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On functors associated to a simple root

Volodymyr Mazorchuk and Catharina Stroppel

Abstract

Associated to a simple root of a finite-dimensional complex semisim-
ple Lie algebra, there are several endofunctors (defined by Arkhipov,
Enright, Frenkel, Irving, Jantzen, Joseph, Mathieu, Vogan and Zuck-
erman) on the BGG category O. We study their relations, compute
cohomologies of their derived functors and describe the monoid gener-
ated by Arkhipov’s and Joseph’s functors and the monoid generated
by Irving’s functors. Natural transformations between elements of
these monoids are investigated. It turns out that the endomorphism
rings of all elements in these monoids are isomorphic. We also use
Arkhipov’s, Joseph’s and Irving’s functors to produce new general-
ized tilting modules.

1 The results

Associated to a simple root of a semisimple complex Lie algebra, there ex-
ist several endofunctors on the principal block of Oy. These functors can
be used to describe the structure of the category Oy (see e.g. [Jol], [Jo2],
[AS]), or to construct principal series modules (see e.g. [AL]). They also give
rise to derived equivalences via tilting complexes (see e.g. [Ric], [MS]). The
Temperley-Lieb algebra was categorified in [BFK] via such endofunctors re-
stricted to certain parabolic versions of Oy. In that context also the natural
transformations play a very important role. In the following we study the
interplay of endofunctors associated to a simple root on the principal block
of the category O, some natural transformations between them and explain
a connection to tilting theory. To be more precise we need to introduce some
notation.

Let g be a semisimple complex finite-dimensional Lie algebra with a fixed
triangular decomposition g =n_@®hdn,. Let W be the corresponding Weyl
group with the length function [, the unit element e, the longest element wy,
and the Bruhat ordering <. The letter p denotes the half-sum of all positive
roots. There is the so-called dot-action of W on bh* defined as w - A =



w(A + p) — p. Let O denote the BGG-category O introduced in [BGG| and
Oy its principal block, that is the indecomposable block of O containing the
trivial g-module. For a simple reflection s let g® denote the corresponding
minimal parabolic subalgebra of g, strictly containing h & n,. We denote
by Of the corresponding parabolic subcategory, which consists of all locally
g°-finite objects from Oy. We call a module s-free, if none of the composition
factors in its socle is g*-finite. Let C = S(h)/(S(h)Y") be the coinvariant
algebra of W with respect to the dot-action. Its subalgebra of s-invariants
(under the usual action) is denoted by C* (see [Sol]). For x € W we denote
by A(xz) € Oy the Verma module of the highest weight = - 0 and by P(x)
its projective cover with simple head L(z). Associated to a fixed simple
reflection s we have the following endofunctors of Oy:

e the translation functor § = 6, through the s-wall;

e the shuffling functor C = Cs, defined as the cokernel of the adjunction
morphism adj, : ID — 6 (see [Ir1]);

e the coshuffling functor K = K, defined as the kernel of the adjunction
morphism adj® : § — ID (see [Ir1]);

o Zuckerman’s functor Z = Z given by taking the maximal Og-quotient;
e Joseph’s completion G = G defined in [Jol];
o Arkhipov’s twisting functor T = Ty (see e.g. [AS]);

e The functor Q given as the cokernel of the natural transformation g :
ID — G (for the definition of g see [Jol, 2.4]);

e Because of [KM, Section 4] we call E = G? Enright’s completion func-
tor.

The functor Z can be characterized as the functor taking the maximal
quotient which is annihilated by T (or, equivalently, by G). We define
Z : Oy — O as the endofunctor given by taking the maximal quotient
annihilated by C (or, equivalently, by K), i.e. the maximal quotient con-
taining only composition factors of the form L(y), y < ys. Although the
definition is very similar, the properties of the functors Z and 7 are quite
different (see Remark 1.2 and Theorem 2 below).

Let d be the usual contravariant duality on Oy. For an endofunctor
X of Oy we denote by X’ the composition X' = dXd. If X;, X5, Y are
endofunctors on Oy and h € Hom(X;,Xs) we denote by hy the induced



natural transformation in Hom(X;Y,X,Y). For h € Hom(X;, X2) we also
set B = dhg € Hom(X, X5).

In Section 2 we give a more elegant proof of the fact G = T’ from [KM].
This result allows as to simplify the exposition and redefine Arkhipov’s func-
tor as T = G’. In Section 2 we also prove some similarities between the
pairs (T,G) and (C,K) of functors (Proposition 2.4), but also show some
remarkable differences (Proposition 2.6).

For a right/left exact endofunctor F' on Oy we denote by LF/RF its
derived functor with i-th (co)homology L;F/R'F. Our first result is the
following theorem:

Theorem 1. There are the following isomorphisms of functors:
1. RIK~Z.
2. R'G 2 Z, in particular R'G = ID on Oj.
3. L17Z = Q, in particular Q = Q.

7ZG ifi=1, ZK ifi=1,
4. RIG2=2{7  ifi=2, and ~ REK2={7  ifi=2,
0 if i > 2. 0 if i > 2.

Dual statements hold for 7!, T, 7!, and C.

Remark 1.1. R'G = 0 for i > 1 by [AS]; £?Z 27 and L'Z = 0if i > 2
follows from [EW], and R'K 2 0 for i > 1 follows from [MS]. |

Remark 1.2. The derived functor £Z has a more complicated structure
than £Z. This is already evident for the Lie algebra sl5. In fact, by a direct
calculation one can show that in this case L£gZ # 0. It follows that, in general,
there is no involutive exact equivalence I on Oy sending L(z) to L(z™'). The
same statement can also be obtained using the following general argument:

Let A be a finite-dimensional associative algebra and A be an indexing set
of the isoclasses S(\), A € A of simple A-modules. Assume that F'is an exact
equivalence on A—mod such that F'(S(\)) = S(o(\)) for some permutation
o on A. For J C A let Z; denote the functor given by taking the maximal
quotient containing only simple subquotients indexed by J. Then it is easy
to see that the functors F *1Zg( nF and Z; are isomorphic.

Let g = sl and s, ¢t be the two simple reflections. Let J = {e,t,ts},
J = {e,t, st} and J' = {e,s,ts}. Then J = J via w — w ' and J = J'
via wwy — wlwy. By definition we have Z = Z;, Z = Z;, and 7, =
Zy. Tt is easy to check that ZP(t) has length 4, but both, ZP(t~') and
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7.P(s) = Z,P((st)"'wp), have length 3. In particular, there is neither an
involutive exact equivalence sending L(x) to L(x~!), nor an involutive exact
equivalence sending L(xwg) to L(x ™ wp). This is very surprising. [

We describe the monoids generated by {G, T} and {C, K} respectively:

Theorem 2. The functors T and G satisfy the relations

TGT =T, GTG =G, T =2 T?, G = G2,
T2G = T?, G°T = G?, TG? = GT?,

and their isoclasses generate the monoid S = {ID, T, G, TG, GT, T?, G, TG?}
of (isoclasses of ) functors. The columns and rows of the following egg-box
diagrams represent respectively Green’s relations R and L, on S (see [La,

Chapter 11]):
o [Gr]TlaT

Theorem 3. The functors C and K satisfy the relations

CKC =2 K, KCK 2 K, C3K = C?, K3C = K?,
C?K?C = C?K, K?C?*K =2 K*C, CK?*C? = K(C?, KC?*K? =~ CK?.

Assume that s does not correspond to an sly-direct summand of g. Then the
isoclasses of the functors C and K generate the (infinite) monoid

S = {ID, KC?*K =~ CK?C, K’, ¢!, KC!, CK?, K2C?, C*K* : i > 0}.

The columns and rows of the following egg-box diagrams represent respectively
Green’s relations R and L, on S:

K |CK Ci>1, | Kii>1, | CK, KC,
KC| C C2Ki,i >0 | K2CLi>0|i>1, KC2K

The only idempotents in S are ID, KC, CK, C?K?, K2(?, KC?K.

