
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/130660/

Deposited on: 10 April 2017

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk33640
Study on Stability and Rotating Speed Stable Region of Magnetically Suspended Rigid Rotors Using Extended Nyquist Criterion and Gain-Stable Region Theory

Wei Jingbo1, Liu Kun1, Gianmarco Radice2

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China, 410073
2. School of Engineering, University of Glasgow, Glasgow, Scotland, UK, G12 8QQ

Abstract—This paper presents a novel and simple method to analyze the absolute stability and the rotor speed stable region of a magnetically suspended rotor (MSR). At the beginning of the paper, a complex variable is introduced to describe the movement of the MSR and a complex coefficient transfer function is obtained accordingly. The equivalent stability relationship between this new variable and the two traditional deflection angles is also demonstrated in a simple way. The detailed characteristics of the open-loop MSR system with time delay are studied carefully based on the characteristics of its Nyquist curve. A sufficient and necessary condition of absolute stability is then deduced by using an extended complex Nyquist stability criterion for MSRs. Based on the relationship between the rotor speed and gain-stable region proposed in this paper, the rotor speed stable region can be solved simply and directly. The usefulness and effectiveness of the proposed approaches are validated by examples and simulations.

Index Terms—magnetically suspended rotor, complex coefficient transfer function, stability criterion, speed stable region.

1. Introduction

Magnetically suspended rotors (MSRs) have the advantages of non-contact, zero friction, low vibration and dispensing with lubrication. Thus, they can reach high rotating speed and achieve high power storage density. In practice, they are widely used in spacecraft inertial actuators, inertial power storage flywheels, turbo-machineries and industrial spindles [1].

MSRs are multiple-input and multiple-output (MIMO) systems characterized by rotor dynamics, inherently unstable magnetic bearing dynamics and time delay of the controller, which make it difficult to analyze their characteristics and to design proper controllers. In recent decades, many control strategies have been applied to MSRs, such as decentralized PID [2-4], decentralized PID plus cross-feedback [5, 6], centralized PID plus cross-feedback [1, 7-10], adaptive control [11], robust control [12, 13], inverse control [14, 15] and optimal control [16-19]. Among these control methods, centralized PID plus cross-feedback control is widely used in industrial applications because it is simple and convenient to implement.

The stability analysis methods for MSRs are mainly divided into two categories. The first the classical analysis methods in the frequency domain, including the characteristics root method [3, 20-22], Routh-Hurwitz criterion method [4] and root locus method [6]. The characteristics root method is relatively simple; however, it can only analyze the stability at a specified speed. The Routh-Hurwitz criterion method is useful for stability analysis of translation modes, but it only analyze single-input and single-output (SISO) systems and is not suitable for conical modes. The root locus method is convenient for analyzing the rotor speed stable region, and its main disadvantage is that the stable margins cannot be obtained directly. All these methods become difficult when time delay is considered.

The second class of methods is to examine the system by using Lyapunov’s theory [14-18, 23]. The Lyapunov’s methods can give a perfect mathematical proof of the system stability with a lack of frequency domain information which is very useful in the MSR debugging process.

The complex variable description method is commonly used in the fields of circuit analysis, induction motor, filter design and wireless communication [24]. In that paper, the positive and negative frequency method and some basic characteristics of the complex transfer function are introduced. And in [25], a complex variable is adopted to model an MSR’s conical motion. These are insightful works on use of the complex variable description method for MSRs.

In [26-28], positive and negative frequency methods are used to analyze the stability of MSR; however, they can only analyze the stability under a given rotor speed and the stability condition is only necessary and not sufficient. In [21], the speed stable region is obtained by using a critical criterion based on its
closed-loop characteristic equation with complex coefficients, however, the calculation is complicated and the relationships between relative stability and stable speed region are not apparently given. The complex coefficient analysis method is extended and applied for a class of cross-coupled anti-symmetrical systems in [7], and is also used to analyze bending modes of MSRs in [29]. The limitations of these works are that the time-delay term should be simplified to a first-order or second-order inertial portion and that it is not convenient to calculate the speed stable region.

This paper attempts to develop a systematical method to analyze the stability analysis of the conical modes of MSRs in the frequency domain. Compared with the existing methods, the proposed method is novel and simple, because the absolute stability and the stable margin can be directly obtained by analyzing the Nyquist curves of MSRs. Meanwhile, the speed stable region can be calculated based on several simple formulations deduced from the proposed gain-stable region theory.

The organization of this paper is as follows. The complex coefficient transfer function of an MSR is deduced in Section 2, as well as the proof of the equivalent relationship between the new complex variable and the two traditional variables. The extended complex Nyquist stability criterion is presented in Section 3 with an example. Section 4 mainly focuses on the characteristics analysis of the open-loop transfer function of the MSR system. The absolute and relative stabilities and the speed stable region, which are the main contributions of this paper, are given in detail and systematically in Section 5 and Section 6. Finally, some conclusions are drawn in Section 7.

