
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/129577/

Deposited on: 8 November 2016
Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Parasitology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>PAR-2015-0243.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Article - Standard</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Pastor-Fernández, Iván; Complutense University of Madrid, Animal Health Regidor-Cerrillo, Javier; Complutense University of Madrid, Animal Health Jiménez-Ruiz, Elena; Complutense University of Madrid, Animal Health Álvarez-García, Gema; Complutense University of Madrid, Animal Health Marugán-Hernández, Virginia; Complutense University of Madrid, Animal Health Hemphill, Andrew; Institute of Parasitology, University of Bern Ortega-Mora, Luis; Complutense University of Madrid, Animal Health</td>
</tr>
<tr>
<td>Key Words:</td>
<td>Neospora caninum, NcROP40, NcROP2Fam-1, characterization, in silico analysis, lytic cycle of tachyzoites, immunolocalization, secretion assays, mRNA expression profile, protein phosphorylation</td>
</tr>
</tbody>
</table>
Characterization of the *Neospora caninum* NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle

Iván Pastor-Fernández\(^1\), Javier Regidor-Cerrillo\(^1\), Elena Jiménez-Ruiz\(^1\), Gema Álvarez-García\(^1\), Virginia Marugán-Hernández\(^1\), Andrew Hemphill\(^2\), Luis M. Ortega-Mora\(^1\)*.

\(^1\) SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.

\(^2\) Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.

Running title: NcROP40 and NcROP2Fam-1 characterization during the tachyzoite lytic cycle

*Corresponding author: Luis Miguel Ortega Mora. Tel.: +34-913944069; fax: +34-913944098. E-mail address: luis.ortega@vet.ucm.es
SUMMARY

Virulence factors from the ROP2-family have been extensively studied in *Toxoplasma gondii*, but in the closely related *Neospora caninum* only NcROP2Fam-1 has been partially characterized to date. NcROP40 is a member of this family and was found to be more abundantly expressed in virulent isolates. Both NcROP2Fam-1 and NcROP40 were evaluated as vaccine candidates and exerted a synergistic effect in terms of protection against vertical transmission in mouse models, which suggests that they may be relevant for parasite pathogenicity. NcROP40 is localized in the rhoptry bulbs of tachyzoites and bradyzoites, but in contrast to NcROP2Fam-1, the protein does not associate with the parasitophorous vacuole membrane due to the lack of arginine-rich amphipathic helix in its sequence. Similarly to NcROP2Fam-1, NcROP40 mRNA levels are highly increased during tachyzoite egress and invasion. However, NcROP40 up-regulation does not appear to be linked to the mechanisms triggering egress. In contrast to NcROP2Fam-1, phosphorylation of NcROP40 was not observed during egress. Besides, NcROP40 secretion into the host cell was not successfully detected by immunofluorescence techniques. These findings indicate that NcROP40 and NcROP2Fam-1 carry out different functions, and highlight the need to elucidate the role of NcROP40 within the lytic cycle and to explain its relative abundance in tachyzoites.
KEYWORDS

Neospora caninum, NcROP40, NcROP2Fam-1, characterization, *in silico* analysis, lytic cycle of tachyzoites, immunolocalization, secretion assays, mRNA expression profile, protein phosphorylation.

KEY FINDINGS

NcROP40 is localized in the rhoptry bulbs of tachyzoites and bradyzoites.

NcROP40 does not associate with the PVM, and its secretion could not be ruled out.

NcROP2Fam-1 secretion was detected during or following host cell invasion.

NcROP40 and NcROP2Fam-1 mRNA levels are highly increased during tachyzoite egress and invasion.

DTT-induced egress increases transcription of NcROP2Fam-1, while NcROP40 expression is not affected.

In contrast to NcROPFam-1, NcROP40 phosphorylation is not associated with egress.
INTRODUCTION

Neospora caninum is a cyst-forming parasite that causes neuromuscular disorders in dogs, and abortion, stillbirth and birth of weak offspring in bovines. This protozoan is phylogenetically related to *Toxoplasma gondii*, with which it shares the ability to cross the placenta and to infect the foetus. In cattle, asexually proliferating tachyzoites and bradyzoites are the only stages described. Tachyzoites have a high proliferative potential and are thus responsible for the dissemination of the parasite into different tissues. Bradyzoites ensure parasite persistence by forming tissue cysts located in immune-privileged organs such as the brain (Dubey and Scharas 2011). Since these two stages are strictly intracellular, they have developed a number of mechanisms to actively invade their host cells and modulate their intracellular compartment to optimize intracellular survival and growth. These processes are grouped under the name of lytic cycle (Hemphill et al. 2013). Important structures exclusively found in apicomplexans, namely the apical complex and specialized secretory organelles such as micronemes, rhoptries and dense granules play important roles in the lytic cycle. Contents of these secretory organelles are sequentially released to ensure invasion, intracellular maintenance and replication of the parasite in parasitophorous vacuoles, where they mediate and influence the host cell machinery (Kemp et al. 2013). Among apicomplexan parasites, the molecular basis of the lytic cycle is highly conserved, and the underlying of mechanisms described for *T. gondii* (Carruthers and Sibley 1997) and *Plasmodium* spp. (Cowman et al. 2012) are likely to be similar in *N. caninum* (Hemphill et al. 2013).