Before describing morphism spaces between such functors, we want to
give an impression of their rather complex interplay. We need some prepara-
tions to formulate the corresponding Theorem 4, in which we show relations
between functors from S.

According to [AS, Remark 5.7], T is left adjoint to G and g is up to
a scalar the composition of T(g) with the adjunction morphism TG—ID.
We fix a’ € Hom(TG,ID) such that g’ = a’ o T(g) and set a = d(a’)q (the
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existence of a’ also follows from the independent result Hom(TG,ID) = C
of Theorem 5 which ensures that up to a scalar there is only one natural
transformation “of degree zero”). Let z : ID—Z, and p : G—Q be the
natural projections, i = d(p)q, m’ = (T%*(g))~! oipq, and m = d(m’)q. We
will see later that all these maps are well-defined.

Theorem 4. Figure 1 presents a diagram of endofunctors on Oy for some
isomorphisms o and h. One can choose h such that all configurations con-

taining only solid arrows commute. The sequences labeled by numbers are
exact.

TP | QG
Q T gloT(g) 1D (g)og " )Q
Z(ir) / / ,\5,Z<pe)
Z/T;(/ Z \ G(g)ogolg OT Zq2 ZG2
o e] o
Q'T(s) , QG(g)
(a) ; o~ ~Q(a)
; Q'T —— Q- o= Qe———= QGT 5
Z'T(g) 8 :f ::N ' - ZG(g)
y / i p 7, 1Q
/ T ’ N
7/ T¢ 21 2 9'— T 8% o 5o 7C
10
/ T(g)
Z'(g) : G2 *> GT2 8/ j Z(g)
iGQ /
)T T(gG) G(g GT
4\
ID/a ID Z
75| Exk

Figure 1: Commutative diagram involving T and G

We prove the following result on natural transformations between arbi-
trary compositions of G and T"

Theorem 5. 1. For X € § there is a ring isomorphism End(X) = C.

2. For X, Y € § we have Hom(X,Y) # 0 and this space is given by the



X-row and Y -column entry in the following table:

 X\Y|[ID|G|T[GT[TG[G*|T*[GT?|

ID c|cj1|cj| 2 |cCcj|3| 4
G 1 |{C|5| 4 1 |C | 6| 4
T c|c|jcyc|c|cjli4|cC

GT |2 |/C|1|C | 7T |C|&8&8| 4
TG ||Cc|Cc|4] C | C |Cc|4]|C
G? 314|164 |8 |C|9]| 4
T? c|cic,c|cjlc|c|c
GT? |4 |C|4|C | 4 |C|4]| C

The spaces described by the same number are isomorphic and we have
the following inclusions:

A 7€ 2C 4¢ C B: 8&—3——6

/ N\

1 9

C: (C——5

3. There is an isomorphism of rings End(Z) = C*.

We describe the endomorphism spaces of the elements from S and natural
transformations between the idempotents in the following theorem:

Theorem 6. 1. For X € S there is a ring isomorphism End(X) =C.

2. For idempotents X, Y € S the space Hom(X,Y) is given by the X-row
and Y -column entry in the following table:

| X\ Y [ID[CK|KC|C’K* | K°C*? | KC*K |

ID c|1]|¢C 2 C 3
CK |C| C | C 4 C C
KC 1|5 |C 2 C 3
K2 C|C|C C C C
K2C* || 2] 2 | 4 6 C 4
KC°K|| 3| 3 | C 4 C C

The spaces described by the same number are isomorphic and we have
the following inclusions:

5—1—3<=C, 4 —C.



Remark 1.3. The coinvariant algebra has a natural Z-grading given by
putting b in degree one. Using the graded versions of C and K from [MS]
(and a similar construction for G and T) we get isomorphisms of graded
vector spaces as listed in the theorem. |

Let P = @.ewP(x) be a minimal projective generator of Oy and set
Z =dP. For M € Oy the category Add(M ) is defined as the full subcategory
of Oy, which consists of all direct summands of all finite direct sums of copies
of M. Recall (see [Wa]) that M € O is called a generalized tilting module
if Extg) (M, M) = 0 and if P has a finite Add(}M)-coresolution, i.e. there
exists an exact sequence 0 — P — My — --- — M — 0 of finite length k
with M; € Add(M) for 1 < i < k. If, additionally, the projective dimension
of M is one then M is called a classical tilting module, see [HR]. Dual
notions define generalized and classical cotilting modules. For a fixed reduced
expression w = sy---5; € W we set T, =Ty, --- T, and G, = Gy, -+~ Gg,..
The resulting functors are (up to isomorphism) independent of the chosen
reduced expression (see [Jol], [KM]). The following result describes a lattice
of (generalized) tilting and cotilting modules in Oy constructed using twisting
and completion functors.

Theorem 7. Let w € W.

1. FEach of the modules P* = TP and I* = G,Z is both, a generalized
tilting module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:
projdim(P%) = injdim(Z") = l(w) and injdim(P™) = projdim(Z*) =
2l(wo) — W(w). In particular, if s is a simple reflection then P* (I°
resp.) is a classical (co)tilting module.

3. TyPv =21 and G,I"° = PY™. In particular, P*° = I =T is
the characteristic (co)tilting module in Oy.

Remark 1.4. Let x € W be fixed. The module T,T,,P = T,P* =
T, 7 is the direct sum of all x-twisted tilting modules as defined in [St1] and
characterized by certain vanishing conditions with respect to twisted Verma
modules. If z = e we get the sum of all (usual) tilting modules. The twisting
functors define naturally maps as follows:

Tw 171
{indec. projectives} RN {z-twisted indec. projectives} ——

TwO:c_ 1

{(e-twisted) tiltings} LN {z-twisted tiltings} =

Tw z—1 . . . .
= {zwy-completed indec. injectives} —— {indec. injectives}.



The maps are all bijections, their inverses induced by the corresponding
completion functors. |

For a reduced expression w = spsx_1---51 € W we set C,, = Cs, - - Cs,
and K,, = K;, ---K;,. Up to isomorphism, the functors do not depend on
the chosen reduced expression, see [MS]. We will prove the following analog
of the previous theorem:

Theorem 8. Let w € W.

1. FEach of the modules P = C,P and L = K,Z is both, a generalized
tilting module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:
projdim(*P) = injdim(*Z) = l(w) and injdim(*P) = projdim(“Z) =
2l(wo) —l(w). In particular, *P (and *Z resp.) is a classical (co-)tilting
module for any simple reflection s € W.

3. Cu(®0P) =2 v 0T gnd K, (*I) = © "“P. In particular, 0P =
wT =T is the characteristic (co)tilting module in Oy.

Question 1.5. According to [AR] every generalized tilting module 7" for an
associative algebra A corresponds to a resolving and contravariantly finite
subcategory in A—mod consisting of all A-modules admitting a finite cores-
olution by Add(7T"). What are the subcategories of Oy, which correspond to
the various generalized tilting objects from above?

2 Preliminary properties of our functors

In this section we collect some fundamental statements concerning natural
transformations between our functors. As a corollary we get a short argument
for the existence of an isomorphism 7" = G’ (which was originally proved in
M)

By [Sol] we have Endgy(P(wp)) = C, and thus we can define the functor
V : Oy — C—mod, M + Homgy(P(wy), M). Let G denote the right-adjoint
of T, which exists by [AS].

Lemma 2.1. VG 2V and G = ID when restricted to projectives.

