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On functors associated to a simple root

Volodymyr Mazorchuk and Catharina Stroppel

Abstract

Associated to a simple root of a finite-dimensional complex semisim-
ple Lie algebra, there are several endofunctors (defined by Arkhipov,
Enright, Frenkel, Irving, Jantzen, Joseph, Mathieu, Vogan and Zuck-
erman) on the BGG category O. We study their relations, compute
cohomologies of their derived functors and describe the monoid gener-
ated by Arkhipov’s and Joseph’s functors and the monoid generated
by Irving’s functors. Natural transformations between elements of
these monoids are investigated. It turns out that the endomorphism
rings of all elements in these monoids are isomorphic. We also use
Arkhipov’s, Joseph’s and Irving’s functors to produce new general-
ized tilting modules.

1 The results

Associated to a simple root of a semisimple complex Lie algebra, there ex-
ist several endofunctors on the principal block of O0. These functors can
be used to describe the structure of the category O0 (see e.g. [Jo1], [Jo2],
[AS]), or to construct principal series modules (see e.g. [AL]). They also give
rise to derived equivalences via tilting complexes (see e.g. [Ric], [MS]). The
Temperley-Lieb algebra was categorified in [BFK] via such endofunctors re-
stricted to certain parabolic versions of O0. In that context also the natural
transformations play a very important role. In the following we study the
interplay of endofunctors associated to a simple root on the principal block
of the category O, some natural transformations between them and explain
a connection to tilting theory. To be more precise we need to introduce some
notation.

Let g be a semisimple complex finite-dimensional Lie algebra with a fixed
triangular decomposition g = n−⊕h⊕n+. Let W be the corresponding Weyl
group with the length function l, the unit element e, the longest element w0,
and the Bruhat ordering <. The letter ρ denotes the half-sum of all positive
roots. There is the so-called dot-action of W on h∗ defined as w · λ =
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w(λ + ρ)− ρ. Let O denote the BGG-category O introduced in [BGG] and
O0 its principal block, that is the indecomposable block of O containing the
trivial g-module. For a simple reflection s let gs denote the corresponding
minimal parabolic subalgebra of g, strictly containing h ⊕ n+. We denote
by Os

0 the corresponding parabolic subcategory, which consists of all locally
gs-finite objects from O0. We call a module s-free, if none of the composition
factors in its socle is gs-finite. Let C = S(h)/(S(h)W ·

+ ) be the coinvariant
algebra of W with respect to the dot-action. Its subalgebra of s-invariants
(under the usual action) is denoted by Cs (see [So1]). For x ∈ W we denote
by ∆(x) ∈ O0 the Verma module of the highest weight x · 0 and by P (x)
its projective cover with simple head L(x). Associated to a fixed simple
reflection s we have the following endofunctors of O0:

• the translation functor θ = θs through the s-wall;

• the shuffling functor C = Cs, defined as the cokernel of the adjunction
morphism adjs : ID → θ (see [Ir1]);

• the coshuffling functor K = Ks, defined as the kernel of the adjunction
morphism adjs : θ → ID (see [Ir1]);

• Zuckerman’s functor Z = Zs given by taking the maximal Os
0-quotient;

• Joseph’s completion G = Gs defined in [Jo1];

• Arkhipov’s twisting functor T = Ts (see e.g. [AS]);

• The functor Q given as the cokernel of the natural transformation g :
ID → G (for the definition of g see [Jo1, 2.4]);

• Because of [KM, Section 4] we call E = G2 Enright’s completion func-
tor.

The functor Z can be characterized as the functor taking the maximal
quotient which is annihilated by T (or, equivalently, by G). We define
Ẑ : O0 → O0 as the endofunctor given by taking the maximal quotient
annihilated by C (or, equivalently, by K), i.e. the maximal quotient con-
taining only composition factors of the form L(y), y < ys. Although the
definition is very similar, the properties of the functors Z and Ẑ are quite
different (see Remark 1.2 and Theorem 2 below).

Let d be the usual contravariant duality on O0. For an endofunctor
X of O0 we denote by X′ the composition X′ = dXd. If X1, X2, Y are
endofunctors on O0 and h ∈ Hom(X1, X2) we denote by hY the induced
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natural transformation in Hom(X1Y, X2Y). For h ∈ Hom(X1, X2) we also
set h′ = d hd ∈ Hom(X′

1, X
′
2).

In Section 2 we give a more elegant proof of the fact G ∼= T′ from [KM].
This result allows as to simplify the exposition and redefine Arkhipov’s func-
tor as T = G′. In Section 2 we also prove some similarities between the
pairs (T, G) and (C, K) of functors (Proposition 2.4), but also show some
remarkable differences (Proposition 2.6).

For a right/left exact endofunctor F on O0 we denote by LF/RF its
derived functor with i-th (co)homology LiF/RiF . Our first result is the
following theorem:

Theorem 1. There are the following isomorphisms of functors:

1. R1K ∼= Ẑ.

2. R1G ∼= Z, in particular R1G ∼= ID on Os
0.

3. L1Z ∼= Q, in particular Q ∼= Q′.

4. RiG2 ∼=


ZG if i = 1,

Z if i = 2,

0 if i > 2.

and RiK2 ∼=


ẐK if i = 1,

Ẑ if i = 2,

0 if i > 2.

Dual statements hold for Z′, T, Ẑ′, and C.

Remark 1.1. RiG ∼= 0 for i > 1 by [AS]; L2Z ∼= Z′ and LiZ ∼= 0 if i > 2
follows from [EW], and RiK ∼= 0 for i > 1 follows from [MS]. �

Remark 1.2. The derived functor LẐ has a more complicated structure
than LZ. This is already evident for the Lie algebra sl3. In fact, by a direct
calculation one can show that in this case L6Ẑ 6= 0. It follows that, in general,
there is no involutive exact equivalence F on O0 sending L(x) to L(x−1). The
same statement can also be obtained using the following general argument:

Let A be a finite-dimensional associative algebra and Λ be an indexing set
of the isoclasses S(λ), λ ∈ Λ of simple A-modules. Assume that F is an exact
equivalence on A−mod such that F (S(λ)) ∼= S(σ(λ)) for some permutation
σ on Λ. For J ⊂ Λ let ZJ denote the functor given by taking the maximal
quotient containing only simple subquotients indexed by J . Then it is easy
to see that the functors F−1Zσ(J)F and ZJ are isomorphic.

Let g = sl3 and s, t be the two simple reflections. Let J = {e, t, ts},
Ĵ = {e, t, st} and J ′ = {e, s, ts}. Then J ∼= Ĵ via w 7→ w−1 and J ∼= J ′

via ww0 7→ w−1w0. By definition we have Z = ZJ , Ẑ = ZĴ , and Ẑt =

ZJ ′ . It is easy to check that ZP (t) has length 4, but both, ẐP (t−1) and
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ẐtP (s) = ẐtP ((st)−1w0), have length 3. In particular, there is neither an
involutive exact equivalence sending L(x) to L(x−1), nor an involutive exact
equivalence sending L(xw0) to L(x−1w0). This is very surprising. �

We describe the monoids generated by {G, T} and {C, K} respectively:

Theorem 2. The functors T and G satisfy the relations

TGT ∼= T, GTG ∼= G, T3 ∼= T2, G3 ∼= G2,

T2G ∼= T2, G2T ∼= G2, TG2 ∼= GT2,

and their isoclasses generate the monoid S = {ID, T, G, TG, GT, T2, G2, TG2}
of (isoclasses of) functors. The columns and rows of the following egg-box
diagrams represent respectively Green’s relations R and L, on S (see [La,
Chapter II]):

ID
G TG

GT T
G2 T2 GT2

Theorem 3. The functors C and K satisfy the relations

CKC ∼= K, KCK ∼= K, C3K ∼= C2, K3C ∼= K2,

C2K2C ∼= C2K, K2C2K ∼= K2C, CK2C2 ∼= KC2, KC2K2 ∼= CK2.

Assume that s does not correspond to an sl2-direct summand of g. Then the
isoclasses of the functors C and K generate the (infinite) monoid

Ŝ = {ID, KC2K ∼= CK2C, Ki, Ci, KCi, CKi, K2Ci, C2Ki : i > 0}.

The columns and rows of the following egg-box diagrams represent respectively
Green’s relations R and L, on Ŝ:

ID
K CK

KC C
Ci, i > 1, Ki, i > 1, CKi, KCi,

C2Ki, i > 0 K2Ci, i > 0 i > 1, KC2K

The only idempotents in Ŝ are ID, KC, CK, C2K2, K2C2, KC2K.

Before describing morphism spaces between such functors, we want to
give an impression of their rather complex interplay. We need some prepara-
tions to formulate the corresponding Theorem 4, in which we show relations
between functors from S.