Rhoptries have been the subject of extensive studies during the last years due to the role of their proteins in host cell invasion and cell regulation processes. Some of these proteins (RONs) are restricted to the neck, and others (ROPs) to the bulb of these
organelles. RONs are involved in the formation of the moving junction required for parasite entry into the host cells (Beck et al. 2014). The ROP2-family represents one of the largest and best-studied group of ROP proteins in *T. gondii*, and includes protein kinases and pseudokinases that are proven virulence factors (Etheridge et al. 2014; Lei et al. 2014; Reese et al. 2014; Schneider et al. 2013). To our knowledge, most of the ROP2-like proteins are secreted into the host cytosol during invasion and some of them can associate with the parasitophorous vacuole membrane (PVM), but their function is still largely unknown (Boothroyd and Dubremetz 2008; Bradley and Sibley 2007; El Hajj et al. 2006). The ROP2-family has been recently catalogued in *N. caninum* (Talevich and Kannan 2013), but only limited information is available on this protein family. Currently, only *NcROP1*, *NcROP2Fam-1*, *NcROP4*, *NcROP5*, *NcROP9*, *NcROP30* and *NcROP40* have been identified by proteomic studies (Marugán-Hernández et al. 2011; Regidor-Cerrillo et al. 2012; Sohn et al. 2011), but their function has not been described. To date, the only *N. caninum* rhoptry protein that has been partially characterized is *NcROP2Fam-1* (Alaeddine et al. 2013). This protein was previously considered the orthologue of *TgROP7* (Reid et al., 2012). However, it has been recently shown that *TgROP7* and *NcROP2Fam-1* are unlikely to be orthologues (Alaeddine et al. 2013). A fragment of *NcROP2Fam-1* has been employed as a vaccine in mouse models, showing relatively high protection rates against challenge infection (Debach et al. 2008; Debache et al. 2009; Debache et al. 2010). Another rhoptry protein, *NcROP40*, was found to be more abundantly expressed in virulent isolates of *N. caninum* (Regidor-Cerrillo et al. 2012), thus posing the obvious question whether *NcROP40* plays a potential role in parasite virulence as described for other rhoptry proteins in *T. gondii*. When applied as vaccines a combined *NcROP40+NcROP2Fam-1* protein formulation had a synergistic effect and was able to induce a partial block in
transplacental transmission in a pregnant mouse model of neosporosis (Pastor-Fernández et al. 2015).

The aim of the present work was to characterize NcROP40 and compare its features with NcROP2Fam-1 during the lytic cycle of *N. caninum* development. This includes the molecular characterization of the NcROP40 through *in silico* studies, define its subcellular localization throughout the lytic cycle in comparison with NcROP2Fam-1, and to study protein dynamics, the transcript expression profile and their phosphorylation in order to predict their putative functional role in the different phases of the tachyzoite lytic cycle.
MATERIALS AND METHODS

In silico analysis and NcROP40 sequencing

All the sequences were obtained from ToxoDB v7.3. and v12 (www.toxodb.org) and edited using the BioEdit software v7.1.1. BLAST tools from NCBI (www.ncbi.nlm.nih.gov/BLAST/) and ToxoDB websites were used to match homologous sequences. Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) was employed to align nucleotide and protein sequences. Identity and similarity percentages were calculated with the Sequence Manipulation Suite (http://www.bioinformatics.org/sms2/ident_sim.html). Open Reading Frames (ORFs) and introns were predicted through the ORF Finder Tool (www.ncbi.nlm.nih.gov/gorf/gorf.html, NCBI) and the Splign Tool (www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi, NCBI), respectively. SignalP 4.1 server (www.cbs.dtu.dk/services/SignalP/, CBS) was used to predict signal peptides. Potential alpha helices in the arginine-rich amphipathic helix (RAH) domain were searched using Jpred3 (http://www.compbio.dundee.ac.uk/www-jpred/), PSIPRED v3.0 (http://bioinf.cs.ucl.ac.uk/psipred/) and PSSpred (http://zhanglab.ccmb.med.umich.edu/PSSpred/) tools. Trans-membrane regions were predicted with the TMPred tool (www.ch.embnet.org/software/TMPRED_form.html, ExPASy) and protein families from Pfam database (pfam.sanger.ac.uk/, Sanger). Potential phosphorylation sites were analyzed by the NetPhos v2.0 (http://www.cbs.dtu.dk/services/NetPhos/), NetPhosK v1.0 (http://www.cbs.dtu.dk/services/NetPhosK/) and the Diphos v1.3. (http://www.dabi.temple.edu/disphos/) servers.
The \textit{NcROP40} gene (previously named \textit{NcROP8}, NCLIV_012920 in ToxoDB v12) was sequenced and compared among three \textit{N. caninum} isolates of different origins. For this purpose, total genomic DNA from Nc-Liv (Barber et al. 1993), Nc-Spain7 (Regidor-Cerrillo et al. 2008) and Nc-Spain1H (Rojo-Montejo et al. 2009) isolates was purified with the DNeasy Blood \& Tissue Kit (Qiagen) following the manufacturer’s recommendations. The \textit{NcROP40}-ORF (1176 bp) and the up and down-stream regions (750 + 992 bp) were amplified from the three isolates using the Fw-chr\textsubscript{V}_ROP40 and Rv-chr\textsubscript{V}_ROP40 primers (Additional file 1). PCR conditions were 95\textdegree\ C for 5 min, 35 cycles at 95\textdegree\ C for 1 min, 58\textdegree\ C for 1 min and 72\textdegree\ C for 1 min, and a final elongation at 72\textdegree\ C for 10 min. PCRs were carried out with the Platinum\textregistered\ Taq DNA Polymerase High Fidelity (Invitrogen) and all primers were purchased from Sigma-Aldrich. Amplified fragments were purified with the GENECLEAN Turbo kit (MP Biomedicals) from 1\% low melting agarose gels. DNA was sequenced in two directions with an ABI Prism 377 DNA sequencer (Applied Biosystems) in the Genomics Unit of the Scientific Park of Madrid. Six pairs of primers were employed for this purpose (Additional file 1). Sequences were edited and aligned using the BioEdit software v7.1.1.

\textbf{Parasite culture}

\textit{N. caninum} (Nc-Liv isolate) tachyzoites were propagated \textit{in vitro} by continuous passage in MARC-145 cell culture using standard procedures (Pérez-Zaballos et al. 2005). For transmission electron microscopy, murine epidermal keratinocyte cultures were infected with the same isolate as described earlier (Vonlaufen et al. 2002). \textit{In vitro} tachyzoite-to-bradyzoite stage conversion was induced and checked by BAG1 and CC2 expression as previously described (Hemphill et al. 2004). Evacuole assays were performed with the
Nc-Liv isolate in human foreskin fibroblasts (HFFs) as previously described (Dunn et al. 2008).