Proof. Note that TP(wy) = P(wp) and Endg(P(wy)) is given by the action
of the center Z of the universal enveloping algebra of g ([Sol]). On the
other hand, the action of Z commutes naturally with T by definition. This
allows us to fix a natural isomorphism T = ID on Add(P(wyp)). This ensures
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that (for any M € Op) the following isomorphisms are even morphisms of
C-modules:

VM = Homy(P(wp), M) = Homgy(TP(wy), M) = Homgy(P(wy), GM)
= VGM.
All the isomorphisms are natural and the first statement follows. Let \Y
denote the right-adjoint of V. By [Sol, Proposition 6] we have VV = ID on

projectives and therefore also G =2 VVG =~ VV 2 ID, since G preserves the
category of projectives. O

We fix an isomorphism of functors ¢ : ID 2 G defined on the category of
projectives. For M € Oy we choose a projective presentation

p P

Then the left square of the following diagram commutes and induces the map
pup as indicated:

~ ! ~ G ~
GPy : GRy : GM -
A
PPy T SOPOT YM |
’ |
P - Py - M

Lemma 2.2. The maps oy, M € Oy, define a natural transformation from
ID to G.
Proof. First we have to check that ), is independent of the chosen pre-

. ’ B . .
sentation. Let Q) N Qo — M be another projective presentation of M.
Consider the commutative diagram:

/

GP, GP, GM ;
A
WPIT AOPOT h
P, il Py il M
A A
: ﬂ/ : ﬁ
1 Qo M
lel l‘PQo h
- éﬂ/ - Gﬁ ~V
G GQo GM




where the projectivity of ¢ and @y is used to get £ and & such that the
diagram is commutative. Since § is a map between projectives, we obtain
G o g, = pp, 0 &. Hence

Wop=Gpopg,=GyoGEopg, =Gyoppof=hoyof=hop,

by the commutativity of the diagram. Since [3 is surjective, we obtain h = h/.
Hence, ) is well-defined. The naturality follows by standard arguments. [

Proposition 2.3. G is right adjoint to T. In particular, there exists a nat-
ural transformation T — ID non-vanishing on Verma modules.

Proof. Lemma 2.2 implies the existence of a non-trivial natural transforma-
tion T — ID as assumed in [AS, Proposition 5.4]. The statement now follows
from [AS, Proposition 5.4] and [KM, Lemma 1]. O

Proposition 2.4. (1) (T,G) is an adjoint pair of functors. The adjunc-
tion morphism adjp : TG — ID is wnjective with cokernel Z, and the
adjunction morphism adj” : ID — GT is surjective with kernel Z'.

(2) (C,K) is an adjoint pair of functors. The adjunction morphism adjc :
CK — ID s injective with cokernel Z, and the adjunction morphism
adj® : ID — KC is surjective with kernel 7.

(3) The functors TG and GT preserve both surjections and injections (but
are neither left nor right exact).

(4) The functors CK and KC preserve both surjections and injections (but
are neither left nor right exact).

Remark 2.5. The twisting functor T can be described and generalized as
follows (this was also observed by W. Soergel): We consider Oy as the cat-
egory mod —A of finitely generated right modules over A = Endg4(P) with
endofunctor T. To each simple object L(w) we have the corresponding prim-
itive idempotent e, € A. Let e be the sum of all e, taken over all w such
that TL(w) # 0 and define T = _ ®,4 AeA : mod—A — mod—A. By
definition we get T(A4) = T(A4) and the inclusion AeA < A induces a
non-trivial element ¢ € Hom(T,ID). Applying [KM, Lemma 1] one gets
T = T as endofunctors of mod —A. This description allows a generalization
of twisting functors to a very general setting. The definitions immediately
show that the cokernel of @), is always the largest quotient of M, such that
Hom(eA, M) = 0 and one easily derives T = T2. However, if G denotes
the right adjoint of T, then the adjunction morphism TG — ID does not
need to be injective in general. |
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Proof of Proposition 2.4. In this proof for M € O, we denote by [M] the
class of M in the Grothendieck group of Q.

The first part is proved in [AS, Section 5. For the part (3) it is enough to
show that both, TG and GT, preserve surjections. Assume f € Hom(M, N)
for some M, N € Oy is surjective. The adjunction morphism adj" is surjec-
tive. Then adjy of = GT(f) o adjy; is surjective; in particular, so is GT(f).

Let im be the image of G(f). Then T(G(f)) : TGM—T(im) is surjec-
tive and so is T(i) : T(im)—»TGN, since the cokernel of i : im < GN is
annihilated by T. The composition of both surjections is exactly TG(f) and
so we are done: part (3) follows.

Concerning statement (4), it is enough to prove the claim for CK. Let

us first show that CK preserves inclusions. Let M J, N % L be a short
exact sequence in Oy. Applying K gives an exact sequence S of the form
KM — KN — L' where L' is a submodule of KL. By definition of K,
the socle of KL, and hence also of L', contains only simple modules not
annihilated by 6,, hence £,C(L") = 0 by [MS, Section 5]. In particular, CS
is exact, and therefore CK(f) is an inclusion.

On the other hand, applying K to M J, NI yields an exact sequence
T of the form KM — KN — KL — X, where KX = CX = 0 by [MS,
Proposition 5.3]. Applying the right exact functor C to T and using CX =0
we obtain that CK(g) is a surjection. This shows part (4).

By [MS, Section 5] the adjunction morphism defines an isomorphism
CK = ID when restricted to modules having a dual Verma flag. Let M € O,
with injective cover ¢ : M — [I. Let adj = adjs for the moment. Then
ioadj,, = adj; o CK(i). The latter is injective, hence adj,, has to be injec-
tive as well. Note that [CK(M)] = [0K(M)] — [K(M)] = [0*(M)] — [0(M)] —
[K(M)] = [0(M)]—[K(M)] for any M € Oy. Hence [M]—[CK(M)] = [Z(M)).
Dual statements hold for adj®. Part (2) follows. ]

The following result is surprising in comparison with Proposition 2.3 (note
that the argument of Lemma 2.1 does not work if we replace G by K as K
does not commute with the action of the center of Oy).

Proposition 2.6. 1. There is no natural transformation ¢ : C — ID
non-vanishing on Verma modules.

2. There is no natural transformation k : ID — K mnon-vanishing on
Verma modules.

Proof. We consider the deﬁning'sequence 0= K5 0% ID. It induces

an exact sequence Hom(ID, K) < Hom(ID, 6) g Hom(ID,ID). We have
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Hom(ID, #) = C, more precisely, the morphism space is generated by the
adjunction morphism adj, and the center C of the category Oy (see [Bal).
If now ¢ € Hom(ID,K) does not vanish on Verma modules, then, up to a
scalar, i o p = adj,, hence adj® oi o p = adj’oadj, # 0 (see [Be, Sections 2
and 3] or [An, Lemma 2.2]). This contradicts the exactness of the original
exact sequence. ]

3 Proof of Theorem 1

Theorem 1 (1) follows immediately from [MS, section 4] and the definition
of Z.

Proof of Theorem 1 (2). Let H be the category of Harish-Chandra bimod-
ules with generalized trivial central character from both sides (see [So2]).
By [BG], the category Oy is equivalent to the full subcategory of H given
by objects having trivial central character from the right hand side. Let
07 : 'H — H denote the right translation through the s-wall. When consid-
ering Oy as a subcategory of H, the functor G is defined as the kernel of

the adjunction morphism 67, BRE 1D (see [Jol]). Using the Snake Lemma

we obtain that R'G is isomorphic to the cokernel of 6 25, ID. Note that

RIG(M) is locally g*-finite ([AS, Corollary 5.9]). Since the top of 67M is
s-free, we obtain that it is maximal with this property. Hence R'G = Z and,
in particular, R'G = ID on Oj. m

Remark 3.1. Theorem 1(2) has independently been proved in [Kh] by com-
pletely different arguments. ]

Proof of Theorem 1(3). Recall from above that the functor Z is isomorphic
adj

to the cokernel of the §; — ID. Let M € Oy and P; LN P 4, Py - M be
the first three steps of a projective resolution of M. Consider the following
commutative diagram:

GP GP GP Gf4 .
07 P, 0P, 07 Py oM
adj adj ad]j adj
P, h P, ! P, M
P2 pP1 Po
7P —" 7P 7P,
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The Snake Lemma gives a natural surjection GM—Z(P;/ Ker f). We claim
that this even induces a natural surjection GM—» Ker f/Imh. Indeed, if
x € ZP; such that f(z) = 0 and 2 € Im h, we can choose y € P, such that
po(y) = x. If f(y) = 0 then y = h(z) for some z € Ps; hence © = py o h(z) =
h o ps(z), which is a contradiction. Therefore, f(y) # 0 and Z(P,/ Ker f)
surjects onto Ker f/Im A providing a surjection ® : G—£,Z. We have to
show that ® induces an isomorphism Q = £Z.