According to [AS, Remark 5.7], T is left adjoint to G and g′ is up to
a scalar the composition of T(g) with the adjunction morphism TG−→ID.
We fix a′ ∈ Hom(TG, ID) such that g′ = a′ ◦ T(g) and set a = d(a′)d (the
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existence of a′ also follows from the independent result Hom(TG, ID) ∼= C
of Theorem 5 which ensures that up to a scalar there is only one natural
transformation “of degree zero”). Let z : ID→→Z, and p : G→→Q be the
natural projections, i = d(p)d, m′ = (T2(g))−1 ◦ iTG, and m = d(m′)d. We
will see later that all these maps are well-defined.

Theorem 4. Figure 1 presents a diagram of endofunctors on O0 for some
isomorphisms α and h. One can choose h such that all configurations con-
taining only solid arrows commute. The sequences labeled by numbers are
exact.
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Figure 1: Commutative diagram involving T and G

We prove the following result on natural transformations between arbi-
trary compositions of G and T :

Theorem 5. 1. For X ∈ S there is a ring isomorphism End(X) ∼= C.

2. For X, Y ∈ S we have Hom(X, Y) 6= 0 and this space is given by the
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X-row and Y-column entry in the following table:

X \ Y ID G T GT TG G2 T2 GT2

ID C C 1 C 2 C 3 4
G 1 C 5 4 1 C 6 4
T C C C C C C 4 C

GT 2 C 1 C 7 C 8 4
TG C C 4 C C C 4 C
G2 3 4 6 4 8 C 9 4
T2 C C C C C C C C

GT2 4 C 4 C 4 C 4 C

.

The spaces described by the same number are isomorphic and we have
the following inclusions:

A : 7
� � // 2

� � // 4
� � // C B : 8

� � // 3
� � //� n

��=
==

==
==

6

1
0�

@@�������
9

C : Cs � � // 5

3. There is an isomorphism of rings End(Z) ∼= Cs.

We describe the endomorphism spaces of the elements from Ŝ and natural
transformations between the idempotents in the following theorem:

Theorem 6. 1. For X ∈ Ŝ there is a ring isomorphism End(X) ∼= C.

2. For idempotents X, Y ∈ Ŝ the space Hom(X, Y) is given by the X-row
and Y-column entry in the following table:

X \ Y ID CK KC C2K2 K2C2 KC2K

ID C 1 C 2 C 3
CK C C C 4 C C
KC 1 5 C 2 C 3

C2K2 C C C C C C
K2C2 2 2 4 6 C 4
KC2K 3 3 C 4 C C

.

The spaces described by the same number are isomorphic and we have
the following inclusions:

5 ↪→ 1 ↪→ 3 ↪→ C, 4 ↪→ C.
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Remark 1.3. The coinvariant algebra has a natural Z-grading given by
putting h in degree one. Using the graded versions of C and K from [MS]
(and a similar construction for G and T) we get isomorphisms of graded
vector spaces as listed in the theorem. �

Let P = ⊕x∈W P (x) be a minimal projective generator of O0 and set
I = dP . For M ∈ O0 the category Add(M) is defined as the full subcategory
of O0, which consists of all direct summands of all finite direct sums of copies
of M . Recall (see [Wa]) that M ∈ O0 is called a generalized tilting module
if Ext>0

O0
(M, M) = 0 and if P has a finite Add(M)-coresolution, i.e. there

exists an exact sequence 0 → P → M0 → · · · → Mk → 0 of finite length k
with Mi ∈ Add(M) for 1 ≤ i ≤ k. If, additionally, the projective dimension
of M is one then M is called a classical tilting module, see [HR]. Dual
notions define generalized and classical cotilting modules. For a fixed reduced
expression w = s1 · · · sk ∈ W we set Tw = Ts1 · · ·Tsk

and Gw = Gs1 · · ·Gsk
.

The resulting functors are (up to isomorphism) independent of the chosen
reduced expression (see [Jo1], [KM]). The following result describes a lattice
of (generalized) tilting and cotilting modules inO0 constructed using twisting
and completion functors.

Theorem 7. Let w ∈ W .

1. Each of the modules Pw = TwP and Iw = GwI is both, a generalized
tilting module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:
projdim(Pw) = injdim(Iw) = l(w) and injdim(Pw) = projdim(Iw) =
2l(w0) − l(w). In particular, if s is a simple reflection then Ps (Is

resp.) is a classical (co)tilting module.

3. TwPw0 ∼= Iww0 and GwIw0 ∼= Pww0. In particular, Pw0 ∼= Iw0 ∼= T is
the characteristic (co)tilting module in O0.

Remark 1.4. Let x ∈ W be fixed. The module TxTw0P ∼= TxPw0 ∼=
TxT is the direct sum of all x-twisted tilting modules as defined in [St1] and
characterized by certain vanishing conditions with respect to twisted Verma
modules. If x = e we get the sum of all (usual) tilting modules. The twisting
functors define naturally maps as follows:

{indec. projectives} Tx−→ {x-twisted indec. projectives}
Tw0x−1

−→
Tw0x−1

−→ {(e-twisted) tiltings} Tx−→ {x-twisted tiltings} =

= {xw0-completed indec. injectives}
Tw0x−1

−→ {indec. injectives}.
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The maps are all bijections, their inverses induced by the corresponding
completion functors. �

For a reduced expression w = sksk−1 · · · s1 ∈ W we set Cw = Cs1 · · ·Csk

and Kw = Ks1 · · ·Ksk
. Up to isomorphism, the functors do not depend on

the chosen reduced expression, see [MS]. We will prove the following analog
of the previous theorem:

Theorem 8. Let w ∈ W .

1. Each of the modules wP = CwP and wI = KwI is both, a generalized
tilting module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:
projdim(wP) = injdim(wI) = l(w) and injdim(wP) = projdim(wI) =
2l(w0)− l(w). In particular, sP (and sI resp.) is a classical (co-)tilting
module for any simple reflection s ∈ W .

3. Cw(w0P) ∼= w−1w0I and Kw(w0I) ∼= w−1w0P. In particular, w0P ∼=
w0I ∼= T is the characteristic (co)tilting module in O0.

Question 1.5. According to [AR] every generalized tilting module T for an
associative algebra A corresponds to a resolving and contravariantly finite
subcategory in A−mod consisting of all A-modules admitting a finite cores-
olution by Add(T ). What are the subcategories of O0, which correspond to
the various generalized tilting objects from above?

2 Preliminary properties of our functors

In this section we collect some fundamental statements concerning natural
transformations between our functors. As a corollary we get a short argument
for the existence of an isomorphism T ∼= G′ (which was originally proved in
[KM]).

By [So1] we have Endg(P (w0)) ∼= C, and thus we can define the functor
V : O0 → C−mod, M 7→ Homg(P (w0), M). Let G̃ denote the right-adjoint
of T, which exists by [AS].

Lemma 2.1. VG̃ ∼= V and G̃ ∼= ID when restricted to projectives.

Proof. Note that TP (w0) ∼= P (w0) and Endg(P (w0)) is given by the action
of the center Z of the universal enveloping algebra of g ([So1]). On the
other hand, the action of Z commutes naturally with T by definition. This
allows us to fix a natural isomorphism T ∼= ID on Add(P (w0)). This ensures
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that (for any M ∈ O0) the following isomorphisms are even morphisms of
C-modules:

VM = Homg(P (w0), M) ∼= Homg(TP (w0), M) ∼= Homg(P (w0), G̃M)

= VG̃M.

All the isomorphisms are natural and the first statement follows. Let Ṽ
denote the right-adjoint of V. By [So1, Proposition 6] we have ṼV ∼= ID on
projectives and therefore also G̃ ∼= ṼVG̃ ∼= ṼV ∼= ID, since G̃ preserves the
category of projectives.

We fix an isomorphism of functors ϕ : ID ∼= G̃ defined on the category of
projectives. For M ∈ O0 we choose a projective presentation

P1
γ′−→ P0

γ
� M.

Then the left square of the following diagram commutes and induces the map
ϕM as indicated:

G̃P1

G̃γ′ // G̃P0

G̃γ // G̃M

P1
γ′ //

ϕP1

OO

P0
γ // //

ϕP0

OO

M

ϕM

OO�
�
�

.

Lemma 2.2. The maps ϕM , M ∈ O0, define a natural transformation from
ID to G̃.

Proof. First we have to check that ϕM is independent of the chosen pre-

sentation. Let Q1
β′−→ Q0

β
� M be another projective presentation of M .