Generation of plasmids

NcROP40 (NCLIV_012920 in ToxoDB v12) and NcROP2Fam-1 (NCLIV_001970 in ToxoDB v12) were cloned in the pET45b(+) expression system (Novagen) as previously described (Pastor-Fernández et al. 2015; Regidor-Cerrillo et al. 2012). On the other hand, NcAlpha-Tubulin (TUBα) (NCLIV_058890 in ToxoDB v12) and NcSAG1 (NCLIV_033230 in ToxoDB v12) fragments were amplified from *N. caninum* cDNA and cloned within the pGEM-T-Easy vector (Promega). Primer sequences for cloning are summarized in Additional file 2. All primers were purchased from Sigma-Aldrich, and the Expand High Fidelity Plus PCR System (Roche) was used for all PCRs. Amplicons were purified with the GENE CLEAN Turbo kit (MP Biomedicals) from 1% low melting agarose gels (Lonza).

Production of recombinant proteins, mass spectrometry analysis and SDS-PAGE

E. coli NovaBlue Single Competent Cells (Novagen) were transformed with construct-containing plasmids, which were isolated using the QIAprep Spin Miniprep Kit (Qiagen) and sequenced with an ABI Prism 377 DNA sequencer (Applied Biosystems) using T7 forward and reverse primers in the Genomics Unit of the Scientific Park of Madrid. All sequences were aligned with 100% consensus.

E. coli BL21(DE3) pLysS competent cells (Agilent Technologies) were transformed with the resulting expression vectors and foreign expression of rNcROP40 and rNcROP2Fam-1 as a (His)6-tagged fusion proteins was carried out following standard procedures (Álvarez-García et al. 2007). Denatured proteins were on-column refolded...
and purified using HisTrapHP columns coupled to the ÄKTAp prime Plus system (GE Healthcare) as previously described (Pastor-Fernández et al. 2015). Recombinant proteins included the whole NcROP40 sequence (1-392 aa) and the C-terminus domains for rNcROP2Fam-1 (238-594 aa), excluding the RAH domains. Concentration and purity of recombinant proteins was checked by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with a standard BSA scale (Roche) and using the GS-800 densitometer coupled to the Quantity One software (Bio-Rad Laboratories) (Álvarez-García et al. 2007). Electrophoresed proteins were manually excised from prepared Coomassie-stained 1-D gels for mass spectrometry (MS) analysis (peptide mass fingerprinting) following standard procedures (Risco-Castillo et al. 2007).

Polyclonal antibody production and affinity purification

Polyclonal sera against rNcROP40 (Regidor-Cerrillo et al. 2012) and rNcROP2Fam-1 were raised in New Zealand White rabbits (Harlan Laboratories) following a procedure previously described (Risco-Castillo et al. 2007). Samples of pre-immune serum were collected to confirm the absence of antibodies against *N. caninum* by Western-Blot. All protocols followed the proceedings detailed by the current legislation at the time of the experiment (Spanish Royal Decree 1201/2005) and were approved by the Animal Research Committee of the Complutense University. Affinity purified antibodies were prepared from polyclonal antibodies (PAbs) following standard procedures (Álvarez-García et al. 2007).

Immunoblots

Detection of NcROP40 and NcROP2Fam-1 proteins in parasite extracts was carried out by Western-Blot following SDS-PAGE under reducing conditions. Unless otherwise
stated, all reagents were purchased from Bio-Rad Laboratories. 2×10^7 purified Nc-Liv tachyzoites were disrupted by bath-sonication, electrophoresed in 15% bis-acrylamide gels and transferred onto nitrocellulose membranes according to standard procedures. PAbs α-rNcROP40 and α-rNcROP2Fam-1 were diluted at 1:5,000. Goat anti-rabbit IgG antibody conjugated to peroxidase (Sigma-Aldrich) was used as secondary antibody at 1:25,000 dilution. Reactions were developed by chemiluminiscence with the Immobilon Western Chemiluminescent HRP Substrate (Millipore). For image acquisition, AGFA films (Curix/RP2 Plus) and AGFA CP1000 processor were used after 1 to 30 seconds of exposure time.

Immunogold-labeling and transmission electron microscopy (TEM)

Infected keratinocyte cultures were fixed and LR-White embedded and on-section labeled as previously described (Risco-Castillo et al. 2007). Affinity-purified rabbit α-rNcROP40 was diluted 1:2 in PBS-0.3% BSA and sections were incubated for 1 h in a moist chamber. They were then washed in three changes of PBS, 10 min each, and goat anti-rabbit conjugated to 10 nm diameter gold particles (Amersham) was applied at a dilution of 1:5 in PBS-0.3% BSA as secondary antibody. After another 3 washes, 10 min each, grids were air dried and contrasted with uranyle acetate and lead citrate (Hemphill et al. 2004). Specimens were viewed on a Phillips 600 TEM operating at 60 kV.

Immunofluorescence staining

Protein localization dynamics in *N. caninum* tachyzoites were studied on infected MARC-145 cells on rounded coverslips at different time-points after infection. A total of 5×10^4 cells were placed on sterile 13 mm-coverslips onto 24-well plates and
incubated overnight at 37°C on a 5% CO₂ atmosphere. Then, tachyzoites were scrapped from culture flasks, passed through a 21-gauge needle and counted on a haemacytometer by trypan blue exclusion. Subsequently, MARC-145 monolayers were infected with *N. caninum* for 20 and 40 min (MOI 3), 1, 2, 6 (MOI 3), 24, 32 (MOI 2) and 48 h (MOI 1). After infection, non-adherent parasites were removed from coverslips by three PBS washes. Then, three methods of fixation were employed. Absolute methanol, 2% paraformaldehyde in PBS and 2% paraformaldehyde-0.05% glutaraldehyde in PBS were used as fixatives for 10 to 30 minutes at room temperature. All samples were immediately processed for immunofluorescence staining. Coverslips were blocked and permeabilised with PBS containing 3% bovine serum albumin (Roche) and 0.25% Triton X-100 (Merck Chemicals) for 30 min at 37°C. Then, cultures were labelled with the monoclonal antibody (MAb) α-NcSAG1 as a surface marker (Bjorkman and Hemphill 1998; 1:250 dilution) and affinity purified PAbs α-NcROP40 and α-NcROP2Fam-1 (1:8 dilution) by incubation for 1 h at room temperature. Following three washes with PBS, coverslips were incubated with Alexa Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 594-conjugated goat anti-rabbit IgG at 1:1,000 dilution (Molecular Probes) for 1 h at room temperature. Nuclei were stained with 4′,6-diamidino-2-phenylindole dye (DAPI, Lonza) at 1:5,000 dilution in PBS. Finally, coverslips were mounted on glass slides with ProLong® Gold antifade reagent (Molecular Probes). Evacuoles were detected on infected HFFs in the presence of cythochalasin D following the same protocol (Additional file 5). To phalloidin staining, coverslips fixed in 2% paraformaldehyde were blocked, permeabilised and labelled with MAb α-NcSAG1 and affinity purified PAb α-NcROP2Fam-1 as described above. After washing, they were incubated with Alexa
Fluor 647-conjugated goat anti-mouse IgG (1:1,000), Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:1,000), phalloidin–TRITC (1:250) (Sigma-Aldrich) and DAPI dyed. Single 1µm slices of immunofluorescence stainings were captured with a Leica TCS-SPE confocal laser-scanning microscope (Leica Microsystems) in the Department of Biochemistry and Molecular Biology IV of the Complutense University (Madrid). Image processing was performed using the LAS AF (Leica Microsystems) and the ImageJ software (NCBI, http://rsb.info.nih.gov/ij/).