2. Complex transfer function of MSR

An MSR system usually consists of a rotor, a controller, several magnetic bearings (MBs), and several sensors. Figure 1 shows a common MSR system with the forces generated by the MBs in the Y-axis. In the OYZ plane, there are two pairs of MBs that provide magnetic forces to suspend the rotor in plane A and plane B. The sensors that measure the displacements of the rotor are in plane C and plane D. The structure of the MSR is symmetric around the OXY plane. The distribution of the MBs and the sensors in the OXZ plane is the same as those in the OYZ plane, so they are not plotted in the figure.

![Figure 1. Magnetically suspended rotor system](image)

It is easy to analyze and synthesize the two parallel motions because they are both SISO and decoupled from the conical motions [1]. Thus, the parallel motions are not considered in this paper.

According to the principle of rotor dynamics, the dynamic model of the MSR conical motions is given by

\[
\begin{aligned}
J_\alpha \ddot{\alpha}(t) + J_\Omega \dot{\Omega} \dot{\beta}(t) &= t_\alpha = i_\alpha (f_m - f_\alpha) \\
J_\beta \ddot{\beta}(t) - J_\Omega \dot{\Omega} \dot{\alpha}(t) &= t_\beta = i_\beta (f_m - f_\beta)
\end{aligned}
\]

(1)

where \(m \) is the mass of the rotor, \(J_\alpha \) and \(J_\beta \) are the inertial parameters of the rotor, and \(\Omega \) is the rotating speed. \(x, y \) are the parallel displacements of the mass center, and \(\alpha, \beta \) are the deflection angular displacements around the \(X \)- and \(Y \)-axes, respectively. \(f_m, f_m, f_m \), and \(f_m \) are magnetic forces generated by the corresponding MBs, and they can be transformed into the resultant forces, \(f_x \) and \(f_y \), on the mass center on the \(X \)- and \(Y \)-axes, and the overall torques, \(t_x \) and \(t_y \), on the \(Y \)- and \(X \)-axes. \(l \) is the distance from the center of the rotor to the plane \(A \).

Suppose that the MBs are identical with each other. The magnetic forces on the rotor can be linearized as follows[1]:

\[
f_m = k_i h_i + k_s i_s \quad \nu = ax, ay, bx, by,
\]

(2)

where \(h_i \) is the displacement between the MB and the rotor in the \(\nu \) channel, and \(i_s \) is the corresponding control current. \(k_i \) and \(k_s \) denote the force-current coefficient and the force-displacement coefficient of each MB.

As shown in Figure 1, the deflection angles can be calculated by (3) from the displacements, \(h_\alpha, h_\beta, h_\alpha \), and \(h_\beta \), which are measured by the sensors.

\[
\begin{aligned}
\alpha &= (h_\alpha - h_\beta)/2l_i \\
\beta &= (h_\alpha - h_\beta)/2l_i.
\end{aligned}
\]

(3)

Substituting (2) into (1) yields

\[
\begin{aligned}
J_\alpha \ddot{\alpha}(t) + J_\Omega \dot{\Omega} \dot{\beta}(t) - 2k_i l_i h_\alpha \dot{\alpha}(t) &= 2k_i l_i i_\alpha(t) \\
J_\beta \ddot{\beta}(t) - J_\Omega \dot{\Omega} \dot{\alpha}(t) - 2k_i l_i h_\beta \dot{\beta}(t) &= 2k_i l_i i_\beta(t)
\end{aligned}
\]

(4)

where, the control currents, \(i_\alpha(t) \) and \(i_\beta(t) \), are defined by

\[
\begin{aligned}
i_\alpha(t) &= [i_x(t) - i_y(t)]/2 \\
i_\beta(t) &= [i_x(t) - i_y(t)]/2.
\end{aligned}
\]

(5)

Then, the Laplace transformation of (4) is given by

\[
\begin{aligned}
J_\alpha s^2 \alpha(s) + J_\Omega \dot{\Omega} \beta(s) - 2k_i l_i h_\alpha \alpha(s) &= 2k_i l_i i_\alpha(s) \\
J_\beta s^2 \beta(s) - J_\Omega \dot{\Omega} \dot{\alpha}(s) - 2k_i l_i h_\beta \dot{\beta}(s) &= 2k_i l_i i_\beta(s)
\end{aligned}
\]

(6)