Claim 3.2.
A(sx)/A(x), if v > sz,

0, if v < sw.

In particular, ® induces an isomorphism Q = L17Z on Verma modules.

Proof. We prove the claim by induction on I[(z). It is certainly true for
x = e. Assume it to be true for x and let ¢ be a simple reflection such that
xt > x. The short exact sequence A(z) — 6;A(x) - A(xt) induces an exact
sequence

Li7ZA(x) — L170;A(x) — L1ZA(xt) — ZA(x) — Z0,A(x) — ZA(xt).
(3.1)
If © > sz then [(saxt) < (sxz)+ 1 =1(z) <l(zt). Since x > sx and sxt > xt,
we have ZA(x) = ZA(xt) = Z6;A(x) = 0. By induction hypothesis, (3.1)
reduces to
A(sz)/A(x) — 0,(A(sz)/A(z)) = L1ZA(xt),

implying £,ZA(xt) = A(szt)/A(xt).

If st > = and sxt < xt then xt > x implies sxt = x. Hence ZA(zt) =
20;A(x) = Z0;A(x) = 0, and L£1Z6:A(z) = 6,L,ZA(x) = 0 by induction
hypothesis. We get

LiZA(xt) =2 ZA(z) = Ax)/A(sx) = A(sxt)/A(xt).

If sx > = and szt > xt then we have (£,2)0;A(x) = 0,(L1Z)A(x) = 0 by
induction hypothesis, and the last terms of (3.1) form the exact sequence

A(x)/A(sz) — 0, A(xt)/A(sxt) — A(xt)/A(sxt).
This implies that £,ZA(xt) = 0 and the claim follows. O

Claim 3.3. ® induces an isomorphism Q = L17Z on modules having a Verma

flag.
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Proof. Let S be a short exact sequence of modules having a Verma flag;
then we have a commutative diagram S & G(S)—Q(S) — L£1Z(S), where
the composition of the last two maps is ®. Since g is an injection, Q(S)
is left-exact by the Snake Lemma. The sequence £2Z(S) is identical zero,
because L£o7 = 7' by [EW, Theorem 4.3]. Therefore, £,Z(S) is left-exact.
The Five-Lemma implies the claim. O

Claim 3.4. ® induces an isomorphism Q = L£17 on modules having a dual
Verma flag.

Proof. Let S be a short exact sequence of modules having a dual Verma flag;
then G(S) is exact ([AS, Theorem 2.2]) and hence Q(S) is right exact. On
the other hand £,Z(S) is right exact as well, since ZM = 0 for any module
having a dual Verma flag. The Five-Lemma completes the proof. O]

Let M € Oy. By Wakamatsu’s Lemma ([Wa, Lemma 1.2]) there exists a
short exact sequence S : Y — X — M, for a certain X having a Verma flag
and some Y with a dual Verma flag. Since R'G(Y') = 0 ([AS, Theorem 2.2]),
the sequence G(S) is exact, and hence Q(S) is right exact. Since ZY = 0,
L17(8S) is right exact, as well. The Five-Lemma implies that ® induces an
isomorphism QM = £, Z M. We immediately get Q = Q’, since £1Z = (L47Z)
by [EW, Theorem 4.3]. Theorem 1(3) follows. O

Proof of Theorem 1 (4). Recall the isomorphism R'G = Z from the first
part. By [AS], we have R'G = 0 for all i > 1. Since G(dA(e)) is acyclic
for G ([AS, Theorems 2.2 and 2.3]), we have the Grothendieck spectral se-
quence RPG(RIG(X)) = RPTIG3(X). We immediately get R'G? = ZG
and R?G? = 72 =~ 7 and R'G? = 0 for ¢+ > 2. This proves the first part of
Theorem 1(4).

The second part is proved by analogous arguments provided that we know
that K(I) is K-acyclic for any injective object I. This is equivalent to the
statement that the head of K(I) contains no compositon factor L(w) with
ws > w. There is a short exact sequence X — Y — [, where X has a
dual Verma flag and Y is the projective-injective cover of I. Using that K is
exact on sequences of modules having a dual Verma flag, we get a surjection
K(Y) — K({). In particular, it follows that the head of K(/) is embedd into
the head of K(Y) € Add(P(wp)). The latter contains only copies of L(wy).
This completes the proof. O

14



4 Proof of Theorem 2

We start by verifying the indicated relations. By duality, it is enough to
prove every second statement.
The isomorphism TGT = T: Evaluating the exact sequence of functors

0— TG=ID - 7Z — 0, (4.1)

from Proposition 2.4(1) at T gives rise to the exact sequence 0 — TGT—T —
ZT — 0. Further ZT = 0, as the head of any T(M) is s-free by [AS, Corollary
5.2], hence we obtain TGT = T.

The isomorphism G3 = G? is proved in [Jol].

The isomorphism T?G = T?: Applying T to (4.1) gives the exact sequence

(L, T)Z — T°G—T — TZ — 0. (4.2)

Theorem 1 gives £, T = 7', in particular, T(£,T)Z = 0 ([AS, Corollaries 5.8
and 5.9]). Moreover TZ = 0. This means that we can apply T to (4.2) once
more to obtain an isomorphism T3G =2 T2, Since T? = T? we finally get
T2G = T2

The isomorphism TG? = GT?: Evaluating the adjunction morphism
adjp : TG — ID at GT? we get TGGT? = TG? — GT? Evaluating
ID — GT at TG? we obtain TG? — GTTG? = GT? and hence TG? = GT?.

To complete the proof it is now enough to show that all the functors
from S are not isomorphic (Green’s relation are easily checked by direct
calculations). An easy direct calculation gives the following images under
our functors:

D | G| T |G| T | TG | GT |GT?

A(s) | A(e) | TA(s) | Ae) | TA(s) | A(s) | A(s) | A(s)
Ae) | Ale) | A(s) | Ae) | TA(s) | A(s) | Ae) | A(s)
TA(s) | A(s) | TA(s) | A(e) | TA(s) | TA(s) | A(s) | A(s)

The claim follows.

5 Proof of Theorem 3

By duality it is enough to prove every second relation.

The isomorphism CKC = C: The proof is analogous to that of TGT = T
in Section 4.

The isomorphism C3K = C2?: Applying C to the short exact sequence
CK — ID — Z produces a short exact sequence X — C?K — C, where
CX = 0. Applying C once more we obtain the desired isomorphism.

15



The isomorphism C?*K2C = C?K: Applying K to the short exact sequence
7' — ID — KC produces a short exact sequence K — K2C — X, where
KX = CX = 0. Applying now C gives rise to Y — CK — CKZ?C, where
KY = CY = 0. Applying C once more gives the isomorphism.

The isomorphism KC?K? = CK?: Evaluating the short exact sequence
7" < ID —» KC at CK2 we obtain the short exact sequence Z/CK2 < CK2 —»
KC2K2. The statement follows if we show that Z’CK2 = 0. The injection
CK < ID gives an injection CK? — K. On the other hand, Z'K = 0 since,
by the definition of K, any composition factor in the socle of KM is not
annihilated by 6. As CK2 — K we get that Z/CK? = 0 as well.