Secretion assays

Secretion assays were performed with tachyzoites obtained from cultures prior to egress. For this purpose, parasites were scrapped from culture flasks, pelleted by centrifugation (1350 × g, 10 min, 4º C), passed through a 21-gauge needle and purified by PD-10 desalting columns (GE Healthcare). Then, 1×10^8 tachyzoites were placed on 500 µl of cold phenol red-free DMEM (LifeTechnologies) and stimulated with either 10 µM A23187 (Sigma-Aldrich), 1% ethanol (Merck Chemicals), or 10 mM dithiothreitol (DTT, Calbiochem) for 20 minutes at 37º C (Naguleswaran et al. 2001). Non-stimulated parasites were kept on ice during the same period of time. After the incubation, secretion supernatants were recovered by double centrifugation (1350 × g, 10 min, 4º C and 8000 × g, 10 min, 4º C), passed through 0.2 µm PVDF filters (Whatman, GE Healthcare) and supplemented with phosphatase and protease inhibitor cocktails (Sigma-Aldrich). Pelleted parasites were washed once in cold PBS supplemented with phosphatase and protease inhibitor cocktails, and recovered by centrifugation (1350 × g, 10 min, 4º C). All samples were stored at -80º C until further analyses.
Supernatants and pellets were analysed by immunoblotting, and secretion was estimated by comparing equal amounts of secretion supernatants and tachyzoite lysates. Monoclonal antibodies directed against NcTUBα (α-TUBα MAb, Sigma-Aldrich) were used on immunoblots of secreted supernatant fractions to monitor tachyzoite lysis, and antibodies directed against NcMIC2 were used as a positive control of secretion (Lovett et al. 2000). The α-TUBα MAb specifically recognized NcTUBα protein in tachyzoite extracts. PVDF membranes were incubated with rabbit α-rNcROP40, α-rNcROP2Fam-1 and α-rNcMIC2 at 1:5,000 dilutions, whereas α-TUBα MAb was employed at 1:10,000 dilution. Secondary antibodies were employed at 1:25,000 (goat anti-rabbit IgG antibody conjugated to peroxidase) and at 1:80,000 dilutions (goat anti-mouse IgG antibody conjugated to peroxidase) (Sigma-Aldrich). Reactions were developed by chemiluminiscence with the Immobilon Western Chemiluminescent HRP Substrate as describe above.

Evaluation of NcROP40 and NcROP2Fam-1 mRNA expression levels

The mRNA expression levels of NcROP40 and NcROP2Fam-1 were assessed by real-time reverse transcription PCR throughout the lytic cycle of tachyzoites at four representative points which illustrate the recent invasion, PV formation and maturation, exponential growth of parasites and tachyzoite egress. For this purpose, MARC-145 cultures were infected with the Nc-Liv isolate at MOI 3 for 6, 24, 48 and 56 h. Infected cultures were synchronised by washing the monolayer twice with pre-swarm PBS and replacing the culture media at 6 hours post-infection (hpi), to remove non-adherent parasites. Cells were harvested with a cell scraper and recovered by centrifugation at 1,350 × g for 15 minutes at 4°C. Pelleted parasites were conserved at -80°C until RNA extraction. The experiment was carried out in triplicate. For each experiment, three
different flasks were analysed at each time-point. The effect of induced egress of
tachyzoites on expression levels of NcROP40 and NcROP2Fam-1 was also studied in
parallel. For this purpose, five flasks from three different experiments containing cells
that were infected for 48 h were treated with 10 mM DTT for 1 h, after which
tachyzoites had undergone egress from approximately 80% of parasitophorous
vacuoles. Tachyzoites were then recovered as described above.

Total RNA was extracted using the Maxwell® 16 LEV simplyRNA Purification Kit
(Promega), that includes a DNase treatment, following the manufacturer’s
recommendations. RNA concentrations were determined by spectrophotometry
(Nanophotometer, Implen), and RNA integrity was checked by the visualization of the
18S and 28S ribosomal fragments after electrophoresis on 1% agarose gels. Reverse
transcription was carried out by the master mix SuperScript® VILO™ cDNA Synthesis
Kit (Invitrogen) in a 20 µl reaction using 2.5 µg of total RNA. Resulting cDNA was
diluted 1:20 and analysed by real-time PCR.

Real-time PCR reactions were performed using the Power SYBR® Green PCR Master
Mix in the ABI 7300 Real Time PCR System (Applied Biosystems) following standard
conditions. Primers used for amplification of NcROP40, NcROP2Fam-1 and the
housekeeping genes NcTUBα and NcSAG1 are shown in Table 1. A seven-point
duplicate standard curve based on 10-fold serial dilutions was included on each run.
pET45b(+)-NcROP40, pET45b(+)-NcROP2Fam-1, pGEM-T-NcTUBα and pGEM-T-
NcSAG1 plasmids were used as standards.

mRNA expression levels for each target were normalized by the -ΔCt method
(Schmittgen and Livak 2008). -ΔCt values were calculated by subtracting the Ct value
of the normalizer genes from the Ct value of each sample. Relative fold increases or
decreases were assessed by the $2^{-ΔΔCt}$ method (Schmittgen and Livak 2008). Since
expression levels at 24 hpi were the lowest for both proteins, the -∆ΔCt value was
calculated by subtracting the mean -ΔCt values for each protein at 24 hpi as baseline
samples as indicated in this formula: -ΔΔCt = -[(Ct NcROPx - Ct NcTUBα) - (mean Ct
NcROPx at 24 h - mean Ct NcTUBα at 24 h)]. Raw RNA samples were included in
each batch of amplifications to confirm the absence of *N. caninum* genomic DNA. Data
analyses of mRNA expression levels were carried out by Kruskal-Wallis and Dunn’s
tests using GraphPad Prism v6.01 software.