The decoupled and centralized PID plus cross-feedback control law is widely used for MSRs. As a special portion added to a common PID control law, the cross-feedback term is employed to suppress the gyro effects [7, 9, 28]. As shown in (7), the inputs of the controller are the angles, \(\alpha_n \) and \(\beta_n \), while the outputs of the controller are the desired current commands, \(i_n \) and \(i_p \).
\[
\begin{align*}
\dot{e}_p(t) &= -[k_p \alpha_p(t) + k_i \int \alpha_p(t - \tau) dt + k_d \dot{\alpha}_p(t - \tau)] \\
\dot{e}_c(t) &= -[k_p \beta_p(t) + k_i \int \beta_p(t - \tau) dt + k_d \dot{\beta}_p(t - \tau)]
\end{align*}
\]

\[\tag{7}
\]

where, \(k_p\), \(k_i\) and \(k_d\) are the proportional, integral and differential coefficients, respectively, \(k_c\) is the cross-feedback coefficient, and \(\tau\) is the time delay of the controller which is usually caused by the calculation time in the physical digital controller. \(g_p(s)\) and \(g_c(s)\) denote the common PID portion and the cross-feedback portion, respectively.

The control parameters are usually determined by engineering experience, but some simple principles can be followed. The proportional coefficient \(k_p\) is usually selected to make the stiffness of the closed-loop system approximately equal to the force-displacement coefficient \(k_c\), which can give a “natural” stiffness for the closed-loop system to suppress uncertainties.

Then the choice of the differential coefficient \(k_d\) is subject to the closed-loop stiffness, which should be high enough to provide enough oscillation attenuation and not too high to avoid a high noise level [1]. The integral coefficient \(k_i\) is usually very small and relatively easy to determine. The cross-feedback coefficient \(k_c\) is very useful to achieve a high rotating speed of the rotor and can be neglected in the low speed range, which can be demonstrated in the simulation in Section 5, where \(k_c = 0\).

Then, the Laplace transformation of (7) is given by

\[
\begin{align*}
\dot{e}_p(s) &= -[G_p(s)\alpha_p(s) - G_c(s)\beta_c(s)]e^{-\tau s} \\
\dot{e}_c(s) &= -[G_c(s)\beta_c(s) + G_p(s)\alpha_p(s)]e^{-\tau s}
\end{align*}
\]

where, \(G_p(s) = k_p + k_i \frac{1}{s} + k_d s\) and \(G_c(s) = k_c\).

The transfer functions of the sensor, the power amplifier and the low-pass filter should also be considered in the closed-loop control system. They are defined as \(k_i\), \(G_p(s)\) and \(G_c(s)\), respectively. \(k_i\) is a scale parameter, while \(G_p(s)\) and \(G_c(s)\) are given by

\[
\begin{align*}
G_p(s) &= \frac{1}{\tau_p s + 1} \\
G_c(s) &= \frac{1}{(\tau_f s + 1)^2}
\end{align*}
\]

where, \(\tau_p\) is the time constant of \(G_p(s)\) and \(\tau_f\) is the low-pass filter coefficient of \(G_c(s)\), respectively.

The final closed-loop control system is shown as the block diagram in Figure 2.

Figure 2. Block diagram of MSR control system

From the block diagram and equations (6)–(8), the closed-loop model is given by

\[
\begin{align*}
J_1 \alpha(s) s^2 + J_\Omega \beta(s) s - 2k_p j f s \alpha(s) \\
&= 2k_p j f G_p(s) G_c(s) [G_c(s)\alpha(s) - G_p(s)\beta(s)]e^{-\tau s} \\
J_1 \beta(s) s^2 - J_\Omega \alpha(s) s - 2k_p j f \beta(s) \\
&= 2k_p j f G_p(s) G_c(s) [G_c(s)\beta(s) + G_p(s)\alpha(s)]e^{-\tau s}
\end{align*}
\]

\[\tag{10}\]

Define \(\varphi(t) = \alpha(t) + j \beta(t)\), where \(j = \sqrt{-1}\). The convergence characteristics of \(\varphi\) and those of \(\alpha\) and \(\beta\) are equivalent, which can be proved as follows.

a. If \(\varphi\) is asymptotically stable, then \(\alpha\) and \(\beta\) are also asymptotically stable.

If \(\varphi\) is asymptotically stable, it is also exponentially stable because the system (10) is linear if neglecting time delay. Thus, a positive constant \(\varepsilon\) exists so that \(|\varphi(t)| \leq \varepsilon e^{-\tau t}\). Then, the relationship (11) holds, where \(\lambda = \max(\varepsilon(\varphi/\alpha(0), \varphi(0)/\beta(0))\).

So, \(\alpha\) and \(\beta\) are asymptotically stable.

\[
\begin{align*}
|\alpha(t)| &\leq \sqrt{\alpha(t)^2 + \beta(t)^2} = |\varphi(t)| \leq \varepsilon e^{-\tau t} \leq \lambda |\varphi(0)| e^{-\tau t} \\
|\beta(t)| &\leq \sqrt{\alpha(t)^2 + \beta(t)^2} = |\varphi(t)| \leq \varepsilon e^{-\tau t} \leq \lambda |\beta(0)| e^{-\tau t}
\end{align*}
\]

\[\tag{11}\]

b. If \(\alpha\) and \(\beta\) are asymptotically stable, then \(\varphi\) is also asymptotically stable.