It is easy to see that, using the relations we have just proved, any product
of C and K can be reduced to one of the elements of S.

Assume now that s does not correspond to an sly-direct summand of g.
We do a case-by-case analysis to show that all functors in S are different.
We start with the following general observation.

Lemma 5.1. Assume that X : Oy — Oy is left exact, X(P(wp)) = P(wy),
and there is a natural transformation ¢ : ID — X on the category of projective-
injective modules in Og, such that ppq,) is an isomorphism. Then X fizes
the isoclasses of projectives.

Proof. Let P be projective. Consider an exact sequence P — [y — [;, where
Iy and I; are projective-injective. Then the square on the right hand side in
the following diagram with exact rows commutes

0 P ! Iy g I
|
I'h \Lﬂolo lﬁpll
\l X X

0 <P ) X1, (9) X1,

and hence we obtain the induced map h, which is an isomorphism by the
Five Lemma. O

All K* are different. We fix a simple reflection ¢ such that st # ts. By
a direct calculation one obtains that K'P(¢), ¢ > 0, is not projective, in
particular, K* does not preserve projectives in Oy. Now any isomorphism ¢ :
K? — K/, i < j, induces a natural transformation ID — K7~ on the category
K'(0y), which contains the subcategory of projective-injective modules in
Oy. It follows from Lemma 5.1 that K/~% preserves the category of projective
modules in Oy, a contradiction.

All C are different by dual arguments.

We consider now S as a Z-graded monoid with deg(C) = 1 and deg(K) =
—1. This is possible as the defining relations are homogeneous with respect
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to this grading. It follows from the relations that for any X € S and for
all ¢ large enough we have C'X = C7 for some C7. Since we have already
shown that all C/ are different, it follows that the elements of S having
different degree are not isomorphic. In particular, changing the exponent %
in the expression for X € S gives a non-isomorphic functor. The rest will be
checked case-by-case.

K' is not isomorphic to CK'™' for i > 0: We have CK'™ A(e) & A(s)
and K'A(e) = A(e) for all 1.

K’ is not isomorphic to C?K'™2 for i > 0: We have K'™2A(e) = A(e) 2
CA(s) =2 C?K™2A(e).

K is not isomorphic to K2C, since KdA(e) % K2dA(e) =2 K2CdA(e).

We proved that K’ (where ¢ > 0) is not isomorphic to any other functor
in the list. By duality, the same holds for C*.

KC is not isomorphic to CK: Assume, they are isomorphic, then C =
CKC = CCK = C?K which we have proved to be wrong.

KC' is not isomorphic to K*C™ for ¢ > 0: We have KC'dA(e) =
KdA(e) 2 K2dA(e) @ K2CdA(e).

KC? is not isomorphic to C*K: We have KC?dA(e) = KdA(e) = dA(s)
and C?KdA(e) = C2dA(s) = CdA(e) = dA(e).

KC is not isomorphic to KC?K: Assume, they are isomorphic. Then
K =~ KCK = KC?K? = CK?, which we know is wrong.

Hence the functors KC!, i > 0, differ from all the others in the list.
Duality gives the same property for CK’.

K2C? is not isomorphic to C*K? and K2C is not isomorphic to C*K?: By
definition the socle of K2C?2M contains only composition factors which are
not annihilated by 6 (for any M € p). On the other hand C?*K2A(e) =
C?A(e) = CA(s) is an extension of A(s) with A(e)/A(s). In particular, the
socle is g®-finite. The same argumentation applies to the second pair.

K2C? is not isomorphic to KC?K: Assume, they are isomorphic then
K2C =~ K2C?K = K(?K? = CK2. We have already proved that this is not
possible.

Hence K2C?, i > 0, (and dually C?K?) differs from all other functors from
the list. And therefore, any two functors from the list are not isomorphic.

The statements concerning Green’s relations and idempotents are ob-
tained by a direct calculation.

6 Proof of Theorem 4

It will be enough to prove roughly half of the statements. The other half will
follow by duality.
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Lemma 6.1. All maps indicated in the diagram as inclusions are injective;
and all projections are surjective.

Proof. By duality, it is enough to prove the statement for inclusions. The
injectivity of 2, i, i%, 2, 2/ is given by definition. For the maps G(g’) and
G(g) the statement follows from the left exactness of G and the fact that G
is zero on locally g°-finite modules. The map Z/(it) is injective because of
the left exactness of Z’ and the injectivity of it. The injectivity of a’ follows
from [AS, Proposition 5.6], since a’ is up to a non-zero scalar the adjunction
morphism adjy : TG — ID.

Let us now prove the statement for ZG(g). By definition of Q we have
the following exact sequence of functors: G — G? — QG. It gives rise to
the exact sequence

G
0= £,7(QG) — 2G ¥ 762 “% 706 ~ Q.

This implies that ZG(g) is injective.

Claim 6.2. T?(g) : T?> — T?G is an isomorphism. In particular m’ is
well-defined and injective.

Proof. Let K and K’ be defined by the following exact sequence of functors:

K¢ ID G K,

Since T?K = 0 we get an isomorphism T?(q) : T? — T?(im(g)) where im(g)
denotes the image of of g. Applying T to the second short exact part gives a
short exact sequence K «— T(im(g)) - TG for some K such that K (M) is
locally g®-finite for all M € Oy. Applying T once more gives an isomorphism
T2(5) : T?(im(g)) — T2C since TK = 0. Composing T2(j) o T%(¢q) = T%(g)
implies the first statement. The injectivity of m’ follows from the injectivity
of iT(;. ]

Claim 6.3. There exists a unique isomorphism h : TG? — GT? such that
gog =G(g' ogr)ohoT(gzog).

Proof. We start proving uniqueness. If h and h are two such morphisms,
then h — h induces a morphism from Z'T to G since Z'T = ker(g o g’) (this
will be proved later in this section). However, Hom(Z'T,G) = 0 as the socle
of GM is s-free and Z'TM is g*-finite for any M € O.
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It is left to prove the existence. Note that TG? = GT? by Theorem 2. For
any h € End(TG?, GT?) the natural transformation ¢(h) = G(g' ogp)oho
T(ggog) belongs to Hom(T, G) and, comparing the action on the projective-
injective module P(wg) € Oy we see that ¢ is injective, hence an isomorphism
(by the independent Theorem 5). The claim follows. O

We proceed with the map Q'T(g). Let M € Oy and consider the map
gy @ M — GM. The map T'(gyy) fits into the exact sequence QM — TM —
TGM. To calculate Q'T(g) we consider the following commutative diagram:

QQM =0 QTM — B Qe
J J T2 M J
TQ'M =0 T2\ B e
TGQM =0 TGTM — X paramr

where the first row is the kernel sequence and hence is exact. It follows
that Q'T(g) is injective. The injectivity of Q(g o g’) is proved by analogous
arguments. This completes the proof of Lemma 6.1. O]

Lemma 6.4. All configurations containing only solid arrows commute.