Consider the commutative diagram:

G̃P1

G̃γ′ // G̃P0

G̃γ // G̃M

P1
γ′ //

ϕP1

OO

P0
γ // //

ϕP0

OO

M

h

OO

Q1
β′ //

ϕQ1

��

ξ′

OO

Q0
β // //

ϕQ0

��

ξ

OO

M

h′

��
G̃Q1

G̃β′ // G̃Q0

G̃β // G̃M

,
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where the projectivity of Q1 and Q0 is used to get ξ′ and ξ such that the
diagram is commutative. Since ξ is a map between projectives, we obtain
G̃ξ ◦ ϕQ0 = ϕP0 ◦ ξ. Hence

h′ ◦ β = G̃β ◦ ϕQ0 = G̃γ ◦ G̃ξ ◦ ϕQ0 = G̃γ ◦ ϕP0 ◦ ξ = h ◦ γ ◦ ξ = h ◦ β,

by the commutativity of the diagram. Since β is surjective, we obtain h = h′.
Hence, ϕM is well-defined. The naturality follows by standard arguments.

Proposition 2.3. G is right adjoint to T. In particular, there exists a nat-
ural transformation T → ID non-vanishing on Verma modules.

Proof. Lemma 2.2 implies the existence of a non-trivial natural transforma-
tion T → ID as assumed in [AS, Proposition 5.4]. The statement now follows
from [AS, Proposition 5.4] and [KM, Lemma 1].

Proposition 2.4. (1) (T, G) is an adjoint pair of functors. The adjunc-
tion morphism adjT : TG → ID is injective with cokernel Z, and the
adjunction morphism adjT : ID → GT is surjective with kernel Z′.

(2) (C, K) is an adjoint pair of functors. The adjunction morphism adjC :
CK → ID is injective with cokernel Ẑ, and the adjunction morphism
adjC : ID → KC is surjective with kernel Ẑ′.

(3) The functors TG and GT preserve both surjections and injections (but
are neither left nor right exact).

(4) The functors CK and KC preserve both surjections and injections (but
are neither left nor right exact).

Remark 2.5. The twisting functor T can be described and generalized as
follows (this was also observed by W. Soergel): We consider O0 as the cat-
egory mod−A of finitely generated right modules over A = Endg(P) with
endofunctor T. To each simple object L(w) we have the corresponding prim-
itive idempotent ew ∈ A. Let e be the sum of all ew taken over all w such
that TL(w) 6= 0 and define T̃ = − ⊗A AeA : mod−A → mod−A. By
definition we get T(AA) ∼= T̃(AA) and the inclusion AeA ↪→ A induces a
non-trivial element ϕ ∈ Hom(T̃, ID). Applying [KM, Lemma 1] one gets
T̃ ∼= T as endofunctors of mod−A. This description allows a generalization
of twisting functors to a very general setting. The definitions immediately
show that the cokernel of ϕM is always the largest quotient of M , such that
HomA(eA,M) = 0 and one easily derives T̃3 ∼= T̃2. However, if G̃ denotes
the right adjoint of T̃, then the adjunction morphism T̃G̃ → ID does not
need to be injective in general. �
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Proof of Proposition 2.4. In this proof for M ∈ O0 we denote by [M ] the
class of M in the Grothendieck group of O0.

The first part is proved in [AS, Section 5]. For the part (3) it is enough to
show that both, TG and GT, preserve surjections. Assume f ∈ Hom(M, N)
for some M , N ∈ O0 is surjective. The adjunction morphism adjT is surjec-
tive. Then adjTN ◦f = GT(f) ◦ adjTM is surjective; in particular, so is GT(f).

Let im be the image of G(f). Then T(G(f)) : TGM→→T(im) is surjec-
tive and so is T(i) : T(im)→→TGN , since the cokernel of i : im ↪→ GN is
annihilated by T. The composition of both surjections is exactly TG(f) and
so we are done: part (3) follows.

Concerning statement (4), it is enough to prove the claim for CK. Let

us first show that CK preserves inclusions. Let M
f

↪→ N
g
� L be a short

exact sequence in O0. Applying K gives an exact sequence S of the form
KM ↪→ KN � L′ where L′ is a submodule of KL. By definition of K,
the socle of KL, and hence also of L′, contains only simple modules not
annihilated by θs, hence L1C(L′) = 0 by [MS, Section 5]. In particular, CS
is exact, and therefore CK(f) is an inclusion.

On the other hand, applying K to M
f

↪→ N
g
� L yields an exact sequence

T of the form KM ↪→ KN → KL � X, where KX = CX = 0 by [MS,
Proposition 5.3]. Applying the right exact functor C to T and using CX = 0
we obtain that CK(g) is a surjection. This shows part (4).

By [MS, Section 5] the adjunction morphism defines an isomorphism
CK ∼= ID when restricted to modules having a dual Verma flag. Let M ∈ O0

with injective cover i : M ↪→ I. Let adj = adjC for the moment. Then
i ◦ adjM = adjI ◦ CK(i). The latter is injective, hence adjM has to be injec-
tive as well. Note that [CK(M)] = [θK(M)]− [K(M)] = [θ2(M)]− [θ(M)]−
[K(M)] = [θ(M)]−[K(M)] for any M ∈ O0. Hence [M ]−[CK(M)] = [Ẑ(M)].
Dual statements hold for adjC. Part (2) follows.

The following result is surprising in comparison with Proposition 2.3 (note
that the argument of Lemma 2.1 does not work if we replace G̃ by K as K
does not commute with the action of the center of O0).

Proposition 2.6. 1. There is no natural transformation c : C → ID
non-vanishing on Verma modules.

2. There is no natural transformation k : ID → K non-vanishing on
Verma modules.

Proof. We consider the defining sequence 0 → K
i→ θ

adjs→ ID. It induces

an exact sequence Hom(ID, K)
i◦
↪→ Hom(ID, θ)

◦ adjs→ Hom(ID, ID). We have
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Hom(ID, θ) ∼= C, more precisely, the morphism space is generated by the
adjunction morphism adjs and the center C of the category O0 (see [Ba]).
If now ϕ ∈ Hom(ID, K) does not vanish on Verma modules, then, up to a
scalar, i ◦ ϕ = adjs, hence adjs ◦i ◦ ϕ = adjs ◦ adjs 6= 0 (see [Be, Sections 2
and 3] or [An, Lemma 2.2]). This contradicts the exactness of the original
exact sequence.

3 Proof of Theorem 1

Theorem 1 (1) follows immediately from [MS, section 4] and the definition
of Ẑ.

Proof of Theorem 1 (2). Let H be the category of Harish-Chandra bimod-
ules with generalized trivial central character from both sides (see [So2]).
By [BG], the category O0 is equivalent to the full subcategory of H given
by objects having trivial central character from the right hand side. Let
θr

s : H → H denote the right translation through the s-wall. When consid-
ering O0 as a subcategory of H, the functor G is defined as the kernel of

the adjunction morphism θr
s

adj−→ ID (see [Jo1]). Using the Snake Lemma

we obtain that R1G is isomorphic to the cokernel of θr
s

adj−→ ID. Note that
R1G(M) is locally gs-finite ([AS, Corollary 5.9]). Since the top of θr

sM is
s-free, we obtain that it is maximal with this property. Hence R1G ∼= Z and,
in particular, R1G ∼= ID on Os

0.

Remark 3.1. Theorem 1(2) has independently been proved in [Kh] by com-
pletely different arguments. �

Proof of Theorem 1(3). Recall from above that the functor Z is isomorphic

to the cokernel of the θr
s

adj−→ ID. Let M ∈ O0 and P2
h→ P1

f→ P0 � M be
the first three steps of a projective resolution of M . Consider the following
commutative diagram:

GP2
//

� _

��

GP1
//

� _

��

GP0
//

� _

��

GM� _

��
θr

sP2
//

adj

��

θr
sP1

//

adj

��

θr
sP0

// //

adj

��

θr
sM

adj

��
P2

h //

p2
����

P1
f //

p1
����

P0
// //

p0
����

M

ZP2
h // ZP1

f // ZP0

.
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The Snake Lemma gives a natural surjection GM→→Z(P1/ Ker f). We claim
that this even induces a natural surjection GM→→Ker f/Im h. Indeed, if
x ∈ ZP1 such that f(x) = 0 and x 6∈ Im h, we can choose y ∈ P2 such that
p2(y) = x. If f(y) = 0 then y = h(z) for some z ∈ P3; hence x = p2 ◦ h(z) =
h ◦ p3(z), which is a contradiction. Therefore, f(y) 6= 0 and Z(P1/ Ker f)
surjects onto Ker f/Im h providing a surjection Φ : G→→L1Z. We have to
show that Φ induces an isomorphism Q ∼= L1Z.

Claim 3.2.

L1Z∆(x) ∼=

{
∆(sx)/∆(x), if x > sx,

0, if x < sx.

In particular, Φ induces an isomorphism Q ∼= L1Z on Verma modules.