Phosphorylation assays

Phosphorylation assays were performed on denatured lysates generated from infected
MARC-145 cell cultures at 56 hpi, when tachyzoite had escaped from parasitophorous
vacuoles and invaded neighboring cells. Freshly pelleted cell monolayers were
resuspended on alkaline phosphatase-compatible buffer (100 mM sodium chloride
[Panreac], 50 mM Tris-HCl [Panreac], 10 mM magnesium chloride [Merck Chemicals],
1 mM DTT [Calbiochem], 0.2 % Triton X-100 [Merck Chemicals] and protease
inhibitor cocktail [Sigma-Aldrich], pH 7.9) or in phosphatase inhibitor buffer (50 mM
HEPES [Sigma-Aldrich], 100 mM sodium fluoride [Sigma-Aldrich], 2 mM sodium
orthovanadate [Sigma-Aldrich], 2 mM EDTA [Sigma-Aldrich], 1 mM DTT, 0.2 %
Triton X-100 and protease inhibitor cocktail). Extracts were disrupted on ice for 15
minutes by bath-sonication (Ultrasound, Selecta) and shaked by vortexing during an
additional 45 minutes. Alkaline phosphatase treatment (20 U CIP/2×10⁷ tachyzoites,
New England Biolabs) was only applied on extracts resuspended in alkaline
phosphatase-compatible buffer for 90 minutes at 37°C. Resulting extracts were stored
at -80°C until further analysis.
Phosphorylated proteins experience a mobility shift on Phos-tag SDS-PAGE electrophoresis (Kinoshita et al. 2006). To determine if NcROP40 and NcROP2Fam-1 are phosphorylated, tachyzoite extracts resuspended in alkaline phosphatase-compatible buffer (CIP) and phosphatase inhibitor buffer (PI) were electrophoresed in 15% bis-acrylamide gels supplemented with 25 µM PhosTag (Wako Pure Chemicals Industries) and 50 µM manganese (II) chloride (Merck Chemicals). After electrophoresis, gels were washed once in 0.1 M EDTA in transfer buffer and once in transfer buffer without EDTA to remove metal complexes. Then, gels were transferred onto nitrocellulose membranes according to standard procedures. Membranes were incubated with α-rNcROP40 and α-rNcROP2Fam-1 at 1:1,000 dilution, and then incubated with goat anti-rabbit IgG antibody conjugated to peroxidase at 1:1,000 dilution. Reactions were developed using 4-chloro-1-naphtol as substrate until signal visualization.
RESULTS

In silico analysis and NcROP40 sequencing

NcROP40 (NCLIV_012920, chromosome V) is currently classified as an unspecified product, but in previous releases of ToxoDB (v7.3) the protein was named as rhoptry kinase family protein ROP40 and considered as orthologous gene of TgROP40. No introns are predicted in the NcROP40 sequence, which contains 1176 bp and codes for a product of a predicted molecular weight of 43 kDa. In contrast, the TgROP40 sequence (TGME49_291960, chromosome IX) contains two introns, a coding sequence of 1578 bp and a predicted molecular weight of 57.9 kDa. However, according to previous releases of ToxoDB (v7.3), the TgROP40 gene (TGME49_091960) has no introns. The predicted peptide sequences of NcROP40 and TgROP40 proteins (v7.3) share 32.3% identity and 48.7% similarity. In addition, a Pfam database search identified a protein kinase-like domain in NcROP40, but catalytic activity is lacking (PANDIT: PF14531).

Due to the observed inconsistencies between NcROP40 and TgROP40, the chromosome V-sequence of the N. caninum Nc-Liv genome was analyzed in detail. First, the N-terminus of the NcROP40 sequence was strikingly shorter than that annotated for TgROP40 (~400 bp). In order to elucidate these differences, up and down-stream NcROP40 sequences (from positions 662772 to 665947, chromosome V) were submitted to the ORF Finder tool, which displayed a unique 1578 bp ORF, which corresponds to a putative protein with a calculated molecular weight of 57.8 kDa. This finding is consistent with the TgROP40 sequence. The presence of the additional N-terminal fragment in the NcROP40 ORF was confirmed by RT-PCR using cDNA from tachyzoites at two different time points of infection (Additional file 3). The newly identified ORF (now termed NcROP40-long) contains the NcROP40 sequence as listed
in ToxoDB and an additional 402 bp at its N-terminus (Additional file 4) (GenBank: KP731805, KP731806 and KP731807). According to the previous TgROP40 gene (TGME49_091960 in ToxoDB v7.3), no introns were predicted when the NcROP40-long DNA sequence was submitted to the Splign tool. The percentage of amino acid sequence identity between TgROP40 and NcROP40-long increased from 32.3 to 42.9, whilst similarity increased from 46.3% to 61.4% (Fig. 1A).

Protein trans-membrane regions were predicted for the NcROP40-long protein between the positions 5 and 25, but according to SignalP predictions the signal peptide is cleaved between amino acids (aa) 19 and 20. Sequence comparison among the most representative members of the ROP2-family (Fig. 1B), as well as alpha helices prediction within the structure of the NcROP40-long protein (Fig. 1C) suggest that the protein lacks RAH domains. Phosphorylation sites both in NcROP40-long and NcROP2Fam-1 were subjected to three different prediction programs (NetPhos v2.0, NetPhosK v1.0, and Diphos v1.3.), and were only considered when detected by at least two of them. In this sense, NcROP40 showed two putative phosphorylation sites at position S-75 and S-78, whilst phosphorylation of NcROP2Fam-1 was predicted to occur at positions S-82 and S-129.