If \(\alpha\) and \(\beta\) are asymptotically stable, they are also exponentially stable because the system (10) is linear if neglecting time delay. Thus, two positive constants \(\varepsilon_1\) and \(\varepsilon_2\) exist, so that \(|\alpha(t)| \leq \varepsilon_1 e^{-\tau t}\) and \(|\beta(t)| \leq \varepsilon_2 e^{-\tau t}\). Then, the relationship (12) holds, where \(\varepsilon = \min(\varepsilon_1, \varepsilon_2)\). So, \(\varphi\) is asymptotically stable.

\[
|\varphi(t)| \leq \sqrt{\alpha(t)^2 + \beta(t)^2} \leq \sqrt{[\varepsilon_1 e^{-\tau t}]^2 + [\varepsilon_2 e^{-\tau t}]^2} \\
\leq \sqrt{[\varepsilon_1] + [\varepsilon_2]} e^{-\tau t} = |\varphi(0)| e^{-\tau t}.
\]

\[\tag{12}\]

The Laplace transform of \(\varphi(t)\) is given by \(\varphi(s) = \alpha(s) + j \beta(s)\). Then Eq. (10) can be reformulated as (13) with the complex variable \(\varphi(s)\). Similarly, Figure 2 can be
f(s) \rightarrow \text{Nyquist curve},
\text{for } s = j\omega (\omega < \infty) \text{ is considered in this paper.}

\text{Remark 1:} \text{Since the Nyquist curve is not always symmetric around the real axis, the gain-frequency curve and the phase-frequency curve are also not always symmetric around the imaginary axis } \omega = 0. \text{ Thus, they must be plotted fully in all frequency regions from } -\infty \text{ to } +\infty \text{ in the Bode diagram.}

\text{Corollary 1:} \text{For the complex coefficient transfer function with time-delay and if there are } P \text{ poles on the right-half plane, the sufficient and necessary condition for the absolute stability of its closed-loop function is that its phase-frequency curve positively crosses the lines that } \omega = (2k + 1)\pi (k = \pm1, \pm2, \pm3, \ldots) \text{ for } P \text{ times in the frequency region } A(\omega) > 1.

\text{According to the geometrical relationships among the gain-frequency curve, phase-frequency curve and Nyquist curve, Corollary 1 can be easily deduced from Theorem 1.}

\text{Remark 2:} \text{The definition of a positive crossing is that the Nyquist curve crosses the lines that } \omega = (2k + 1)\pi (k = \pm1, \pm2, \pm3, \ldots) \text{ from bottom to top when } \omega \text{ increases. So the negative crossing is from top to bottom when } \omega \text{ increases. This definition is more simple and distinct than that in [21, 27]. It is important to note that } \omega \text{ increases from } -\infty \text{ to } +\infty.

3.2. Relative stability

For transfer functions with real coefficients, when the system is absolutely stable, the relative stabilities can be obtained based on the Nyquist curve, or based on the gain-frequency curve and the phase-frequency curve. They are often described by stability margins, including gain margin and phase margin. For complex coefficient transfer functions, the stability margins are redefined as the gain-stable region and the phase-stable region in this paper.

\text{Gain-Stable Region}

Suppose that there are } \kappa \text{ intersection points of a Nyquist curve and the negative real axis, denoted as } L_1, L_2, \ldots, L_\kappa.\]
Among these points, \(L_n \) is the nearest one to \((-1, j0)\) outside the unit circle and \(L_n \) is the nearest one to \((-1, j0)\) inside the unit circle. As shown in Figure 4, \(l_1 \) and \(l_2 \) are the distances from \(L_n \) and \(L_n \) to \((-1, j0)\), respectively. Afterwards, the gain-stable condition is \(1/l_1 h 1/l_2 \) which means that the system will be unstable if the gain of the open-loop function increases by \(1/l_2 \) times or decreases by \(1/l_1 \) times.

Figure 4. Relative stabilities

Phase-Stable Region

Suppose that there are \(\lambda \) intersections points of the Nyquist curve and the unit circle, denoted as \(\Gamma_1, \Gamma_2, \ldots, \Gamma_\lambda \). \(\Gamma_\mu \) is the nearest one to \((-1, j0)\) in the positive frequency segments below the negative real axis, and \(\Gamma_n \) is the nearest one to \((-1, j0)\) in the negative frequency segments above the negative real axis. As shown in Figure 4, \(\gamma_p \) and \(\gamma_n \) are the absolute angles from \(\Gamma_\mu \) and \(\Gamma_n \) to the negative real axis, respectively. Moreover, \(\omega_p \) and \(\omega_n \) are the frequencies at \(\Gamma_\mu \) and \(\Gamma_n \), respectively. Afterwards, the phase-stable region is defined as: \(\gamma_p \) at \(\omega_p \) and \(\gamma_n \) at \(\omega_n \), which means the system will be unstable if the phase angle is delayed by \(\gamma_p \) at \(\omega_p \) or delayed by \(\gamma_n \) at the frequency \(\omega_n \).