Proof. We prove the claim by induction on l(x). It is certainly true for
x = e. Assume it to be true for x and let t be a simple reflection such that
xt > x. The short exact sequence ∆(x) ↪→ θt∆(x) � ∆(xt) induces an exact
sequence

L1Z∆(x) ↪→ L1Zθt∆(x) → L1Z∆(xt) → Z∆(x) → Zθt∆(x) � Z∆(xt).
(3.1)

If x > sx then l(sxt) ≤ l(sx) + 1 = l(x) < l(xt). Since x > sx and sxt > xt,
we have Z∆(x) = Z∆(xt) = Zθt∆(x) = 0. By induction hypothesis, (3.1)
reduces to

∆(sx)/∆(x) ↪→ θt(∆(sx)/∆(x)) � L1Z∆(xt),

implying L1Z∆(xt) ∼= ∆(sxt)/∆(xt).
If sx > x and sxt < xt then xt > x implies sxt = x. Hence Z∆(xt) =

Zθt∆(x) = Zθt∆(x) = 0, and L1Zθt∆(x) ∼= θtL1Z∆(x) = 0 by induction
hypothesis. We get

L1Z∆(xt) ∼= Z∆(x) ∼= ∆(x)/∆(sx) = ∆(sxt)/∆(xt).

If sx > x and sxt > xt then we have (L1Z)θt∆(x) ∼= θt(L1Z)∆(x) = 0 by
induction hypothesis, and the last terms of (3.1) form the exact sequence

∆(x)/∆(sx) ↪→ θt∆(xt)/∆(sxt) � ∆(xt)/∆(sxt).

This implies that L1Z∆(xt) = 0 and the claim follows.

Claim 3.3. Φ induces an isomorphism Q ∼= L1Z on modules having a Verma
flag.
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Proof. Let S be a short exact sequence of modules having a Verma flag;

then we have a commutative diagram S
gS
↪→ G(S)→→Q(S) → L1Z(S), where

the composition of the last two maps is Φ. Since g is an injection, Q(S)
is left-exact by the Snake Lemma. The sequence L2Z(S) is identical zero,
because L2Z ∼= Z′ by [EW, Theorem 4.3]. Therefore, L1Z(S) is left-exact.
The Five-Lemma implies the claim.

Claim 3.4. Φ induces an isomorphism Q ∼= L1Z on modules having a dual
Verma flag.

Proof. Let S be a short exact sequence of modules having a dual Verma flag;
then G(S) is exact ([AS, Theorem 2.2]) and hence Q(S) is right exact. On
the other hand L1Z(S) is right exact as well, since ZM = 0 for any module
having a dual Verma flag. The Five-Lemma completes the proof.

Let M ∈ O0. By Wakamatsu’s Lemma ([Wa, Lemma 1.2]) there exists a
short exact sequence S : Y ↪→ X � M , for a certain X having a Verma flag
and some Y with a dual Verma flag. Since R1G(Y ) = 0 ([AS, Theorem 2.2]),
the sequence G(S) is exact, and hence Q(S) is right exact. Since ZY = 0,
L1Z(S) is right exact, as well. The Five-Lemma implies that Φ induces an
isomorphism QM ∼= L1ZM . We immediately get Q ∼= Q′, since L1Z ∼= (L1Z)′

by [EW, Theorem 4.3]. Theorem 1(3) follows.

Proof of Theorem 1 (4). Recall the isomorphism R1G ∼= Z from the first
part. By [AS], we have RiG = 0 for all i > 1. Since G(d∆(e)) is acyclic
for G ([AS, Theorems 2.2 and 2.3]), we have the Grothendieck spectral se-
quence RpG(RqG(X)) ⇒ Rp+qG2(X). We immediately get R1G2 ∼= ZG
and R2G2 ∼= Z2 ∼= Z and RiG2 = 0 for i > 2. This proves the first part of
Theorem 1(4).

The second part is proved by analogous arguments provided that we know
that K(I) is K-acyclic for any injective object I. This is equivalent to the
statement that the head of K(I) contains no compositon factor L(w) with
ws > w. There is a short exact sequence X ↪→ Y � I, where X has a
dual Verma flag and Y is the projective-injective cover of I. Using that K is
exact on sequences of modules having a dual Verma flag, we get a surjection
K(Y ) � K(I). In particular, it follows that the head of K(I) is embedd into
the head of K(Y ) ∈ Add(P (w0)). The latter contains only copies of L(w0).
This completes the proof.
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4 Proof of Theorem 2

We start by verifying the indicated relations. By duality, it is enough to
prove every second statement.

The isomorphism TGT ∼= T: Evaluating the exact sequence of functors

0 → TG↪→ID � Z → 0, (4.1)

from Proposition 2.4(1) at T gives rise to the exact sequence 0 → TGT↪→T �
ZT → 0. Further ZT = 0, as the head of any T(M) is s-free by [AS, Corollary
5.2], hence we obtain TGT ∼= T.

The isomorphism G3 ∼= G2 is proved in [Jo1].
The isomorphism T2G ∼= T2: Applying T to (4.1) gives the exact sequence

(L1T)Z → T2G→T � TZ → 0. (4.2)

Theorem 1 gives L1T ∼= Z′, in particular, T(L1T)Z = 0 ([AS, Corollaries 5.8
and 5.9]). Moreover TZ = 0. This means that we can apply T to (4.2) once
more to obtain an isomorphism T3G ∼= T2. Since T3 ∼= T2 we finally get
T2G ∼= T2.

The isomorphism TG2 ∼= GT2: Evaluating the adjunction morphism
adjT : TG ↪→ ID at GT2 we get TGGT2 ∼= TG2 ↪→ GT2. Evaluating
ID � GT at TG2 we obtain TG2 � GTTG2 ∼= GT2 and hence TG2 ∼= GT2.

To complete the proof it is now enough to show that all the functors
from S are not isomorphic (Green’s relation are easily checked by direct
calculations). An easy direct calculation gives the following images under
our functors:

ID G T G2 T2 TG GT GT2

∆(s) ∆(e) T∆(s) ∆(e) T∆(s) ∆(s) ∆(s) ∆(s)
∆(e) ∆(e) ∆(s) ∆(e) T∆(s) ∆(s) ∆(e) ∆(s)

T∆(s) ∆(s) T∆(s) ∆(e) T∆(s) T∆(s) ∆(s) ∆(s)

The claim follows.

5 Proof of Theorem 3

By duality it is enough to prove every second relation.
The isomorphism CKC ∼= C: The proof is analogous to that of TGT ∼= T

in Section 4.
The isomorphism C3K ∼= C2: Applying C to the short exact sequence

CK ↪→ ID � Ẑ produces a short exact sequence X ↪→ C2K � C, where
CX = 0. Applying C once more we obtain the desired isomorphism.
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The isomorphism C2K2C ∼= C2K: Applying K to the short exact sequence
Ẑ ′ ↪→ ID � KC produces a short exact sequence K ↪→ K2C � X, where
KX = CX = 0. Applying now C gives rise to Y ↪→ CK � CK2C, where
KY = CY = 0. Applying C once more gives the isomorphism.

The isomorphism KC2K2 ∼= CK2: Evaluating the short exact sequence
Ẑ ′ ↪→ ID � KC at CK2 we obtain the short exact sequence Ẑ ′CK2 ↪→ CK2 �
KC2K2. The statement follows if we show that Ẑ ′CK2 = 0. The injection
CK ↪→ ID gives an injection CK2 ↪→ K. On the other hand, Ẑ ′K = 0 since,
by the definition of K, any composition factor in the socle of KM is not
annihilated by θ. As CK2 ↪→ K we get that Ẑ ′CK2 = 0 as well.

It is easy to see that, using the relations we have just proved, any product
of C and K can be reduced to one of the elements of Ŝ.

Assume now that s does not correspond to an sl2-direct summand of g.
We do a case-by-case analysis to show that all functors in Ŝ are different.
We start with the following general observation.

Lemma 5.1. Assume that X : O0 → O0 is left exact, X(P (w0)) ∼= P (w0),
and there is a natural transformation ϕ : ID → X on the category of projective-
injective modules in O0, such that ϕP (w0) is an isomorphism. Then X fixes
the isoclasses of projectives.

Proof. Let P be projective. Consider an exact sequence P ↪→ I0 → I1, where
I0 and I1 are projective-injective. Then the square on the right hand side in
the following diagram with exact rows commutes

0 // P
f //

h

���
�
� I0

g //

ϕI0

��

I1

ϕI1

��
0 // XP

X(f) // XI0

X(g) // XI1

and hence we obtain the induced map h, which is an isomorphism by the
Five Lemma.

All Ki are different. We fix a simple reflection t such that st 6= ts. By
a direct calculation one obtains that KiP (t), i > 0, is not projective, in
particular, Ki does not preserve projectives in O0. Now any isomorphism ϕ :
Ki → Kj, i < j, induces a natural transformation ID → Kj−i on the category
Ki(O0), which contains the subcategory of projective-injective modules in
O0. It follows from Lemma 5.1 that Kj−i preserves the category of projective
modules in O0, a contradiction.

