (-0.13%, 95%CI -0.50% to 0.25%, p=0.477) and 12 months (-0.08%, 95% CI -0.33% to 0.18%, p=0.568) [Table 3].

Factors associated with no improvements in 10-year cardiovascular risk
From binary logistic regression analysis with non-optimisation of cardiovascular risk as an outcome, it was found that male patients (adjusted odds ratio [aOR]=1.68, 95%CI 1.12 to 2.52, p=0.012), younger subjects (<55 years, aOR=1.49, 95%CI 1.00 to 2.23, p=0.049), current smokers (aOR=2.93, 95%CI 1.35 to 6.36, p=0.007), those with lower educational level (junior secondary or below, aOR=1.75, 95%CI 1.15 to 2.66, p=0.009) and subjects who dined out frequently for the main meal (aOR=1.85, 95%CI 1.03 to 3.32, p=0.038) were least likely to have their cardiovascular risk optimised [Table 4].
Discussion

Statement of principle findings

This randomised clinical trial evaluated the effectiveness of dietitian counselling based on the DASH recipe among newly diagnosed grade 1 hypertensive patients in the real primary care setting. The estimated 10-year CV risk decreased significantly in both groups from baseline to 12 months, yet the DASH counselling produced no additional benefits. Male subjects, younger patients, current smokers, subjects with lower educational level, and those who dined out frequently were less likely to benefit from the dietary counselling to the optimisation of CV risk. These findings may not support the value of automatic referral of grade 1 hypertensive patients to one-off dietitian care when newly diagnosed. Patients with risk factors identified in this study warrant more clinical attention as they might be more resistant to CV risk improvement over time.

Relationship with other studies

The effectiveness of the DASH diet was largely established on the basis of previous controlled feeding trials, which indicated that individuals given prepared or prescribed DASH diet had lower BP, compared with controls [6-9, 15]. The DASH diet, as a result of these trials conducted in the research kitchen context, was recommended in most hypertension guidelines [2-5, 25] - and also an example of healthful eating pattern [26]. The US Nurses Health longitudinal study showed that the long-term adherence to DASH-style diet could benefit healthy female nurses with regard to reduced CV risk [27]. Nevertheless, both studies performed in research kitchen and among free-living health-conscious adults carried the underlying nature of optimum adherence to the DASH diet. The compliance may also be substantially optimised by intensive reminders, weekly peer-group sessions, daily food consumption diaries [28], or multiple intervention sessions with calorie and nutrient intake monitoring [10, 11]. Our study, in contrast, was performed in the real clinical setting wherein the dietary counselling practices are often delivered to grade 1 hypertensive patients on a one-off basis without follow-up prompts [29-31].

Previous translational efforts have been made to estimate the overall effect of DASH diet on CV risk estimates on the basis of risk factors, given the cost and logistical consideration of long-term trial with
"hard" CV events as the actual clinical endpoint [32]. The Framingham-based risk equation [22, 33] was a widely-used risk prediction algorithm to estimate 10-year CV risk. An earlier meta-regression analysis of randomised trials showed that being overweight made the largest contribution to hypertension [34]. The short-term effect of consuming reduced fats and oils in the DASH diet on cholesterol could be therefore more apparent for overweight people who lose weight [35]. In our trial, the study participants in both groups demonstrated weight reductions with similar magnitude on follow-ups. We did not specifically collect information on the dietary intakes of fatty acid in the two groups, and therefore we could not rule out the possibility that subjects in the intervention group may also have reduced intake of unsaturated fat when limiting the overall consumption of dietary fats and oils simultaneously. Albeit the intake of unsaturated fat may affect HDL-C level (one of the components of the Framingham risk equation), it is not likely that the intake changes can explain the relative absence of intervention effects as no significant between-group differences in the changes of lipid levels were detected in the present study. The original DASH study had the potential to decrease estimated 10-year CV risk by 18% [36]. In the PREMIER study, subjects who received the DASH diet plus combined multi-component lifestyle behavioural modifications had similar decrease in 10-year CV risk when compared to the advice-only control at 6 months, but reported significantly reduced risk by 12% at 18 months [10, 37]. Another US study has shown a decreased 10-year CV risk by 12.1% from an 8-week DASH diet feeding [38]. We used a Chinese version of the Framingham equation in which the relationship between changes in estimated 10-year CV risk with actual subsequent CV event was recalibrated and validated [22]. The reduction of predicted 10-year CV risk by 19.3% (dropped from 3.37% to 2.72% at 12 months) observed in the intervention group was comparable to that in previous studies, implying the validity of the trial fidelity. Moreover, a CV risk reduction by 17.1% (dropped from 2.98% to 2.47% at 12 months) in the control arm with no between-group differences therefore suggesting favourable effects in both groups.