The NcROP40-long ORF and its up and down-stream sequences were amplified by PCR from DNA of three different isolates, which have shown manifest differences in virulence: Nc-Liv, Nc-Spain7 and Nc-Spain1H. Primers were designed to amplify a fragment of 2918 bp, containing the ORF. After PCR, amplicons were sequenced and analyzed in detail. For all isolates a 2362 bp consensus fragment was sequenced in two directions. This fragment comprised the NcROP40-long ORF (1578 bp) and an additional 148 and 636 bp in its flanking regions. Thus, comparative analyses did not show differences in the amplified sequences among the three isolates (Additional file 4).
Protein sequence and immunodetection

The identities of rNcROP40 and rNcROP2Fam-1 were confirmed by mass spectrometric analyses. rNcROP40 matched with the NCLIV_012920 sequence (score: 175; 18/60 matched values; 64% of sequence coverage), whereas rNcROP2Fam-1 matched with the NCLIV_001970 annotation (score: 345; 33/65 matched values; 69% of sequence coverage). These analyses corroborated the composition of both proteins, with a molecular weight of 43.9 and 43.2 kDa respectively, according to the predicted molecular weights of rNcROP40 and rNcROP2Fam-1, which exclude part of their N-terminal domains. Hence, rNcROP40 and rNcROP2Fam-1 were used to develop PAbs in rabbits. *N. caninum* tachyzoite crude extracts were separated by SDS-PAGE under reducing conditions. Western blots revealed that α-NcROP40 reacted with five distinct bands of approximately 53, 44, 38, 32 and 28 kDa. The polyclonal α-NcROP2Fam-1 antiserum detected six different bands of approximately 58, 48, 40, 36, 34 and 26 kDa (Fig. 2).

Subcellular localization of NcROP40 by TEM

In order to confirm the subcellular localization of NcROP40, immunogold-TEM was carried out on sections of keratinocytes infected with *N. caninum* tachyzoites, and of cultures infected with bradyzoites generated in vitro by sodium nitroprusside treatment. In both, *N. caninum* tachyzoites (Fig. 3, A-B) and in vitro induced-bradyzoites (Fig. 3, C-D), affinity-purified anti-NcROP40 antibodies localized to rhoptry bulbs.

NcROP40 and NcROP2Fam-1 tracing throughout the lytic cycle

Immunofluorescence staining of NcROP40 on *N. caninum*-infected cultures showed a rhoptry-like pattern in tachyzoites throughout the lytic cycle, from 20 minutes to 56 hpi.
Methanol fixation showed the clearest results in terms of NcROP40 immunolocalization. In contrast, fixation with paraformaldehyde and glutaraldehyde mixtures resulted in a lower staining intensity (Fig. 4). The rhoptry-like pattern was clearly associated with the apical end of tachyzoites in all the micrographs, and disappeared as the captured slices intersected the parasites in more external areas (Fig. 4, 24 and 32 hpi, MeOH fixation). Interestingly, the presence of NcROP40 was not detected, neither in evacuoles during the invasion phases nor in the PVM during the development and establishment of the PV, with similar results obtained using three different fixation protocols. Hence, no secretion of NcROP40 protein could be detected under the tested conditions.

Concerning NcROP2Fam-1, our PAbs specifically recognized rhoptry-like structures at the parasite apex at all time-points as described for NcROP40. In contrast, secretion of the protein was detected from 20 min to 24 hpi using all three fixation protocols (Fig. 5). Specifically, evacuoles were detected from 20 minutes to 6 hpi. These rhoptry-derived secretory vesicles were localized intracellularly and surrounded the host cell nucleus, as shown by the phalloidin stainings in those coverslips fixed with paraformaldehyde (Fig. 5, 6 h, PFA fixation). At later time points, during the establishment of the PV, NcROP2Fam-1 was detected on the PVM (Fig. 5, 6 hpi) and in the PV matrix (Fig. 5, 24 hpi) under all the fixation methods. Thereafter, NcROP2Fam-1 was restricted to rhoptries (Fig. 5, 32 and 48 hpi). Interestingly, the protein was released again during egress, where it appeared to localize on the surface of the extracellular tachyzoites (Fig. 5, 56 hpi).

Identical results were obtained for NcROP40 and NcROP2Fam-1 proteins by specific evacuole assays carried out in human foreskin fibroblasts (Additional file 5).
Induced secretion of NcROP40 and NcROP2Fam-1

Freshly purified tachyzoites were treated with A23187, ethanol or DTT in order to induce the calcium-related protein secretion from apical organelles. However, NcROP40 and NcROP2Fam-1 proteins were not detected on secretome supernatants by immunoblotting. In contrast, a manifest secretion of the NcMIC2 protein was observed under the same conditions, according to previous findings (Lovett et al. 2000). Moreover, inadvertent lysis of tachyzoites during these secretion assays could be discarded since no NcTUBα could be detected in any of the secreted fractions (Additional file 6).

NcROP40 and NcROP2Fam-1 mRNA expression during the lytic cycle

NcROP40 and NcROP2Fam-1 transcription levels were monitored at four representative time points during the lytic cycle. Similar results in the mRNA pattern were observed using NcTUBα and NcSAG1 as normalizer genes (data not shown). The results presented here were processed using NcTUBα as normalizer.

The lowest NcROP40 and NcROP2Fam-1 mRNA levels were found at 24 hpi. In contrast, mRNA levels were the highest at 6 hpi (during the invasion phase) and at 56 hpi (egress phase) for both proteins \((P<0.005;\) Kruskal-Wallis test) (Fig. 6, A). Differences in fold increases of mRNA transcription were calculated by the \(2^{-\Delta\Delta C_T}\) method. Since the lowest normalized values for both NcROP40 and NcROP2Fam-1 were observed at 24 hpi, this time point was used as baseline to calculate the mRNA transcription fold increases during egress and invasion. NcROP40 showed a 4-fold increase in mRNA levels at 6 and 56 hpi, and NcROP2Fam-1 exhibited a 3-fold increase at the same time points. At 48 hpi, mRNA levels displayed a 2-fold increase for both NcROP40 and NcROP2Fam-1.
Egress of *N. caninum* and *T. gondii* tachyzoites can be artificially induced *in vitro* by the addition of DTT into the culture medium. Thus, the effect of DTT supplementation on the expression of NcROP40 and NcROP2Fam-1 mRNA was studied. Different responses were observed: while NcROP40 did not exhibit significant increases in its mRNA levels upon DTT treatment, NcROP2Fam-1 mRNA transcription was significantly increased (*P*<0.005; Kruskal-Wallis test) (Fig. 6, B). Moreover, mean values for NcROP2Fam-1 mRNA remained above those observed at 56 hpi, while the corresponding values for NcROP40 remained below (Fig. 6, B).