Furthermore, the time-delay margin also can be solved by

\[
\tau_c = \min_{\omega_p, \omega_n} \left\{ \gamma_p / \omega_p, \gamma_n / \omega_n \right\},
\]

which means that the system will lose stability if the time delay increases by \(\tau_c \).

Remark 4: The definitions of the gain-stable region and the phase-stable region are very useful for designing a proper controller, selecting controller parameters and solving the stable region of variable parameters. For example, when there is a variable parameter in the transfer function, to ensure stability, some inequality constraints with this parameter will hold to meet the gain-stable and the phase-stable conditions. Then, it will be very convenient to solve the stable region of this parameter. This method will be used for solving the speed stable region of MSR.

3.3. Example 2

An example is employed to demonstrate the proposed theories. The example system is given by

\[
\dot{x}(t) + 3\dot{x}(t) - 2\ddot{x}(t) = u_x,
\]

\[
\ddot{x}(t) - 3\dot{x}(t) - 2\ddot{x}(t) = u_x.
\]

Suppose the control law is PID plus cross-feedback control, the cross-feedback coefficient is not accurate with a bias and the time delay is \(\tau = 0.1 \) in the controller. The whole controller is formulated as

\[
\begin{align*}
\dot{u}_1 &= -4\dot{x}(t) - 2\ddot{x}(t) - 0.1\int (x(t) - 2.8\ddot{x}(t) - \tau) dt \\
\dot{u}_1 &= -4\dot{x}(t) - 2\ddot{x}(t) - 0.1\int (x(t) - 2.8\ddot{x}(t) - \tau) dt
\end{align*}
\]

Define \(\eta(t) = \dot{x}(t) + j\ddot{x}(t) \), \(\nu = u_x + ju_x \), then, the system is converted into (20).

\[
\begin{align*}
\dot{\eta}(t) &= 3\dot{\eta}(t) - 2\eta(t) = \nu \\
\nu &= -4\eta(t) - (2 + 2.8j)\dot{\eta}(t) - 0.1\int \eta(t) dt
\end{align*}
\]

Suppose the system has a unit negative feedback loop. By conducting a Laplace transform for (20), the transfer functions of the plant and the controller are given by

\[
P(s) = \frac{1}{s^2 - j3s - 2}
\]

\[
C(s) = [4 + (2 + 2.8j)s + \frac{0.1}{s}] e^{-0.1s}
\]

Thus, the open-loop transfer function is

\[
G_c(s) = C(s)P(s) = [4 + (2 + 2.8j)s + \frac{0.1}{s}] \frac{1}{s^2 - j3s - 2} e^{-0.1s}
\]

The Nyquist curve of \(G_c(s) \) is given as Figure 5. As shown in the figure, the Nyquist curve of \(G_c(s) \) encircles \((-1, j0)\) counter-clockwise for zero time. Thus, there is no unstable pole in the closed-loop system and the system is stable. From the Nyquist curve in Figure 5, \(l_1 = 1.66 \) and \(l_2 = 0.49 \). Based on the gain- and phase-stable theories, the gain- and phase-stable regions of the system (22) are approximately given by: \(2.04 > h > 0.60 \), \(\gamma_p = 104.2 \) at \(\omega_p = 5.58 \) and \(\gamma_n = 10.4 \) at \(\omega_n = 1.57 \).
4. Characteristics of open-loop MRS system

During the working period in the MSR system, rotor speed is a variable parameter, which is a difference from example 2. The transfer function will change if the rotor speed changes. To conveniently study the MSR stability problem, the detailed characteristics of the open-loop MSR system should be previously analyzed.

4.1. Unstable poles and poles on the imaginary axis

The unstable poles of \(G_{\text{open}}(s) \) will be those in the MSR plant \(P(s) \) because there is no unstable pole in the controller \(C(s) \).

Define \(f(s) = J_r s^2 - jJ_p \Omega s - 2k_m^2 \) which is the denominator portion of \(P(s) \) in (14). The roots of the equation, \(f(s) = 0 \), are:

\[
\begin{align*}
 s_1 &= \frac{j J_r \Omega + \sqrt{\Delta}}{2 J_r}, \\
 s_2 &= \frac{j J_r \Omega - \sqrt{\Delta}}{2 J_r},
\end{align*}
\]

where \(\Delta = 8 J_r k_m^2 - (J_r \Omega)^2 \). Then, the number of the unstable poles is discussed in two cases as in Table 1.