All Ci are different by dual arguments.
We consider now Ŝ as a Z-graded monoid with deg(C) = 1 and deg(K) =

−1. This is possible as the defining relations are homogeneous with respect

16



to this grading. It follows from the relations that for any X ∈ Ŝ and for
all i large enough we have CiX ∼= Cj for some Cj. Since we have already
shown that all Cj are different, it follows that the elements of Ŝ having
different degree are not isomorphic. In particular, changing the exponent i
in the expression for X ∈ Ŝ gives a non-isomorphic functor. The rest will be
checked case-by-case.

Ki is not isomorphic to CKi+1 for i > 0: We have CKi+1∆(e) ∼= ∆(s)
and Ki∆(e) ∼= ∆(e) for all i.

Ki is not isomorphic to C2Ki+2 for i > 0: We have Ki+2∆(e) ∼= ∆(e) 6∼=
C∆(s) ∼= C2Ki+2∆(e).

K is not isomorphic to K2C, since Kd∆(e) 6∼= K2d∆(e) ∼= K2Cd∆(e).
We proved that Ki (where i > 0) is not isomorphic to any other functor

in the list. By duality, the same holds for Ci.
KC is not isomorphic to CK: Assume, they are isomorphic, then C ∼=

CKC ∼= CCK ∼= C2K which we have proved to be wrong.
KCi is not isomorphic to K2Ci+1 for i > 0: We have KCid∆(e) ∼=

Kd∆(e) 6∼= K2d∆(e) ∼= K2Ci+1d∆(e).
KC2 is not isomorphic to C2K: We have KC2d∆(e) ∼= Kd∆(e) ∼= d∆(s)

and C2Kd∆(e) ∼= C2d∆(s) ∼= Cd∆(e) ∼= d∆(e).
KC is not isomorphic to KC2K: Assume, they are isomorphic. Then

K ∼= KCK ∼= KC2K2 ∼= CK2, which we know is wrong.
Hence the functors KCi, i > 0, differ from all the others in the list.

Duality gives the same property for CKi.
K2C2 is not isomorphic to C2K2 and K2C is not isomorphic to C2K3: By

definition the socle of K2C2M contains only composition factors which are
not annihilated by θ (for any M ∈ O0). On the other hand C2K2∆(e) ∼=
C2∆(e) ∼= C∆(s) is an extension of ∆(s) with ∆(e)/∆(s). In particular, the
socle is gs-finite. The same argumentation applies to the second pair.

K2C2 is not isomorphic to KC2K: Assume, they are isomorphic then
K2C ∼= K2C2K ∼= KC2K2 ∼= CK2. We have already proved that this is not
possible.

Hence K2Ci, i > 0, (and dually C2Ki) differs from all other functors from
the list. And therefore, any two functors from the list are not isomorphic.

The statements concerning Green’s relations and idempotents are ob-
tained by a direct calculation.

6 Proof of Theorem 4

It will be enough to prove roughly half of the statements. The other half will
follow by duality.
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Lemma 6.1. All maps indicated in the diagram as inclusions are injective;
and all projections are surjective.

Proof. By duality, it is enough to prove the statement for inclusions. The
injectivity of z′, i′, i′T , z′T , z′T 2 is given by definition. For the maps G(g′) and
G(g) the statement follows from the left exactness of G and the fact that G
is zero on locally gs-finite modules. The map Z′(iT) is injective because of
the left exactness of Z′ and the injectivity of iT. The injectivity of a′ follows
from [AS, Proposition 5.6], since a′ is up to a non-zero scalar the adjunction
morphism adjT : TG → ID.

Let us now prove the statement for ZG(g). By definition of Q we have
the following exact sequence of functors: G ↪→ G2 � QG. It gives rise to
the exact sequence

0 ∼= L1Z(QG) → ZG
ZG(g)−→ ZG2

G(pG)
� ZQG ∼= QG.

This implies that ZG(g) is injective.

Claim 6.2. T2(g) : T2 → T2G is an isomorphism. In particular m′ is
well-defined and injective.

Proof. Let K and K ′ be defined by the following exact sequence of functors:

K
� � // ID

g //

q

"" ""EEEEEEEE G // // K ′

im(g)
. �

j
<<zzzzzzzz

,

Since T2K = 0 we get an isomorphism T2(q) : T2 → T2(im(g)) where im(g)
denotes the image of of g. Applying T to the second short exact part gives a
short exact sequence K̃ ↪→ T(im(g)) � TG for some K̃ such that K̃(M) is
locally gs-finite for all M ∈ O0. Applying T once more gives an isomorphism
T2(j) : T2(im(g)) → T2G since TK̃ = 0. Composing T2(j) ◦ T2(q) = T2(g)
implies the first statement. The injectivity of m′ follows from the injectivity
of iTG.

Claim 6.3. There exists a unique isomorphism h : TG2 → GT2 such that

g ◦ g′ = G(g′ ◦ g′T) ◦ h ◦ T(gG ◦ g).

Proof. We start proving uniqueness. If h and h̃ are two such morphisms,
then h − h̃ induces a morphism from Z′T to G since Z′T = ker(g ◦ g′) (this
will be proved later in this section). However, Hom(Z′T, G) = 0 as the socle
of GM is s-free and Z′TM is gs-finite for any M ∈ O0.
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It is left to prove the existence. Note that TG2 ∼= GT2 by Theorem 2. For
any h ∈ End(TG2, GT2) the natural transformation ϕ(h) = G(g′ ◦ g′T) ◦ h ◦
T(gG ◦g) belongs to Hom(T, G) and, comparing the action on the projective-
injective module P (w0) ∈ O0 we see that ϕ is injective, hence an isomorphism
(by the independent Theorem 5). The claim follows.

We proceed with the map Q′T(g). Let M ∈ O0 and consider the map
gM : M → GM . The map T (gM) fits into the exact sequence Q′M → TM →
TGM . To calculate Q′T(g) we consider the following commutative diagram:

Q′Q′M = 0 //
� _

��

Q′TM
Q′T(gM ) //

� _

��

Q′TG(M)� _

��
TQ′M = 0 //

��

T2M
T 2(gM ) //

��

T2GM

��
TGQ′M = 0 // TGTM

TGT(gM ) // TGTGM

,

where the first row is the kernel sequence and hence is exact. It follows
that Q′T(g) is injective. The injectivity of Q(g ◦ g′) is proved by analogous
arguments. This completes the proof of Lemma 6.1.

Lemma 6.4. All configurations containing only solid arrows commute.

Proof. We use the notations from Figure 2. The squares /.-,()*+2 , /.-,()*+6 , /.-,()*+9 , and 7654012310
commute by definition. The commutativity of /.-,()*+3 follows from the commu-
tativity of /.-,()*+2 , /.-,()*+9 , and 7654012310 . The squares /.-,()*+1 , and /.-,()*+4 commute since z′ is a
natural transformation and Z′ and Z′T are functors (note that g′T = T(g′)).
The commutativity of /.-,()*+5 reads iT = z′T2 ◦ Z′(iT ), which is true as Z′ = ID on
gs-finite modules. The commutativity of /.-,()*+7 reads iT = m′ ◦ Q′T(g), which
is equivalent to T2(g) ◦ iT = iTG ◦ Q′T(g), the latter being true as i is a
natural transformation. Commutativity of /.-,()*+8 means i ◦ Q′(a′) = g′T ◦ m′,
which is equivalent to i ◦ Q′(a′) = g′T ◦ (T2(g))−1 ◦ iTG. Since i is a natural
transformation we have i ◦ Q′(a′) = T(a′) ◦ iTG and our equality reduces to
T(a′) ◦ iTG = g′T ◦ (T2(g))−1 ◦ iTG. To prove the latter it is enough to show
that T(a′) = g′T ◦ (T2(g))−1, which follows from g′T = T(g′) and the definition
of a′. The remaining configurations commute by duality.

To complete the proof of Theorem 4 it is left to prove the exactness of
the indicated sequences. By duality, it is sufficient to prove the exactness of
the sequences 1 to 10. The sequences 8 and 3 are exact by the definitions of
a and Q respectively. The exactness of 4 follows from [AS, Proposition 5.6].
The exactness of 7 follows from T(g′) = g′T and the exactness of the sequence,
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��
��
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// //

WWWW//////
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OO

Figure 2: Schematic picture of the diagram from Theorem 4

dual to 3. Applying the left exact functor Z′ to the short exact sequence 7
and using Z′Q′ = Q′ shows that 5 is exact. The exactness of 6 follows by
comparison of characters from the facts that Q′T(g) is an inclusion and Q′(a′)
is a surjection. The exactness of 10 follows by evaluating the exact sequence
8 at modules of the form GM .