Meaning of the study

Given that the DASH diet has been adopted in hypertension guidelines and reference frameworks for hypertension care, we would not regard our work as a simple replication study of previous trials. By contrast, our trial provides data for the intervention as adapted for implementation in real-world
clinical setting wherein both the DASH diet and the dietitian-delivered counselling in a single one-to-one session were tested as a combined intervention. We showed similarity in responses in the reduction of 10-year CV risk between intervention and control groups. One may criticise the inadequate "dose" of the DASH diet from a one-off counselling session; albeit it is relatively rare for real-world dietary counselling to be offered more frequently than once a year particularly among those with newly diagnosed mildly-elevated BP [29-31]. The real-life dietary adherence may also be influenced by contextual factors such as the costs of foods and the taste of low-fat foods, as evidence revealing that the concordance with the DASH diet tended to be lower in free-living population [39]. Moreover, both the UK and US studies have argued that greater accordance with the DASH food group targets could be associated with higher dietary costs indeed [40, 41]. This may suggest a reconsideration of the DASH diet given the cultural acceptability and structural barriers to modifying eating habits, despite that we were unable to account for the cost-effectiveness in the present trial. The US National Health and Nutrition Examination Survey (NHANES) data illustrated that only around 1 in 5 individuals practically followed an eating plan modelled on the DASH diet in daily life [42]. It has been argued that the limited time spent on providing adequate instructions due to the reimbursement structure in the US healthcare context [42] may be at play. Our study has prolonged the dietitian-patient consultation time to almost 30 minutes with detailed educational materials, yet the similar magnitude in the CV risk reductions obtained in both groups implied that the prior assumption related to dietary counselling itself may be misstated.

Our study showed that factors associated with lower odds of CV risk improvements included younger age and lower education level, which were echoed in a number of other studies that reported the decreased likelihood of changing dietary patterns among these subjects [42]. We reported differences in responses in the CV risk reductions between males and females. This was undertaken post hoc due to observed differences, and the exploratory results should be interpreted cautiously. The initial CV risk was relatively lower for males, which might reduce the chance of achieving significant changes following the intervention, albeit the baseline differences were controlled for in the analysis. Further study specifically designed to allow separate gender analyses may elucidate the gender-specific responses. The study recruitment was conducted in Hong Kong, where dinning out is an integral part
of its culture. Subjects who often go out for the main meal of the day were less likely to optimise 10-
year CV risk. This supports the criticism on the widespread dining-out trend with fast-food culture
which appears to embrace rich calorie and poor nutrient [13, 42].

The study findings are the most directly applicable to routine practice in the Chinese population, with
wider relevance to primary prevention in health-care system in other middle- and low- income
countries. The standard education from physician’s usual care advice alone in this study has shown a
persistent BP reduction by an amount similar to that achieved with additive DASH-based dietary
counselling. This implied that usual physician care alone might be adequate to maintain a significant
improvement in CV risk over time, and if translated into clinical practice, one could expect substantial
cost-saving. The possibility of reducing or avoiding further dietitian referral could lead to substantial
clinical benefits in terms of streamlined counselling process and public health impact with regard to
cutting unnecessary cost to individuals and the healthcare system.