<table>
<thead>
<tr>
<th>Case</th>
<th>(\Omega)</th>
<th>Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\Omega < \Omega_c)</td>
<td>1 unstable pole.</td>
</tr>
<tr>
<td>B</td>
<td>(\Omega \geq \Omega_c)</td>
<td>0 unstable pole.</td>
</tr>
</tbody>
</table>

Before analyzing the curve shape of \(G_{\text{open}}(j \omega) \) in the complex plane, the poles on the imaginary axis should be examined. There is one pole at the original point of the complex plane for both cases because of the integral part of the PID plus cross-feedback controller. The distribution of poles on the imaginary axis of \(P(s) \) should also be discussed in the two cases as in Table 2.

<table>
<thead>
<tr>
<th>Case</th>
<th>(\Omega)</th>
<th>Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\Omega < \Omega_c)</td>
<td>(s_i = j0).</td>
</tr>
<tr>
<td>B</td>
<td>(\Omega \geq \Omega_c)</td>
<td>(s_i = j0, s_j = j0 k_{x2}, s_k = j0 k_{x3}).</td>
</tr>
</tbody>
</table>

where \(\Omega = \sqrt{8 J_r k_m^2 / J_r}, \) \(k_{x2} \) and \(k_{x3} \) are given by (26), and they can be obtained by solving the equation \(\text{Re}[f(j \omega)] = 0 \). It is easy to find that the sum of \(k_{x2} \) and \(k_{x3} \) is \(J_r \Omega / J_r \) from (26).
\[\omega_{c3} = \frac{1}{2J_r} \left(\Omega + \sqrt{\Omega^2 - \Omega_s^2} \right), \quad \omega_{c2} = \frac{1}{2J_r} \left(\Omega - \sqrt{\Omega^2 - \Omega_s^2} \right). \] (26)

4.2. Characteristics of \(G_{spm}(j\omega) \) on the Complex Plane

Substituting \(s = j\omega \) into (16), the open-loop frequency response function is given by

\[
G_{spm}(j\omega) = kG_r(j\omega)G_h(j\omega) + jG_r(j\omega)G_h(j\omega)e^{-j\omega} \times 2J_r \omega - J_r \omega^2 + J_p\omega^2 - 2kJ_m^2.
\] (27)

Table 3. Number of Infinite Semi-Circles

| Case A: | \(|\Omega| < \Omega_c \) | \(\angle P(j\omega) = -180^\circ \), \(\angle G_{spm}(j\omega) = \angle C(j\omega) - 180^\circ \) |
| Case B: | \(|\Omega| \geq \Omega_c \) | \(\angle P(j\omega) = -180^\circ \), \(\angle G_{spm}(j\omega) = \angle C(j\omega) - 180^\circ \) |

According to the plotting principles of Nyquist curves, it will turn \(180^\circ \) clockwise with an infinite radius once if there is one pole on the imaginary axis. The number of poles on the imaginary axis changes for different rotor speeds, and the Nyquist curves will have different shapes accordingly. The number of infinite semi-circles of the system is given in Table 3.

4.3. Relationships between \(\angle G_{spm}(j\omega) \) and \(C(j\omega), P(j\omega) \)

The frequency response functions of the MSR and the controller are given by

\[
P(j\omega) = \frac{2J_r k_i}{-J_r \omega^2 + J_p\omega^2 - 2kJ_m^2}, \quad C(j\omega) = kG_r(j\omega)G_h(j\omega) + jG_r(j\omega)G_h(j\omega)e^{-j\omega}G_h(j\omega).
\] (28)

Thus, the gain-frequency function and the phase-frequency function can be obtained as in (29) accordingly.

Note that \(P(j\omega) \) is real when \(\omega \) increases from \(-\infty \) to \(\infty \). Thus, \(P(j\omega) \) is a real function about frequency and rotor speed, which can be formulated as \(P(\omega, \Omega) \). The phase-frequency function \(\angle G_{spm}(j\omega) \) of \(G_{spm}(j\omega) \) will vary with rotor speed, which is given by Table 4.

From the aforementioned analysis, the characteristics of the phase-frequency function are completely determined by the controller \(C(s) \) when the rotor speed is given.

Remark 4: There are one (three) infinite-semi circle(s) when the absolute value of the rotor speed is below (above) \(\Omega_c \). The rotor speed will only change the gain of the open-loop transfer function, because the controller does not contain any term about the rotor speed, which makes it possible to solve the speed stable region by using the proposed gain-stable region in Section 3.