Let us now show that 2 is exact. The cokernel Coker of g ◦ g′ : T → G is
gs-finite since already the cokernel of g is gs-finite, see [Jo1]. Further, for any
M ∈ O0 we have that Q(M) is the maximal gs-finite quotient of GM since
the head of TM is s-free. This implies the exactness of the sequence 2 and
also of 9 at the term G. By uniqueness of the canonical maps the exactness
in T follows by duality. Exactness of 1 follows by analogous arguments.

7 Proof of Theorem 5

We abbreviate Hom(X, Y ) = HX,Y for X,Y ∈ S. By duality we have vector
space isomorphisms HX,Y

∼= HY ′,X′ .

Proposition 7.1. End(X) ∼= C as algebras for any X ∈ S.
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Proof. For X = ID the statement is well-known and follows from [So1], since
End(ID) ∼= C ∼= Endg(P (w0)). Note that GP (w0) ∼= TP (w0) ∼= P (w0) (see
[AS, Proposition 5.3]); hence XP (w0) ∼= P (w0) for all X ∈ S. This means
that sending ϕ ∈ End(ID) to X(ϕ) defines an injective algebra morphism
from C to End(X) for every X ∈ S, as already the map ϕP (w0) 7→ X(ϕP (w0))
is injective. We only have to check the dimensions.

We claim that Φ : End(T) → Endg(TP (w0)), ϕ 7→ ϕP (w0), is injective.
Assume that Φ(ϕ) = 0. Let P ∈ O0 be projective with injective hull i : P ↪→
I. The cokernel Q has a Verma flag, hence 0 → TP

Ti
↪→ TI→→TQ → 0 is

exact (see [AS, Theorem 2.2]). Since I is a direct sum of copies of P (w0), we
have ϕI = 0 and therefore ϕP = 0. Since T is right exact we get ϕM = 0 for
any M ∈ O0. Hence Φ is injective and End(T) ∼= C. We get End(G) ∼= C by
duality.

The adjointness from Proposition 2.4 together with Theorem 2 imply
End(T2) ∼= Hom(ID, G2T2) ∼= Hom(ID, G2) ∼= End(T ) ∼= C, End(GT) ∼=
Hom(TGT, T) ∼= End(T) ∼= C and also End(GT2) ∼= Hom(TGT2, T2) ∼=
End(T2) ∼= C. The remaining parts follow by duality.

Claim 7.2. HX,Y 6= 0 for any X, Y ∈ S.

Proof. Since both X and Y are isomorphic to the identity functor when re-
stricted toA = Add(P (w0)) (see Lemma 2.1) we can fix a natural transforma-
tion ϕ ∈ Hom(X|A, Y |A) ∼= C of maximal degree. For M ∈ O0 indecompos-
able, M /∈ A, we set ϕM = 0. For M ∈ O0 arbitrary we fix an isomorphism
αM : M ∼= M1⊕M2, such that M1 is a maximal direct summand belonging to
A and set ϕM := X(α−1

M ) ◦ (ϕM1 ⊕ϕM2) ◦X(αM). We claim that this defines
an (obviously nontrivial) element ϕ ∈ HX,Y . Indeed, let M ∼= M1 ⊕M2 and
N ∼= N1⊕N2 and f ∈ Homg(M, N) with decomposition f =

∑2
i,j=1 fi,j such

that fi,j ∈ Homg(Mi, Nj). Then ϕN ◦X(f1,1) = Y (f1,1) ◦ϕM by definition of
ϕ. The definitions also immediately imply 0 = Y (f2,2) ◦ ϕM = ϕN ◦X(f2,2).
Moreover, we also have 0 = ϕN ◦ X(f1,2) and 0 = Y (f2,1) ◦ ϕM . Indeed, if
Y (f1,2)◦ϕM 6= 0 or ϕN ◦X(f1,2) 6= 0 then either a direct summand of Y (M1)
embeds into Y (N2) or X(M2) surjects onto a direct summand of Y (N1).
Both contradict the following statement: Assume R ∈ S and M ∈ O0 does
not have P (w0) as a direct summand then neither so does R(M). Let first
R ∈ {G, C}. If P (w0) is a direct summand of R(M) then R′RM surjects
onto R′P (w0) ∼= P (w0), hence P (w0) is a direct summand of R′RM . The
inclusion R′R ↪→ ID from Proposition 2.4 implies that P (w0) is a submodule
(hence a direct summand) of M . Dual arguments apply to R ∈ {T, K} and
the claim follows.

Claim 7.3. The C-entries in the table of Theorem 5 are correct.
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Proof. The statement is obtained by playing with the adjointness of T and
G using Proposition 7.1 and the identities from Theorem 2. Let X, Y ∈ S.
We have isomorphisms HT2,X

∼= HT2G2,X
∼= HG2,G2X

∼= HG2,G2
∼= C. This gives

the spaces in question in the seventh row (and the sixth column by duality).
The isomorphisms HTG,ID

∼= HG,G
∼= C and HTG,GX

∼= HT2G,X
∼= HT2,X

∼= C
imply the claim for the fifth row (and the fourth column by duality). The
spaces in question in the first, third and fourth rows follow from HTX,GY

∼=
HT2X,Y

∼= C and HGT,G
∼= HTGT,ID

∼= HT,ID
∼= HID,G, HID,GTG

∼= HT,TG. ¿From
HGT2,G

∼= HTGT2,ID
∼= HT2,ID

∼= C and HGT2,GT2
∼= HTGT2,T2

∼= HT2,T2
∼= C we get

the spaces in the last row. This completes the proof.

To proceed we use the following general statement:

Proposition 7.4. Let A be an abelian category with enough projectives. Let
F , J , H be endofunctors on A. Assume that F preserves surjections, and for
any projective P ∈ A there exists some N ∈ A such that F (P ) ∼= FH(N).
Then the restriction defines an injective map Hom(F, J) ↪→ Hom(FH, JH).

Proof. It is enough to show that for any ϕ ∈ Hom(F, J) such that ϕH = 0 we
have ϕ = 0. Let M ∈ A with projective cover f : P � M . We choose N ∈ A

such that F (P ) ∼= FH(N). The first row of the following commutative
diagram is exact, since F preserves surjections.

FH(Q) ∼= FP
f // //

ϕH(Q)

��

F (M)

ϕM

��

// 0

JH(Q) // // GM

.

The surjectivity of f and ϕH(Q) = 0 imply ϕM = 0.

The spaces with labeling different from 4: The indicated equalities with
labeling different from 1 and 4 follow directly by duality. By [AS], the ad-
junction morphism adjT : ID � GT(P ) is an isomorphism on projectives.
Hence, we may apply Proposition 7.4 to F = ID, J = T, and H = GT
to obtain HID,T ↪→ HGT,TGT

∼= HGT,T. Further, the adjunction morphism
adjT : TG ↪→ ID is injective, hence HG,TG ↪→ HG,ID and HGT,T ↪→ HID,T by
duality.

The equality of the spaces denoted by 4: we have the following isomor-
phisms

HGT2,TG
∼= HTG2,TG

∼= HG2,GTG
∼= HG2,G (7.1)

HG,GT2
∼= HTG2,T

∼= HG2,GT
∼= HTG,T2 (7.2)

HG2,GT2
∼= HTG2,T2

∼= HGT2,T2 (7.3)

HG,GT
∼= HTG,T . (7.4)
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Note that all the spaces labeled by 4 occur in this list. The inclusion TG ↪→
ID provides inclusions GT2 ∼= TG2 ↪→ G and TG2 ∼= TG2T ↪→ GT; hence
HG2,GT2 ↪→ HG2,G and HG,TG2 ↪→ HG,GT (i.e. (7.3) is ‘included’ in (7.1) and
(7.2) is ‘included’ in (7.4)). Applying Proposition 7.4 with F = GT2, J = T
and H = T (F = ID, J = GT2, H = G respectively) we get inclusions
HGT2,T ↪→ HGT2,T2 and HID,GT2 ↪→ HG,GT2G

∼= HG,GT2 (i.e. (7.2) is ‘included’ in
(7.3) and (7.1) is ‘included’ in (7.2)). Hence, all the spaces from (7.1)–(7.4)
have the same dimension.

The existence of the inclusions from A: The inclusion TG ↪→ ID implies
HGT,TG ↪→ HGT,ID. Applying Proposition 7.4 to F = ID, J ∈ {T, TG}, and
H = G2, (this is possible since G2(P ) ∼= P for any projective P ) we get
inclusions HID,T ↪→ HG2,TG2 and HID,TG ↪→ HG2,TG2 . Finally, the inclusion
G ↪→ G2 gives HG2,G ↪→ HG2,G2

∼= C.
The existence of the inclusions from B: Applying Proposition 7.4 to F =

ID, J = T2 and H ∈ {G, G2}, we obtain the inclusions

HID,T2 ↪→ HG,T2 , HID,T2 ↪→ HG2,T2 . (7.5)

Finally, using again the adjunction TG ↪→ ID we get HG2,TG ↪→ HG2,ID.
The existence of the inclusion C: We use the following result (which gen-

eralizes without problems to arbitrary parabolic subalgebras):

Proposition 7.5. There is a natural isomorphism of rings End(Z) ∼= Cs.