Phosphorylation of NcROP40 and NcROP2Fam-1 at the egress

The phosphorylation status of NcROP40 and NcROP2Fam-1 was studied at 56 hpi, as this was the time point when the mRNA levels for both proteins within the lytic cycle were the highest, simultaneously to tachyzoite egress and early invasion. Tachyzoites were harvested, processed under conditions that preserve the phosphorylation status, and extracts were separated by Phos-Tag SDS-PAGE electrophoresis. The electrophoretic mobility of NcROP40 on Phos-Tag gels was similar in both, alkaline phosphatase-treated and phosphatase inhibitor-treated extracts. In contrast, NcROP2Fam-1 showed a mobility shift in those extracts treated with phosphatase inhibitors, which suggests that NcROP2Fam-1 is phosphorylated at 56 hpi (Fig. 7).
DISCUSSION

Considerable efforts have been undertaken to increase the understanding on how apicomplexan parasites interact with their host cells and how they maintain and optimize their intracellular life style. It is widely known that components of distinct secretory organelles, namely rhoptries, micronemes and dense granules, play a crucial role in defining the host-parasite relationship (Carruthers and Sibley 1997) and therefore corresponding antigens are being extensively studied as vaccine targets to prevent infections by apicomplexan parasites.

TgROP proteins have shown to be important virulence factors (Lim et al. 2012). In contrast, little is known about the rhoptry proteins in *N. caninum*. Several NcROP and NcRON proteins have been identified by different proteomic approaches and monoclonal antibodies (Marugán-Hernández et al. 2011; Regidor-Cerrillo et al. 2012; Sohn et al. 2011; Straub et al. 2009), but only NcROP2Fam-1, which has been associated with the tachyzoites invasion process, has been partially characterized to date (Alaeddine et al. 2013).

NcROP40 was shown to be more abundant in virulent isolates of *N. caninum* (Regidor-Cerrillo et al. 2012). In *T. gondii*, limited information is available for the orthologous gene product TgROP40 (initially named as TgROP2L6). TgROP40 is highly expressed in tachyzoites (Peixoto et al. 2010) and increased expression levels were observed during acute infections in mice (Pittman et al. 2014). A number of studies suggested that NcROP40 is one of the major rhoptry components, since it has been detected by three different proteomic approaches (Marugán-Hernández et al. 2011; Pollo-Oliveira et al. 2013; Regidor-Cerrillo et al. 2012). Hence, NcROP40 expression could be an important element related to parasite virulence. Indeed, a vaccine formulation combining NcROP40+NcROP2Fam-1 recombinant proteins was recently assessed in a
pregnant mouse model of neosporosis and conferred partial protection against
congenital transmission of *N. caninum*, with NcROP40 and NcROP2Fam-1 acting
synergistically (Pastor-Fernández et al. 2015).

Comparison of the NcROP40 ORF and its potential regulatory expression sequences
among three different *N. caninum* isolates with differing virulence and *in vitro* behavior
(Pereira García-Melo et al. 2010; Regidor-Cerrillo et al. 2010; Regidor-Cerrillo et al.
2011) did not reveal any polymorphism that could explain differences in virulence as
described for TgROP18 (Steinfeldt et al. 2010). However, dissimilarities in protein
abundance among isolates might be due to regulatory mechanisms such as epigenetics,
which have been shown to be involved in genome reprogramming during tachyzoite to
bradyzoite conversion in *T. gondii* (Dixon et al. 2010). These analyses allowed a
detailed dissection of the NcROP40 gene, including flanking regions, and lead to the
description of the NcROP40-long sequence (NcROP40 sequence with an additional 402
bp in its N-terminus), whose presence was confirmed by RT-PCR (Additional file 3). In
addition, an improved transcriptome annotation for NcROP40 has recently been
submitted (GenBank: CEL65449.1), confirming our results (Ramaprasad et al. 2015).

Inconsistencies in the measured (53 kDa) and theoretical (58 kDa) molecular weight of
NcROP40-long, as well as the presence of different bands on immunoblots, could
reflect the maturation process described for all ROP2-family rhoptry proteins, which are
synthesized as pro-proteins (Hajagos et al. 2012). In fact, Alaeddine and colleagues
described the processing of the NcROP2Fam-1 protein by Western-blot through
different affinity purified antibodies directed against peptides located at the C-terminal
end of the protein (Alaeddine et al. 2013). In *T. gondii* TgSUB2 protease is in charge to
remove the N-terminal domains that are involved in rhoptry targeting at a highly
conserved SΦx(E/D) site (Hajagos et al. 2012). This sequence was also found in the N-
terminal domain of NcROP2Fam-1 (Alaeddine et al. 2013), but is absent in NcROP40. In any case, the polyclonal antibody recognizes a main band of 53 kDa and a number of additional bands by Western blotting, which may reflect a protein maturation process. Nevertheless, further studies must be carried out to define more accurately the implication of these changes on protein function.