Table 4. Phase Characteristics of \(G_{spm}(j\omega) \)

| Case A: \(|\Omega| < \Omega_c \) | \(\angle P(j\omega) = -180^\circ \), \(\angle G_{spm}(j\omega) = \angle C(j\omega) - 180^\circ \) |
| Case B: \(|\Omega| \geq \Omega_c \) | \(\angle P(j\omega) = -180^\circ \), \(\angle G_{spm}(j\omega) = \angle C(j\omega) - 180^\circ \) |

5. Stability criterion of the MSR

5.1. Stability criterion of the MSR

According to the Nyquist stability criterion for complex coefficient transfer functions in Section 3 and the analysis in Section 4, a stability criterion under a given rotor speed can be concluded as Theorem 2.

Theorem 2 (Stability Criterion of MSR): the sufficient and necessary condition for the absolute stability of an MSR utilizing PID plus cross-feedback controller, is that its open-loop Nyquist curve encircles (-1, j0) counter-clockwise once if \(|\Omega| < \Omega_c \) and zero times if \(|\Omega| > \Omega_c \).

5.2. Example 3

The parameters of an MSR are given in Table 5. Thus, \(\Omega_c \)

The frequency response functions of the MSR and the controller are given by

\[
P(j\omega) = \frac{2J_r k_i}{-J_r \omega^2 + J_p\omega^2 - 2kJ_m^2}, \quad C(j\omega) = kG_r(j\omega)G_h(j\omega) + jG_r(j\omega)G_h(j\omega)e^{-j\omega}G_h(j\omega).
\] (28)

Thus, the gain-frequency function and the phase-frequency function can be obtained as in (29) accordingly.

Note that \(P(j\omega) \) is real when \(\omega \) increases from \(-\infty \) to \(\infty \). Thus, \(P(j\omega) \) is a real function about frequency and rotor speed, which can be formulated as \(P(\omega, \Omega) \). The phase-frequency function \(\angle G_{spm}(j\omega) \) of \(G_{spm}(j\omega) \) will vary with rotor speed, which is given by Table 4.

From the aforementioned analysis, the characteristics of the phase-frequency function are completely determined by the controller \(C(s) \) when the rotor speed is given.

Remark 4: There are one (three) infinite-semi circle(s) when the absolute value of the rotor speed is below (above) \(\Omega_c \). The rotor speed will only change the gain of the open-loop transfer function, because the controller does not contain any term about the rotor speed, which makes it possible to solve the speed stable region by using the proposed gain-stable region in Section 3.

5. Stability criterion of the MSR

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_p)</td>
<td>1.0 kg·m²</td>
</tr>
<tr>
<td>(k_i)</td>
<td>4.8 A/V</td>
</tr>
</tbody>
</table>

The Nyquist curve when the rotor speed is 3000 rpm is shown in Figure 7, and that of 12000 rpm is shown in Figure 8.

In Figure 7, there is only one infinite semi-circle at frequency \(\omega = 0 \) rad/s, while in Figure 8 there are three infinite semi-circles at the frequencies \(\omega = 0 \) rad/s, 177.2 rad/s, and 1219.1 rad/s, which validates the analysis in Section 4. According to the relationships between the Bode diagram and the Nyquist curve, the phase-frequency curve of the Bode diagram will turn \(180^\circ \) for once at \(\omega = 0 \) rad/s and thrice at \(\omega = 0 \) rad/s, 177.2 rad/s, and 1219.1 rad/s in the whole frequency region in this case. This phenomenon can also be found in [21, 26, 27].
Absolute stability: When $\Omega = 3000$ rpm, the open-loop transfer function has one unstable pole on the right half-plane, namely $P = 1$. Its Nyquist curve encircles $(-1, j0)$ once, thus $N = 1$. The number of unstable poles of the closed-loop system is $Z = P - N = 0$, so the system is stable. When $\Omega = 12000$ rpm, $P = 0$ and $N = 0$, so $Z = P - N = 0$ and the closed-loop system is also stable.

- Figure 7. Global (left) and local (right) plots of Nyquist curve when $\Omega = 3000$ rpm. The Nyquist curve begins from the original point at $\omega = -\infty$, reaches infinite point A along the red line, turns 180° clockwise from A to A', then comes back to the original point along the blue line. The direction is shown by arrows.

- Figure 8. Global (left) and local (right) plots of Nyquist curve when $\Omega = 12000$ rpm. The Nyquist curve begins from the original point at $\omega = -\infty$, reaches infinite point A along the red line, and turns 180° clockwise from A to A', from B to B' and from C to C. Finally, comes back to the original point along the blue line. The direction is shown by arrows.
Relative Stability: Figure 7 shows that at $\Omega = 3000\text{rpm}$, the nearest points inside and outside the unit circle are L_1 and L_2 respectively, thus, the gain-stability region is $(0.5405, 1.9841)$.

And when $\Omega = 12000\text{rpm}$, the gain-stable region is $(0.5988, 1.7123)$ in Figure 8. The simulation results in the time domain at different rotor speeds are shown in Figure 9.

6. Speed stable region

6.1. Methods

In Section 4, it is concluded that the varying rotor speed will only change the gain of the open-loop transfer function. In other words, rotor speed will not change the crossing frequencies of the intersection points of the Nyquist curve and the negative real axis.