Proof. We use the notations from Figure 2. The squares (2), (6), (9), and
commute by definition. The commutativity of (3) follows from the commu-
tativity of (2), @), and 10). The squares (1), and (4) commute since 7’ is a
natural transformation and 7’ and Z'T are functors (note that g} = T(g)).
The commutativity of (5) reads iy = 2/, 0 Z'(ir), which is true as Z’' = ID on
g*-finite modules. The commutativity of (7) reads iz = m’ o Q'T(g), which
is equivalent to T?(g) o it = itq o Q'T(g), the latter being true as i is a
natural transformation. Commutativity of (8) means i o Q/(a") = g/ om’,
which is equivalent to io Q'(a’) = g o (T?*(g)) ! oipg. Since i is a natural
transformation we have i o Q'(a’) = T(a’) o ipg and our equality reduces to
T(a') oitqg = g o (T%(g)) ! oirg. To prove the latter it is enough to show
that T(a') = g o (T?(g)) !, which follows from g} = T(g’) and the definition
of a’. The remaining configurations commute by duality. O]

To complete the proof of Theorem 4 it is left to prove the exactness of
the indicated sequences. By duality, it is sufficient to prove the exactness of
the sequences 1 to 10. The sequences 8 and 3 are exact by the definitions of
a and Q respectively. The exactness of 4 follows from [AS, Proposition 5.6].
The exactness of 7 follows from T(g') = g7 and the exactness of the sequence,

19



QT QG

>\/\/\

Z/TQC ZG2

N

QTG — = 1 .QGT

> Y \
4/ '/\

TG2 ~ TQ(

o\

e D 1|]|) 7

Figure 2: Schematic picture of the diagram from Theorem 4
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dual to 3. Applying the left exact functor Z’ to the short exact sequence 7
and using Z'Q" = Q' shows that 5 is exact. The exactness of 6 follows by
comparison of characters from the facts that Q'T(g) is an inclusion and Q’(a’)
is a surjection. The exactness of 10 follows by evaluating the exact sequence
8 at modules of the form GM.

Let us now show that 2 is exact. The cokernel Coker of gog': T — G is
g°-finite since already the cokernel of g is g*-finite, see [Jol]. Further, for any
M € Oy we have that Q(M) is the maximal g*-finite quotient of GM since
the head of TM is s-free. This implies the exactness of the sequence 2 and
also of 9 at the term G. By uniqueness of the canonical maps the exactness
in T follows by duality. Exactness of 1 follows by analogous arguments.

7 Proof of Theorem 5

We abbreviate Hom(X,Y') = Hyy for X,Y € S. By duality we have vector
space isomorphisms Hxy = Hy’ x/.

Proposition 7.1. End(X) = C as algebras for any X € S.
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Proof. For X = ID the statement is well-known and follows from [Sol], since
End(ID) = C = Endy(P(wy)). Note that GP(wy) = TP(wy) = P(wy) (see
[AS, Proposition 5.3]); hence X P(wy) = P(wy) for all X € S. This means
that sending ¢ € End(ID) to X(¢) defines an injective algebra morphism
from C to End(X) for every X € S, as already the map ¢p(uw,) — X(©pwe))
is injective. We only have to check the dimensions.

We claim that ® : End(T) — Endg(TP(wo)), ¢ — ©p(w,), is injective.
Assume that ®(p) = 0. Let P € Oy be projective with injective hull i : P <

I. The cokernel () has a Verma flag, hence 0 — TP & TI—TQ — 0 is
exact (see [AS, Theorem 2.2]). Since [ is a direct sum of copies of P(wy), we
have ¢; = 0 and therefore pp = 0. Since T is right exact we get ¢y = 0 for
any M € Op. Hence @ is injective and End(T) = C. We get End(G) = C by
duality.

The adjointness from Proposition 2.4 together with Theorem 2 imply
End(T?) 2 Hom(ID, G2T?) = Hom(ID,G?) = End(T) = C, End(GT)
Hom(TGT,T) & End(T) = C and also End(GT?) = Hom(TGT?, T?)
End(T?) = C. The remaining parts follow by duality.

CT IR 1R

Claim 7.2. Hyy # 0 for any X, Y € S.

Proof. Since both X and Y are isomorphic to the identity functor when re-
stricted to A = Add(P(wp)) (see Lemma 2.1) we can fix a natural transforma-
tion ¢ € Hom(X|4,Y|4) = C of maximal degree. For M € O, indecompos-
able, M ¢ A, we set oy = 0. For M € Oy arbitrary we fix an isomorphism
ay - M = M, ® M,, such that M is a maximal direct summand belonging to
A and set @y = X (a3;) o (0ar, © @ar,) o X (aar). We claim that this defines
an (obviously nontrivial) element ¢ € Hxy. Indeed, let M = M; & M, and
N = Ny & N, and f € Homy(M, N) with decomposition f = Zij:l fi; such
that f; ; € Homg(M;, N;). Then oy o X (fi,1) = Y (f1.1) o om by definition of
. The definitions also immediately imply 0 = Y (fa2) 0 oar = on © X (fa2).
Moreover, we also have 0 = ¢y 0 X(f12) and 0 = Y (f21) o ¢p. Indeed, if
Y (fi2)opm # 0or oyoX(fi2) # 0 then either a direct summand of Y (M)
embeds into Y(Ny) or X (Ms) surjects onto a direct summand of Y (Ny).
Both contradict the following statement: Assume R € S and M € Oy does
not have P(wp) as a direct summand then neither so does R(M). Let first
R € {G,C}. If P(wp) is a direct summand of R(M) then R'RM surjects
onto R'P(wy) = P(wy), hence P(wp) is a direct summand of R'"RM. The
inclusion R'R < ID from Proposition 2.4 implies that P(wy) is a submodule
(hence a direct summand) of M. Dual arguments apply to R € {T,K} and
the claim follows. O

Claim 7.3. The C-entries in the table of Theorem 5 are correct.
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Proof. The statement is obtained by playing with the adjointness of T and
G using Proposition 7.1 and the identities from Theorem 2. Let X, Y € S.
We have isomorphisms Hrz x = Hregz x = Hgz g2x = Hgz g2 = C. This gives
the spaces in question in the seventh row (and the sixth column by duality).
The isomorphisms Hrgmp = Hgg = C and Hrgax = Hregxy & Hpe x = C
imply the claim for the fifth row (and the fourth column by duality). The
spaces in question in the first, third and fourth rows follow from Hrx gy =
Hr2xy = C and Hgr,g = Hrgr,mp = Hrmp = Hipg, Hip,gre = Hrrg. (From
Hgr2 ¢ = Hrar2p = Hreip = C and Hgr2 g2 = Hrgrem2 = Hpe 2 & C we get
the spaces in the last row. This completes the proof. O]

To proceed we use the following general statement:

Proposition 7.4. Let 2 be an abelian category with enough projectives. Let
F, J, H be endofunctors on . Assume that F' preserves surjections, and for
any projective P € 2 there exists some N € 2 such that F(P) =2 FH(N).
Then the restriction defines an injective map Hom(F, J) — Hom(FH, JH).

Proof. 1t is enough to show that for any ¢ € Hom(F, J) such that oz = 0 we
have ¢ = 0. Let M € 2 with projective cover f : P - M. We choose N € 2
such that F(P) = FH(N). The first row of the following commutative
diagram is exact, since F' preserves surjections.

f

FH(Q) = FP F(M)—=0.
@H(Q)i mrl
JH(Q) GM
The surjectivity of f and g () = 0 imply ¢ = 0. O

The spaces with labeling different from 4: The indicated equalities with
labeling different from 1 and 4 follow directly by duality. By [AS], the ad-
junction morphism adj’ : ID — GT(P) is an isomorphism on projectives.
Hence, we may apply Proposition 7.4 to F = ID, J = T, and H = GT
to obtain Hipt < Hgrrar = Herr. Further, the adjunction morphism
adjp : TG — ID is injective, hence Hg r¢ “— Hgip and Hgrr — Hipr by
duality.

The equality of the spaces denoted by 4: we have the following isomor-
phisms

Hgr2 r¢ = Hrgere = Ha2.gre = Haz g (7.1)
Hg.gr2 = Hrez v = Haz ot = Hrg (7.2)
Ha2 g2 = Hrge 2 = Hore 12 (7.3)

Hg ot = Hra,r (7.4)
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Note that all the spaces labeled by 4 occur in this list. The inclusion TG —
ID provides inclusions GT? = TG? «— G and TG? = TG?T — GT; hence
Hg2 g2 — Hazg and Hgrg2 — Hegr (e (7.3) is ‘included’ in (7.1) and
(7.2) is ‘included’ in (7.4)). Applying Proposition 7.4 with F = GT?, J =T
and H = T (F = ID, J = GT?, H = G respectively) we get inclusions
Hgre v — Hgre 12 and Hip g2 — Hg g2 = Hogre (ie. (7.2) is ‘included’ in
(7.3) and (7.1) is ‘included’ in (7.2)). Hence, all the spaces from (7.1)—(7.4)
have the same dimension.