Proof. Denote by I∆ the direct sum of all indecomposable projective-injective
modules in Os

0 and consider I∆ as an object in O0. We claim that Φ : ϕ 7→ ϕQ

defines an isomorphism End(Z) ∼= Z(Endg(I
∆)), where the latter denotes the

center of Endg(I
∆). Note that Z(Endg(I

∆)) ∼= End(IDOs
0
) ([St2, Theorem

10.1]) and End(IDOs
0
) is isomorphic to Cs ([So1], [BGS]).

Φ is injective: Let ϕ ∈ End(Z), ϕI∆ = 0 and let P be a projective object
in O0. We fix an inclusion i : ZP ↪→ J1, where J1 = ⊕i∈I1I

∆ for some finite
set I1 (see [Ir2]). Since Z is the identity on Os

0 we have ϕP = ϕZP and 0 =
ϕJ1 ◦ Z(i) = Z(i) ◦ ϕZP . The injectivity of Z(i) implies ϕP = 0. Let M ∈ O0

be arbitrary with projective cover f : P→→M . Then ϕM ◦ Z(f) = Z(f) ◦ ϕJi
,

i.e. ϕM = 0, since Z is right exact.
Φ is surjective: Let g ∈ Z(Endg(I

∆)). For P ∈ O0 projective we fix a
coresolution

ZP
i

↪→ J1
h−→ J2,

where Ji
∼= ⊕i∈Ii

I∆ for some finite sets Ii (i = 1, 2). For the existence of
such a tilting resolution one can use [Ir2] and arguments, analogous to that
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of [KSX, 3.1] (see [St2]). By definition, g induces a natural map gZP ∈
Endg(ZP ) making the following diagram commutative:

ZP
� � Z(f) //

gP

��

ZJ1

Z(h) //

gJ1

��

ZJ2

gJ2

��
ZP

� � Z(f) // ZJ1
Z(h) // ZJ2

.

Setting gP = gZP defines a natural transformation g̃ : Z → Z, when restricted
to the additive category of projective objects in O0 such that g̃I∆ = g. The
right exactness of Z ensures that g̃ extends uniquely to some g̃ ∈ End(Z).
Hence Φ is surjective. In particular, End(Z) = Z(Endg(I

∆)) = Z(Os
0)
∼=

Cs.

The remaining part from Theorem 5 follows if we prove the following
statements:

Proposition 7.6. Let F : A → B be a dense functor between two cate-
gories A and B. Then the restriction gives rise to an injective linear map
End(IDB) ↪→ End(F ). In particular, ZQ : O0 → Os

0 provides an inclusion
Cs ↪→ HG,T.

Proof. The first statement of the proposition is obvious. Since ZQM = M
for any M ∈ O0 we may consider Q = ZQ as a functor from O0 to Os

0. We
claim that Q is dense, i.e. for any N ∈ Os

0 there exists an K ∈ O0 such
that ZQ(K) ∼= N . Indeed, let P � N be a projective cover of N in O0

with kernel K. Applying G to K ↪→ P � N we obtain the exact sequence
GK ↪→ GP → GN and GN = 0. In particular, GK ∼= GP . Since the socle
of P , and therefore also of K, is annihilated by Z, the map gK is injective
(see [Jo2]). Hence we have QK ∼= (GK)/K ∼= (GP )/K ∼= P/K ∼= N .

By Theorem 4 we have morphisms G
p−→ Q

α−1

−→ Q′ i
↪→ T, where α−1

is an isomorphism. We consider the linear map ξ : End(Q) → HG,T defined
as ξ(ϕ) = i ◦ α−1 ◦ ϕ ◦ p. Since p is surjective, i is injective, and α−1 is an
isomorphism, ξ defines an inclusion End(Q) ↪→ HG,T. To complete the proof
it is now enough to show that End(Q) contains Cs. This follows directly from
the first part of the proposition, since End(ZO0)

∼= Cs (by Proposition 7.5
and [BGS]).

Remark 7.7. The case g = sl2 shows already that some spaces HX,Y , X, Y ∈
S can be smaller than C. Indeed, in this case we have HG,ID

∼= C and HGT,TG
∼=

C. Although the remaining ‘unknown’ spaces from Theorem 5 are isomorphic
to C in this particular example, the isomorphism is accidental and is not given
by a natural action of C on P (w0) (in contrast to the cases, which are known
to be isomorphic to C from Theorem 5). �
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8 Proof of Theorem 6

Let I(Ŝ) denote the set of all idempotents in Ŝ. For X, Y ∈ I(Ŝ) we set
HX,Y = Hom(X, Y).

Proposition 8.1. End(X) ∼= C as algebras for any X ∈ Ŝ.

Proof. An injective algebra morphism from C to End(X) for every X ∈ Ŝ is
constructed using the same arguments as in Proposition 7.1. The arguments,
analogous to that of Proposition 7.1, also give an isomorphism End(C) ∼= C.

Let us show that End(C2) ∼= C. We claim that the evaluation ϕ 7→ ϕP (w0)

defines an inclusion End(C2) ↪→ Endg(C
2P (w0·0). Assume ϕP (w0) = 0 and let

P ∈ O0 be projective with injective hull i : P ↪→ I. We get an exact sequence
0 → ker C2(i) → C2P → C2I. By assumption we have 0 = ϕI ◦ C2(i) =
C2(i) ◦ ϕP . In particular, the image of ϕP is contained in the kernel of
C2(i). On the other hand Homg(C

2P, ker C2(i)) ↪→ Homg(θCP, ker C2(i)) ∼=
Hom(CP, θ ker C2(i)) = 0, since θ ker C2(i) = 0. Therefore, ϕP = 0 and
hence ϕ = 0, since C2 is right exact.

If i > 2 then we have

End(Ci) ∼= Hom(ID, KiCi) ∼= Hom(ID, K2C2) ∼= End(C2) ∼= C.

End(KCi) ∼= Hom(CKCi, Ci) ∼= End(Ci) ∼= C, i > 0; and End(K2Ci) ∼=
Hom(C2K2Ci, Ci) ∼= End(Ci) ∼= C, i > 1.

Finally, there are isomorphisms End(CK2C) ∼= Hom(K2C, KCK2C) ∼=
End(K2C) ∼= Hom(C2K2C, C) ∼= Hom(C2K, C) ∼= Hom(CK, KC) and it is
left to show that Hom(CK, KC) embeds into C as a vector space. For this we
show that the map Φ : Hom(CK, KC) → Endg(P (w0)) ∼= C, ϕ 7→ ϕP (w0) is
injective. Assume that ϕP (w0) = 0. Since both CK and KC preserve injections
(see Proposition 2.4), from the injection i : P ↪→ I above we obtain that ϕ
must be zero on all projective modules. Taking a projective cover of any
M ∈ O0 and using the fact that both CK and KC preserve surjections (see
Proposition 2.4), we obtain that ϕ is zero. The rest follows by duality.

Note that KC preserves projective modules, since the adjunction from
Proposition 2.4 is an isomorphism on projective objects.

Equality of the spaces labeled by 2: The inclusion CK ↪→ ID from Propo-
sition 2.4 induces an inclusion HK2C2,CK ↪→ HK2C2,ID. By duality we have
HK2C2,CK

∼= HKC,C2K2 and HK2C2,ID
∼= HID,C2K2 . Applying Proposition 7.4 to

F = ID, H = KC, and J = C2K2 we obtain HID,C2K2 ↪→ HKC,C2K2 and thus
all these four spaces are isomorphic.

Equality of the spaces labeled by 3: The inclusion CK ↪→ ID induces an
inclusion HKC2K,CK ↪→ HKC2K,ID. By duality we have HKC2K,CK

∼= HKC,CK2C
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and HKC2K,ID
∼= HID,CK2C. Applying Proposition 7.4 to F = ID, H = KC, and

J = CK2C we obtain HID,CK2C ↪→ HKC,CK2C and thus all these four spaces are
isomorphic.

Equality of the spaces labeled by 4: Evaluating CK ↪→ ID at KC gives
an inclusion CK2C ∼= KC2K ↪→ KC. Applying Hom(K2C2, −) produces
HK2C2,KC2K ↪→ HK2C2,KC. By duality we have HK2C2,KC2K

∼= HKC2K,C2K2 and
HK2C2,KC

∼= HCK,C2K2 . Applying Proposition 7.4 to F = CK, H = KC, and
J = C2K2 we obtain HCK,C2K2 ↪→ HCK2C,C2K2 and thus all these four spaces
are isomorphic.