Strengths and weaknesses of the study

This randomised controlled trial was sufficiently powered and included subjects who were treatment-
naive to both antihypertensive medications and other community-based programs. All individuals
were newly-diagnosed, and patients with other medical conditions requiring dietary modification were
excluded to eliminate possible confounder effects. The similarity of baseline characteristics between
the two groups and the strict adherence with study protocols further improved the internal validity and
robustness of the findings. The vast majority of patients received no drug treatments during the entire
study period. The proportions of individuals who developed comorbidities or received further drug
treatments for safety reasons were relatively small, and were similar between the two arms. In the
sensitivity analysis wherein the LOCF imputation methods were applied for missing data (less than
10%) and patients with drug therapies were excluded, similar findings were yielded. Nevertheless,
weakness of this study should receive attention. Firstly, we used 10-year CV risk estimates instead of
actual CV events as the primary outcome. A universal critique might be the accuracy and validity with
respect to how closely the predicted outcomes agree with the actual outcomes. However, the Chinese
version of the risk equation has been validated in the ethnic Chinese who comprised the entire study
population in our trial. The use of risk estimation instead of the incidence of actual CV events after 10
years allows greater feasibility of trial implementation with higher retention rate. Secondly, the 10-
year CV risk presented at baseline was relatively low due to the nature of mild hypertension, and the
Hawthorne effect [43] in the clinic-based data collection may exist, which could be partially
responsible for the lack of effect in the intervention group. Nevertheless, the study participants in the
physician’s usual care group still reported a significant CV risk reduction similar to those in the
intervention group. This could be broadly applied to the general population with wider relevance to
primary prevention.

Conclusions

The automatic referral of newly diagnosed grade 1 hypertensive patients for further one-to-one
dietitian counselling in a single session may not be supported on the basis of the trial evidence found
for its effectiveness in the routine clinical setting. More clinical attention are required on male
subjects, younger patients, current smokers, subjects with lower educational level, and those frequent
dine-outers, as they were less likely to be responsive to long-term CV risk improvements. It is
possible that adding more intensive or multiple intervention sessions might shift the evidentiary
balance in favour of the intervention; however, usual physician care alone might be adequate to
maintain a significant improvement in CV risk over time. One may therefore expect substantial cost-
saving in middle- and low-income countries wherein primary care physicians are being strengthened
as the locus of responsibility for the long-term care.

Source(s) of Funding: This work was supported by grants from the Health and Medical Research Fund,
Food and Health Bureau, Hong Kong Government (09100701) led by M.C.S. Wong at The Chinese
University of Hong Kong. H.H.X. Wang was supported by New Faculty Start-Up Research Fund (51000-
31121405 and 51000-18821202) at Sun Yat-Sen University. The funders had no role in the design and
conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review,
or approval of the manuscript; and decision to submit the manuscript for publication.
Competing interests: The author(s) declare that they have no competing interests.

Authors' contributions: MCSW and HHXW conceived of the study design and provided overall guidance. BCYF, STSL, ML, FTHF, and MSY contributed to the administrative, technical, and material support. Data analysis was mainly done by HHXW and MWMK. All authors contributed to literature search and interpretation of the data. MCSW and HHXW wrote the first draft. MWMK and STSL contributed to the subsequent revisions of the manuscript. All authors contributed to the feedback on study results and critical revisions of the final report for important intellectual content. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgments: We wish to thank our research collaborators at The Chinese University of Hong Kong, especially Jean Woo for her valuable inputs in the outcome measures, and William Goggins for his valuable advice in the statistical analysis. This work was supported by grants from the Health and Medical Research Fund, Food and Health Bureau, Hong Kong Government (09100701) led by M.C.S. Wong at The Chinese University of Hong Kong. H.H.X. Wang was supported by New Faculty Start-Up Research Fund (51000-31121405 and 51000-18821202) at Sun Yat-Sen University.
References

Figure Legends

CONSORT Figure 1: Profile of the Randomised Clinical Trial

Figure 2: Cumulative frequency analysis of the changes in blood pressure at 12 month