The existence of the inclusions from A: The inclusion TG < ID implies
Horre — Horip. Applying Proposition 7.4 to F' = 1D, J € {T, TG}, and
H = G2, (this is possible since G*(P) = P for any projective P) we get
inclusions Hipt < Hgzrg2 and Hipre — Hgzrpge. Finally, the inclusion
G — G? gives Hge ¢ < Haz,g2 = C.

The existence of the inclusions from B: Applying Proposition 7.4 to F' =
ID, J =T? and H € {G, G?}, we obtain the inclusions

HID7T2 — HG,T27 HID,TQ — HGZ,TQ' (75)

Finally, using again the adjunction TG — ID we get Hg2 r¢ “— Hgz p.
The ezistence of the inclusion C: We use the following result (which gen-
eralizes without problems to arbitrary parabolic subalgebras):

Proposition 7.5. There is a natural isomorphism of rings End(Z) = C*.

Proof. Denote by I* the direct sum of all indecomposable projective-injective
modules in OF and consider I* as an object in Op. We claim that ® : p — ¢g
defines an isomorphism End(Z) & Z(Endy(/%)), where the latter denotes the
center of Endg(/%). Note that Z(Endg(/%)) = End(IDes) ([St2, Theorem
10.1]) and End(IDg;) is isomorphic to C* ([Sol], [BGS]).

O is injective: Let ¢ € End(Z), vra = 0 and let P be a projective object
in Oy. We fix an inclusion ¢ : ZP — J;, where J; = @Z—EhIA for some finite
set I; (see [Ir2]). Since Z is the identity on Of we have ¢p = pzp and 0 =
@y, 0 Z(1) = Z(i) o pzp. The injectivity of Z(7) implies pp = 0. Let M € Oy
be arbitrary with projective cover f: P—M. Then @y 0 Z(f) = Z(f) o ¢y,
i.e. py = 0, since Z is right exact.

® is surjective: Let g € Z(Endgy(I2)). For P € Oy projective we fix a
coresolution

A LI

where J; & @;c;, > for some finite sets I; (i = 1,2). For the existence of
such a tilting resolution one can use [Ir2] and arguments, analogous to that
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of [KSX, 3.1] (see [St2]). By definition, ¢ induces a natural map gzp €
Endy(ZP) making the following diagram commutative:

Z(f) Z(h)

7.P¢ 7.7, 70y .
ap ng l ngl
\%
gp D gy M g7,

Setting gp = gzp defines a natural transformation g : Z — Z, when restricted
to the additive category of projective objects in Oy such that g;a = g. The
right exactness of Z ensures that ¢ extends uniquely to some g € End(Z).
Hence @ is surjective. In particular, End(Z) = Z(Endy(I%)) = Z(0) =
Cs. [

The remaining part from Theorem 5 follows if we prove the following
statements:

Proposition 7.6. Let F : A — B be a dense functor between two cate-
gories A and B. Then the restriction gives rise to an injective linear map
End(IDg) < End(F). In particular, ZQ : Oy — Of provides an inclusion
C?— HG,T-

Proof. The first statement of the proposition is obvious. Since ZQM = M
for any M € Oy we may consider () = ZQ) as a functor from O, to O5. We
claim that Q) is dense, i.e. for any N € Of there exists an K € Oy such
that ZQ(K) = N. Indeed, let P — N be a projective cover of N in Oy
with kernel K. Applying G to K — P — N we obtain the exact sequence
GK — GP — GN and GN = 0. In particular, GK = GP. Since the socle
of P, and therefore also of K, is annihilated by Z, the map gy is injective
(see [Jo2]). Hence we have QK = (GK)/K = (GP)/K = P/K = N.

By Theorem 4 we have morphisms G —— Q LA Q <> T, where a~
is an isomorphism. We consider the linear map £ : End(Q) — Hg 1 defined
as () =ioalogpop. Since p is surjective, i is injective, and a~! is an
isomorphism, ¢ defines an inclusion End(Q) < Hg 1. To complete the proof
it is now enough to show that End(Q) contains C*. This follows directly from
the first part of the proposition, since End(Zp,) = C* (by Proposition 7.5
and [BGS)). O

Remark 7.7. The case g = sly shows already that some spaces Hxy, X,Y €
S can be smaller than C. Indeed, in this case we have Hg ip = C and Hgprq &
C. Although the remaining ‘unknown’ spaces from Theorem 5 are isomorphic
to C in this particular example, the isomorphism is accidental and is not given
by a natural action of C on P(wy) (in contrast to the cases, which are known
to be isomorphic to C from Theorem 5). |

1
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8 Proof of Theorem 6

Let Z(S) denote the set of all idempotents in S. For X,Y € Z(S) we set
HX,Y = HOHI(X, Y)

Proposition 8.1. End(X) 2 C as algebras for any X € S.

Proof. An injective algebra morphism from C to End(X) for every X € S is
constructed using the same arguments as in Proposition 7.1. The arguments,
analogous to that of Proposition 7.1, also give an isomorphism End(C) = C.

Let us show that End(C?) = C. We claim that the evaluation ¢ — ©p(u)
defines an inclusion End(C?) < Endg(C?P(w-0). Assume @ p(y,,) = 0 and let
P € Ogy be projective with injective hull i : P — I. We get an exact sequence
0 — ker C%(i) — C?P — C?I. By assumption we have 0 = 7 o C%(i) =
C?(i) o pp. In particular, the image of ¢p is contained in the kernel of
C2(i). On the other hand Hom,(C?P, ker C*(i)) < Homgy(ACP, ker C*(i)) =
Hom(CP, 0 ker C%(i)) = 0, since Oker C*(i) = 0. Therefore, pp = 0 and
hence ¢ = 0, since C? is right exact.

If ¢ > 2 then we have

End(C") = Hom(ID, K'C’) & Hom(ID, K*C?) = End(C?) = C.

End(KC?) = Hom(CKC’, C") = End(C") = C, ¢ > 0; and End(K?C?)
Hom(C?K2Ct, C?) & End(C?) = C, i > 1.

Finally, there are isomorphisms End(CK?*C) = Hom(K?C, KCK?*C) =
End(K?*C) = Hom(C?K?*C,C) = Hom(C?K,C) = Hom(CK,KC) and it is
left to show that Hom(CK, KC) embeds into C as a vector space. For this we
show that the map ® : Hom(CK, KC) — Endg(P(wp)) = C, ¢ — ©p(u) is
injective. Assume that ¢ p(,,) = 0. Since both CK and KC preserve injections
(see Proposition 2.4), from the injection i : P < [ above we obtain that ¢
must be zero on all projective modules. Taking a projective cover of any
M € Oy and using the fact that both CK and KC preserve surjections (see
Proposition 2.4), we obtain that ¢ is zero. The rest follows by duality. [

Note that KC preserves projective modules, since the adjunction from
Proposition 2.4 is an isomorphism on projective objects.

Equality of the spaces labeled by 2: The inclusion CK — ID from Propo-
sition 2.4 induces an inclusion Hg2c2 cx < Hgecz2p. By duality we have
Hk2c2 ok = Hie ke and Hgeezgp = Hip c2x2. Applying Proposition 7.4 to
F =1ID, H = KC, and J = C?K? we obtain Hp c2x2 — Hgc,c2xe and thus
all these four spaces are isomorphic.

Equality of the spaces labeled by 3: The inclusion CK «— ID induces an
inclusion Hgcex ck < Hieekp- By duality we have Hkcex cx = Hke,ckec
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and Hkcex ip = Hip ck2c. Applying Proposition 7.4 to /' = ID, H = KC, and
J = CK?C we obtain Hyp ckzc “— Hic,cxzc and thus all these four spaces are
isomorphic.