Applying the duality implies that all other spaces labeled by the same
number coincide.

All spaces labeled by C are correct: For the diagonal entries this follows
from Proposition 8.1 above. For any X ∈ I(Ŝ) we have HC2K2,X

∼= HK2,K2X
∼=

HK2,K2
∼= C and HX,K2C2

∼= C by duality. That HCK,KC
∼= C was shown in the

proof of Proposition 8.1. Using adjunction and duality we have HCK,KC2K
∼=

HC2K,C2K
∼= C and HID,KC

∼= HC,C
∼= C ∼= HK,K

∼= HCK,ID.
It is left to establish the claimed inclusions. Applying Hom(KC, −) to the

inclusion CK ↪→ ID we get HKC,CK ↪→ HKC,ID. Applying Proposition 7.4 to
F = ID, H = KC, and J = CK we obtain HID,CK ↪→ HKC,CK2C. Applying
Proposition 7.4 to F = KC2K, H = KC, and J = CK we obtain HKC2K,CK ↪→
HCK2C,CK2C

∼= C. Applying Hom(K2C2, −) to the inclusion KC ↪→ K2C2

obtained above we get HK2C2,KC ↪→ HK2C2,K2C2
∼= C.

Remark 8.2. Behind our argumentation is the following general fact: Let
F and G be two endofunctors on O0. Assume that F preserves surjections
and G preserves injections. Then the map Hom(F, G) → Endg(P (w0)), ϕ 7→
ϕP (w0), is injective. Indeed, let ϕP (w0) = 0. Since the injective envelope of
any projective P ∈ O0 belongs to Add(P (w0)), we can use that G preserves
injections to obtain ϕP = 0. Taking now the projective cover of any M ∈ O0

and using that F preserves surjections we obtain ϕM = 0.
One can show that K2C2 preserves injections and C2K2 preserves surjec-

tions, which implies that HX,Y ↪→ C for all X ∈ {ID, CK, KC2K, C2K2, Ci, KCi :
i > 0} and Y ∈ {ID, KC, KC2K, K2C2, Ki, CKi : i > 0}. �

9 Proof of Theorem 7

We have Exti
O0

(Pw,Pw) = HomDb(O0)(LTwP ,LTwP [i]) = Exti
O0

(P ,P) = 0,
i > 0, (see [AS]).

Claim 9.1. P admits a finite coresolution by modules from Add(Pw).
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Proof. Let w ∈ W . If l(w) = 0, the statement is obvious. Assume, it is
true for all w̃ where l(w̃) ≤ l(w) and let s be a simple reflection such that
sw > w. We have to show that P has a finite Add(Psw)-coresolution. Since
Ext>0

O0
(Px,Px) = 0, for all x ∈ W , the arguments from [Ha, Chapter III] or

[MO, Lemma 4] reduce the problem to showing that there exists a w̃, l(w̃) ≤
l(w), such that P w̃ admits a coresolution by modules from Add(Psw). Since
all Tx commute with translation functors, it is enough to prove the statement
for Tŵ∆(e) ∼= ∆(ŵ). We choose w̃ such that sw = w̃t for some simple
reflection t with l(w̃t) > l(w̃) and consider the short exact sequence ∆(e) ↪→
P (t) � ∆(t). Applying Tw̃ we obtain the short exact sequence ∆(w̃) ↪→
Tw̃P (t) � ∆(sw). Since P (t) ∼= TtP (t), it follows that Tw̃P (t) ∼= TswP (t).
Thus, Tw̃P (t), ∆(sw) ∈ Add(Psw), and hence ∆(w̃) has a coresolution by
modules from Add(Psw).

We proved that Pw is a generalized tilting module for any w ∈ W . Since
O0 has finite projective dimension, it is a generalized cotilting module as well
([Re, Corollary 2.4]).

The remaining assertions from the first part of the theorem follow by
duality. Since Tw0∆(e) ∼= ∆(w0) is a tilting module and Tw0 commutes with
translations, it follows that Pw0 ∼= T ∼= Iw0 (see also [KM]). Let w ∈ W and
sw > w (i.e. sww0 < ww0). The adjunction morphism TsGs ↪→ ID gives
TswTw0P ∼= TsTwTw0P ∼= TsGww0I ∼= TsGsGsww0I ↪→ Gsww0I. Comparing
the characters and using duality shows the second part of the theorem.

It remains to prove the formulas for the homological dimensions. Twisting
functors commute with translation functors, hence we get projdim(Pw) =
projdim(Tw∆(e)) = projdim(∆(w)) and injdim(Pw) = injdim(∆(w)). For
Verma modules the values are easy to compute and are given by the formulas
from the theorem. The remaining statements follow by duality.

10 Proof of Theorem 8

We start with the following

Proposition 10.1. Let w ∈ W and M ∈ O0 be a module having a Verma
flag. Then L1Cs(Cw−1M) = 0 for any simple reflection s such that ws > w.
In particular, Cw−1P is acyclic for Cs for any projective object P and hence
LCsLCw−1

∼= L(CsCw).

Proof. By [MS, Section 5], Cw−1M has a w−1-shuffled Verma flag. Hence,
using Theorem 1, it is enough to show that the socle of every w−1-shuffled
Verma module Cw−1∆(x) contains only L(y) such that ys < y. But Cw−1∆(x)
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is at the same time a w−1w0-coshuffled dual Verma module and sw−1w0 <
w−1w0 as ws > w. This implies that Cw−1∆(x) ∼= KsN for some N ∈ O0

and thus Cw−1∆(x) has desired socle by definition of Ks.

Claim 10.2. wP is a generalized (co-)tilting module.

Proof. The case w = e is clear. Assume the statement to be true for w ∈ W
and let s be a simple reflection such that sw > w. By definition

0 → P (x)
adjs(P (x))−→ θsP (x) −→ CsP (x) → 0

is exact for any x ∈ W . Applying Cw and using the previous proposition we
get an exact sequence

0 → CwP (x)
adjs(P (x))−→ CwθsP (x) −→ CwCsP (x) → 0.

Since CwCs
∼= Csw (see [MS]) and CwθsP (x) ∼= CwCsθsP (x) ∼= CswθsP (x),

CwP (x) has a two-step coresolution with modules from Add(CwsP). Since
LCw induces an equivalence on the bounded derived category of O0 (by
Proposition 10.1 and [MS]) we have Ext>0(CwP , CwP) ∼= Ext>0(P ,P). The
arguments from Claim 9.1 show that wP is a generalized tilting module,
hence also a generalized cotilting module by [Re].

Now let us prove Theorem 8(3). Using Proposition 10.1 and [MS, Sec-
tion 5] the statement reduces to verifying that w0P ∼= T . Since Cw0 maps
Verma modules to dual Verma modules, Proposition 10.1 implies that Cw0P
has a dual Verma flag and satisfies Exti

O0
(Cw0P , d ∆(x)) = 0 for all x ∈ W .

From [Ri] it follows that Cw0P has a Verma flag as well and thus Cw0P ∼= T .
Let L = L(y) ∈ O0 be a simple object and M ∈ O0 be a module with

Verma flag. Then Proposition 10.1 gives

Exti
O(CsCwM, L) ∼= HomDb(O0)(L(CsCw)M, L[i])

∼= HomDb(O0)(CwM,RKsL[i]).

The latter is Exti+1
O (CwM, L) if y < ys and it is Exti

O(CwM, KsL) otherwise
(see [MS]). In particular, M = P gives projdim(wsP) ≤ projdim(wP)+1, and
M = T gives projdim(CwsT ) ≤ projdim(CwT ) + 1. However, we know that
projdim(T ) = injdim(T ) = l(w0) (see e.g. [MO]) and projdim(I) = l(w0)
and all the formulae for homological dimensions follow.

Remark 10.3. It is well-known (see e.g. [AL], [Ma]) that the set of twisted
Verma modules are equal to the set of shuffled Verma modules. This is not
the case for projective objects. In fact, if g = sl3 and s, t are the two simple
reflections, then direct calculations show that CsP (t) is neither a twisted
projective nor a completed injective object. �
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Basel, 2002.

[AS] H. H. Andersen, C. Stroppel, Twisting functors on O. Represent. The-
ory 7 (2003), 681-699.

[AR] M. Auslander, I. Reiten, Applications of contravariantly finite subcat-
egories. Adv. Math. 86 (1991), no. 1, 111–152.

[Ba] E. Backelin, The Hom-spaces between projective functors. Represent.
Theory 5 (2001), 267–283 (electronic).

[Be] I. N. Bernstein, Trace in categories. Operator algebras, unitary rep-
resentations, enveloping algebras, and invariant theory (Paris, 1989),
417–423, Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990.
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