Suppose the rotor speed is positive. The case of the negative rotor speed will be symmetric with that of the positive one.

Define $g(\omega, \Omega) = J_1 \omega^2 - J_2 \Omega \omega + 2k_1 l_2$. The ratio of the gains in two different speeds at a certain frequency can be given by

$$\frac{l_{\Omega,1}}{l_{\Omega,2}} = \frac{G(j\omega \Omega)}{G(j\omega \Omega)} = \frac{\omega^2 + J_2 \Omega \omega - 2k_1 l_2}{\omega^2 + J_2 \Omega \omega - 2k_1 l_2}$$

Hence, the rotor speed stable region is determined by

$$\left\{ \begin{array}{l} l_{\Omega,1} > 1 \\
\frac{g(\omega_1, \Omega_1)}{g(\omega_2, \Omega_2)} \end{array} \right.$$ (35)

If the MSR system is stable at a given rotor speed, then the rotor stable region can be solved by (35).

6.2. Example 4

As for Example 3 in Section 5, the crossing frequencies, as well as the corresponding gains, are given in Table 6. As shown in the figure, the varying rotor speed does not affect the crossing frequencies, but it changes the gains at these frequencies.

<table>
<thead>
<tr>
<th>Rotor Speed</th>
<th>Crossing Frequencies</th>
<th>Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000rpm</td>
<td>$\omega_1 = -22\text{rad/s}$</td>
<td>$l_{\Omega,1} = 1.85$</td>
</tr>
<tr>
<td></td>
<td>$\omega_2 = 8010\text{rad/s}$</td>
<td>$l_{\Omega,2} = 0.504$</td>
</tr>
<tr>
<td>12000rpm</td>
<td>$\omega_1 = -22\text{rad/s}$</td>
<td>$l_{\Omega,1} = 1.67$</td>
</tr>
<tr>
<td></td>
<td>$\omega_2 = 8010\text{rad/s}$</td>
<td>$l_{\Omega,2} = 0.584$</td>
</tr>
</tbody>
</table>

Substituting the crossing frequencies and their corresponding gains into (35) yields
\[
\begin{cases}
\|g(-22, \Omega)\| < 1.85 \|g(-22,3000\text{rpm})\| \\
\|g(8010, \Omega)\| > 0.504 \|g(8010,3000\text{rpm})\|
\end{cases}
\] (36)

By solving the inequations (36), the positive rotor speed stable region is \([0\text{rpm}, 3.58 \times 10^4 \text{rpm}]\). Accordingly, the negative rotor speed stable region is \((-3.58 \times 10^4 \text{rpm}, 0\text{rpm})\). Thus the rotor speed stable region is \((-3.58 \times 10^4 \text{rpm}, 3.58 \times 10^4 \text{rpm})\). In fact, we can get the equation below from (31)

\[
I_{l_1, l_1} = \left| \frac{g(\omega_1, \Omega)}{g(\omega_1, \Omega)} \right| I_{l_2, l_2}.
\] (37)

Thus,

\[
\begin{cases}
I_{l_1, l_1} = \left| \frac{g(\omega_1, \Omega)}{g(\omega_1, \Omega)} \right| I_{l_2, l_2} \\
I_{l_1, l_1} = \left| \frac{g(\omega_1, \Omega)}{g(\omega_1, \Omega)} \right| I_{l_2, l_2}
\end{cases}
\] (38)

where \(\Omega = 3000\text{rpm}\), the gains at the crossing frequencies \(\omega_1\) and \(\omega_2\) under different rotor speeds are shown in Figure 10.

![Figure 10. Gains at crossing frequencies under different rotor speeds](image)

Thus, \(\Omega = 3.58 \times 10^4 \text{rpm}\), the rotor speed is approximately \(3.58 \times 10^4 \text{rpm}\) at 8010 rad/s. And it will lose stability if the speed continues to increase. The simulation results are shown in Figure 11 (a) and (b) at a speed of \(3.5 \times 10^4 \text{rpm}\) below the critical stable speed and at a speed of \(3.6 \times 10^4 \text{rpm}\) above the critical stable speed, respectively.

7. Conclusion

This paper presents a novel approach to study the absolute and relative stabilities for MSRs in the frequency domain. Several important theories and methods are proposed, including the equivalent stability relationship between the single complex variable and the two traditional real deflection angles, the extended Nyquist criterion for complex coefficient transfer functions, the absolute stability theorem for MSRs with centralized PID plus cross-feedback controller and the method to calculate the rotating speed stable region. The methods and theories in this paper make it easier and more systematic to study the stability for MSRs and examples and simulations are employed to demonstrate them. Moreover, the extended Nyquist criterion is also valid to a wider class of systems with a similar dynamic model.

References