Equality of the spaces labeled by 4: Evaluating CK — ID at KC gives
an inclusion CK?C = KC?K — KC. Applying Hom(K?C?, ) produces
HKQCQKCQK — HKQCQ,KC- By duahty we have HKQCQKCQK = HKCQK’CQKQ and
Hk2ce ko = Hek c2x2. Applying Proposition 7.4 to F' = CK, H = KC, and
J = C?K? we obtain Hex c2xz < Hegeo,czxe and thus all these four spaces
are isomorphic.

Applying the duality implies that all other spaces labeled by the same
number coincide.

All spaces labeled by C are correct: For the diagonal entries this follows
from Proposition 8.1 above. For any X € I(S) we have Heege x & Hge gox =
Hi2 k2 = C and Hx g2c2 = C by duality. That Heg ke = C was shown in the
proof of Proposition 8.1. Using adjunction and duality we have Hex koo &
Heeg c2x = C and Hip ke = Hee = C = Hg x = Hok 1p.

It is left to establish the claimed inclusions. Applying Hom(KC, _) to the
inclusion CK — ID we get Hkc ok “— Hkcip. Applying Proposition 7.4 to
F =1D, H = KC, and J = CK we obtain Hip cx — Hkc,ckzc. Applying
Proposition 7.4 to FF = KC?K, H = KC, and J = CK we obtain Hkczk cx “—
Hexecoxee = C. Applying Hom(K?C?, _) to the inclusion KC — K2*C?
obtained above we get Hx2c2 ko — Hkzcz x2c2 = C.

Remark 8.2. Behind our argumentation is the following general fact: Let
F and G be two endofunctors on Oy. Assume that F' preserves surjections
and G preserves injections. Then the map Hom(F, G) — Endy(P(wy)), ¢ —
©P(wo), 18 injective. Indeed, let vp(,,) = 0. Since the injective envelope of
any projective P € Oy belongs to Add(P(wy)), we can use that G preserves
injections to obtain pp = 0. Taking now the projective cover of any M € O,
and using that F' preserves surjections we obtain ¢,; = 0.

One can show that K2C? preserves injections and C?K? preserves surjec-
tions, which implies that Hx y < C for all X € {ID, CK, KC?K, C*K?, C*, KC' :
i >0} and Y € {ID, KC, KC?K, K*C? K*,CK" : i > 0}. |

9 Proof of Theorem 7

We have Extf, (P, P*) = Hompe(og) (LTwP, LT, Pli]) = Exte, (P, P) =0,
i >0, (see [AS]).

Claim 9.1. P admits a finite coresolution by modules from Add(P™).
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Proof. Let w € W. If [(w) = 0, the statement is obvious. Assume, it is
true for all @ where {(w) < [(w) and let s be a simple reflection such that
sw > w. We have to show that P has a finite Add(P*")-coresolution. Since
Extg, (P*, P¥) = 0, for all z € W, the arguments from [Ha, Chapter I1I] or
[MO, Lemma 4] reduce the problem to showing that there exists a w, I(w) <
[(w), such that P” admits a coresolution by modules from Add(P**). Since
all T, commute with translation functors, it is enough to prove the statement
for TyA(e) = A(w). We choose w such that sw = wt for some simple
reflection ¢ with [(wt) > [(w) and consider the short exact sequence A(e) —
P(t) — A(t). Applying T we obtain the short exact sequence A(w) —
Ty P(t) — A(sw). Since P(t) = T, P(t), it follows that TzP(t) = Ty, P(t).
Thus, Ty P(t), A(sw) € Add(P*"), and hence A(w) has a coresolution by
modules from Add(P*™). O

We proved that P¥ is a generalized tilting module for any w € W. Since
Oy has finite projective dimension, it is a generalized cotilting module as well
([Re, Corollary 2.4]).

The remaining assertions from the first part of the theorem follow by
duality. Since T,,,A(e) = A(wyp) is a tilting module and T,,, commutes with
translations, it follows that P*0 = 7 = 7" (see also [KM]). Let w € W and
sw > w (i.e. swwy < wwp). The adjunction morphism T,G; — ID gives
TewTwP =TTy TwP = TsGuuweZ = TsGsGawwoZ — Gswuw,Z. Comparing
the characters and using duality shows the second part of the theorem.

It remains to prove the formulas for the homological dimensions. Twisting
functors commute with translation functors, hence we get projdim(P") =
projdim(T,A(e)) = projdim(A(w)) and injdim(P") = injdim(A(w)). For
Verma modules the values are easy to compute and are given by the formulas
from the theorem. The remaining statements follow by duality.

10 Proof of Theorem 8

We start with the following

Proposition 10.1. Let w € W and M € Oy be a module having a Verma
flag. Then L1C4(Cyp-1 M) = 0 for any simple reflection s such that ws > w.
In particular, C,-1 P s acyclic for Cs for any projective object P and hence

LCLCy1 = L(C,C).

Proof. By [MS, Section 5], C,,-1M has a w™'-shuffled Verma flag. Hence,
using Theorem 1, it is enough to show that the socle of every w~!-shuffled
Verma module C,,-1A(x) contains only L(y) such that ys < y. But C,,~1A(x)
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is at the same time a w™'wy-coshuffled dual Verma module and sw'w, <
wlwg as ws > w. This implies that C,-1A(z) = KN for some N € O,
and thus C,-1A(x) has desired socle by definition of K. O

Claim 10.2. “P is a generalized (co-)tilting module.

Proof. The case w = e is clear. Assume the statement to be true for w € W
and let s be a simple reflection such that sw > w. By definition

0 — P(z) " 9 P(z) — C,P(x) — 0
is exact for any x € W. Applying C,, and using the previous proposition we
get an exact sequence

0 — CuP(z) “ I ¢ 0, P() — CuC.P(z) — 0.
Since C,,Cs = Cg,, (see [MS]) and C,0,P(x) = C,Cs0,P(x) = Cyp0sP(x),
CwP(z) has a two-step coresolution with modules from Add(C,sP). Since
LC,, induces an equivalence on the bounded derived category of Oy (by
Proposition 10.1 and [MS]) we have Ext”°(C,P, C,P) = Ext”°(P,P). The
arguments from Claim 9.1 show that “P is a generalized tilting module,
hence also a generalized cotilting module by [Re]. ]

Now let us prove Theorem 8(3). Using Proposition 10.1 and [MS, Sec-
tion 5] the statement reduces to verifying that “oP = 7. Since C,, maps
Verma modules to dual Verma modules, Proposition 10.1 implies that C,,,P
has a dual Verma flag and satisfies Ext, (Cy,P,dA(z)) = 0 for all z € W.
From [Ri] it follows that C,,P has a Verma flag as well and thus C,,, P = 7.

Let L = L(y) € Op be a simple object and M € Oy be a module with
Verma flag. Then Proposition 10.1 gives

Extl (C,CuM, L) = Hom pu (0, (L£(CsCy) M, L[i])
Home(oo)(CwM, RKSL[lD

|24

The latter is Extif*(C, M, L) if y < ys and it is Ext},(C,, M, K,L) otherwise
(see [MS]). In particular, M = P gives projdim(**P) < projdim(*P)+1, and
M =T gives projdim(C,7) < projdim(C,,7) + 1. However, we know that
projdim(7’) = injdim(7) = I(wy) (see e.g. [MO]) and projdim(Z) = I(wy)
and all the formulae for homological dimensions follow.

Remark 10.3. It is well-known (see e.g. [AL], [Ma]) that the set of twisted
Verma modules are equal to the set of shuffled Verma modules. This is not
the case for projective objects. In fact, if g = sl3 and s, t are the two simple
reflections, then direct calculations show that CsP(t) is neither a twisted
projective nor a completed injective object. ]
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