Evidence from two independent backcross experiments supports genetic linkage of microsatellite Hcms8a20, but not other candidate loci, to a major ivermectin resistance locus in Haemonchus contortus

Rezansoff, A. M., Laing, R. and Gilleard, J. S. (2016) Evidence from two independent backcross experiments supports genetic linkage of microsatellite Hcms8a20, but not other candidate loci, to a major ivermectin resistance locus in Haemonchus contortus. International Journal for Parasitology, 46(10), pp. 653-661. (doi: 10.1016/j.ijpara.2016.04.007) (PMID:27216082)

[img]
Preview
Text
129699.pdf - Accepted Version

944kB

Abstract

Haemonchus contortus is the leading parasitic nematode species used to study anthelmintic drug resistance. A variety of candidate loci have been implicated as being associated with ivermectin resistance in this parasite but definitive evidence of their importance is still lacking. We have previously performed two independent serial backcross experiments to introgress ivermectin resistance loci from two H. contortus ivermectin-resistant strains – MHco4(WRS) and MHco10(CAVR) – into the genetic background of the ivermectin-susceptible genome reference strain MHco3(ISE). We have interrogated a number of candidate ivermectin resistance loci in the resulting backcross populations and assessed the evidence for their genetic linkage to an ivermectin resistance locus. These include the microsatellite marker Hcms8a20 and six candidate genes Hco-glc-5, Hco-avr-14, Hco-lgc-37 (previously designated Hco-hg-1), Hco-pgp-9 (previously designated Hco-pgp-1), Hco-pgp-2 and Hco-dyf-7. We have sampled the haplotype diversity of amplicon markers within, or adjacent to, each of these loci in the parental strains and fourth generation backcross populations to assess the evidence for haplotype introgression from the resistant parental strain into the genomic background of the susceptible parental strain in each backcross. The microsatellite Hcms8a20 locus showed strong evidence of such introgression in both independent backcrosses, suggesting it is linked to an important ivermectin resistance mutation in both the MHco4(WRS) and MHco10(CAVR) strains. In contrast, Hco-glc-5, Hco-avr-14, Hco-pgp-9 and Hco-dyf-7 showed no evidence of introgression in either backcross. Hco-lgc-37 and Hco-pgp-2 showed only weak evidence of introgression in the MHco3/4 backcross but not in the MHco3/10 backcross. Overall, these results suggest that microsatellite marker Hcms8a20, but not the other candidate genes tested, is linked to a major ivermectin resistance locus in the MHco4(WRS) and MHco10(CAVR) strains. This work also emphasises the need for genome-wide approaches to identify mutations responsible for the ivermectin resistance in this parasite.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Laing, Dr Roz
Authors: Rezansoff, A. M., Laing, R., and Gilleard, J. S.
College/School:College of Medical Veterinary and Life Sciences > Institute of Biodiversity Animal Health and Comparative Medicine
Journal Name:International Journal for Parasitology
Publisher:Elsevier
ISSN:0020-7519
ISSN (Online):1879-0135
Published Online:20 May 2016
Copyright Holders:Copyright © 2016 Australian Society for Parasitology
First Published:First published in International Journal for Parasitology 46(10):653-661
Publisher Policy:Reproduced in accordance with the publisher copyright policy

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
636401The BUG consortium Building Upon the Genome: using H. contortus genomic resources to develop novel interventions to control endemic GI parasitesEileen DevaneyBiotechnology and Biological Sciences Research Council (BBSRC)BB/M003949/1RI BIODIVERSITY ANIMAL HEALTH & COMPMED