On the noncommutative Bondal–Orlov conjecture

Iyama, O. and Wemyss, M. (2013) On the noncommutative Bondal–Orlov conjecture. Journal für die reine und angewandte Mathematik (Crelles Journal), 683, pp. 119-128. (doi: 10.1515/crelle-2012-0001)

130836.pdf - Accepted Version



Let R be a normal, equi-codimensional Cohen–Macaulay ring of dimension d ≥ 2 with a canonical module ωR. We give a sufficient criterion that establishes a derived equivalence between the noncommutative crepant resolutions of R. When d ≤ 3, this criterion is always satisfied and so all noncommutative crepant resolutions of R are derived equivalent. Our method is based on cluster tilting theory for commutative algebras, developed by Iyama and Wemyss (2010).

Item Type:Articles
Glasgow Author(s) Enlighten ID:Wemyss, Professor Michael
Authors: Iyama, O., and Wemyss, M.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Journal für die reine und angewandte Mathematik (Crelles Journal)
Publisher:De Gruyter
ISSN (Online):0075-4102
Published Online:01 March 2012
Copyright Holders:Copyright © 2013 De Gruyter
First Published:First published in Journal für die reine und angewandte Mathematik (Crelles Journal) 683:119-128
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record