In silico analyses are useful to predict certain protein features, and were employed in this study to further characterize the NcROP40 protein. The presence of a signal peptide is an important pre-requisite for a protein to enter the secretory pathway in eukaryotes, and putative signal peptides are present in both TgROP40 (El Hajj et al. 2006) and NcROP40 (this work). This is in contrast with our observations, since NcROP40 secretion is not detected by immunofluorescence microscopy, even when employing three different fixation protocols or specific vacuole assays. Moreover, NcROP40 does not interact with the PVM, albeit this finding is consistent with the predicted lack of RAH domains in its sequence. RAH domains are the regions displaying the highest similarities between each of the members of the ROP2-family, and are required for PVM association. These domains are also absent in the TgROP40 protein, and consequently it does not associate with the PVM (El Hajj et al. 2006; Reese and Boothroyd 2009). Nevertheless, previous studies carried out with the toxofilin protein of *T. gondii* showed that secretion of low abundance proteins may be undetectable by immunofluorescence approaches, which is especially relevant for those proteins that are not concentrated on a membrane or in an intracellular compartment (Lodoen et al. 2009). This may be the case for the NcROP40 protein that could be secreted into the host cell cytosol. Interestingly, the TgROP40 protein shows some nuclear localization when is heterologously expressed in infected HFF, suggesting that the protein may be translocated into the host cell nucleus after its secretion in the cytosol. Nevertheless, the
immunodetection of the NcROP40 into the host cell nucleus was not achieved in this study (Reese and Boothroyd 2009). In contrast to NcROP40, NcROP2Fam-1 was extensively secreted under the tested conditions (Alaeddine et al. 2013). The protein was easily detected in evauolues, and then surrounding invasive tachyzoites from 1 to 24 hpi. Similar findings have been described for the TgROP2 protein, which may participate in the PVM formation (Beckers et al. 1994; Dunn et al. 2008; Nakaar et al., 2003; Sinai and Joiner 2001). Consistent with our findings, most of the rhoptry proteins described to date in *T. gondii* are secreted and participate in host cell invasion, PV formation and maturation, and/or are involved in hijacking the host cell machinery (Kemp et al. 2013).

On the other hand, we could not detect any NcROP40 and NcROP2Fam-1 protein in the secretory fractions after induction of tachyzoite secretion using A23187, ethanol or DTT stimulation. This indicates that rhoptry discharge is not affected by elevated intracellular calcium levels as previously stated for *T. gondii* rhoptry proteins (Carruthers and Sibley 1999), and that rhoptry secretion can be only induced upon host cell contact.

The mRNA levels of NcROP40 and NcROP2Fam-1 transcripts were quantified during defined time points of the lytic cycle of tachyzoites grown in MARC-145 cells (Regidor-Cerrillo et al. 2011). Both proteins displayed higher mRNA levels at 6 hpi (which largely represents recently invaded tachyzoites) and at 56 hpi (representing tachyzoites shortly prior to or already undergoing egress). Lower mRNA levels were measured at 24 hpi (a time point representing early exponential replication). Subsequently, once exponential growth of parasites was almost completed (48 hpi), mRNA levels of NcROP40 and NcROP2Fam-1 gradually increased to reach again their highest value. According to our findings, developmental transitions in *Plasmodium falciparum* and *T. gondii* have shown to be strongly influenced by changes in mRNA
levels (Le Roch et al. 2004; Radke et al. 2005). Indeed, a modal switch from expression of proteins involved in invasion and motility has been also described in extracellular tachyzoites of *T. gondii* (Gaji et al. 2011; Lescault et al. 2010). This could suggest that NcROP40 and NcROP2Fam-1 proteins are required for the subsequent phases of the lytic cycle in which both are highly transcribed. This phenomenon is consistent with the "just-in-time" concept stated for *P. falciparum* and *T. gondii*, whereby gene expression is only activated as their biological function becomes necessary to the parasite (Behnke et al. 2010; Llinas and DeRisi 2004; Radke et al. 2005).

In addition to monitoring mRNA levels during egress under normal culture conditions, the same was done by inducing egress artificially employing DTT at 48 hpi (Esposito et al. 2007). DTT treatment induced a dramatic increase in NcROP2Fam-1 expression after DTT supplementation, to levels similar to naturally occurring egress. Strikingly, and in contrast to NcROP2Fam-1, NcROP40 mRNA levels were not substantially increased by DTT addition. To date, the mechanisms governing egress are not fully understood, but mounting evidence shows that intracellular calcium levels trigger the abrupt exit of parasites from PV, which is accompanied with a rapid decrease in host cell ATP (Blackman and Carruthers 2013). NcROP40 mRNA levels were unresponsive to the artificially-induced egress, suggesting that its up-regulation does not rely on the mechanisms triggering egress in contrast to NcROP2Fam-1.

Phosphorylation has a prominent key role in cellular regulatory processes and influences the functional activity of a plethora of enzymes and structural proteins. At 56 hpi, when the mRNA expression levels for NcROP40 and NcROP2Fam-1 reached a peak and tachyzoites were undergoing egress to infect another host cell, phosphorylation was evident in NcROP2Fam-1, but not in NcROP40. However, we cannot exclude that NcROP40 is phosphorylated at another phase of the lytic cycle.
Predicted phosphorylation sites were found in NcROP40 and in NcROP2Fam-1. However, it is important to note that the phosphorylation prediction algorithms are optimized for mammalian cells or other cell types, and that rhoptry proteins are unique among eukaryotes and are only found in apicomplexan parasites. Thus, potential phosphorylation sites might not be accurately predicted. Previous works have shown that TgROP2 and TgROP4 are also phosphorylated, but only in intracellular parasites, indicating that phosphorylation is associated with protein regulation and its potential participation within the lytic cycle (Carey et al. 2004; Dunn et al. 2008). For NcROP2Fam-1, phosphorylation coincides with high mRNA levels, and since NcROP2Fam-1 was shown to be involved in host cell invasion (Alaeddine et al. 2013), this could indicate that the protein is being activated to prepare tachyzoites for egress and/or invasion. To date, there is no information about the relevance of phosphorylation in NcROP proteins, and phosphorylation of all the known TgROP proteins has not been studied. Previous works suggested that phosphorylation of dense granule proteins has an influence on PVM association (Labruyere et al. 1999; Mercier et al. 2005). Thus, phosphorylation of NcROP2Fam-1 could be important for secretion and its subsequent association to the PVM, and this could be also applied to TgROP2 and TgROP4, both of which exhibit similar properties. However, further studies must be carried out in order to determine the role of rhoptry protein phosphorylation during the lytic cycle of *N. caninum* tachyzoites.

Pseudokinases are emerging as key regulators of cellular signaling (Reese et al. 2014). Several studied rhoptry proteins in *T. gondii* have been described as kinases or pseudokinases, and some of them have shown the ability to remodel cellular transduction and the transcriptome of the host cell through phosphorylation events (Jacot and Soldati-Favre 2012; Lim et al. 2012). Specifically, the TgROP18 and
TgROP17 kinases and the TgROP5 pseudokinase form complexes and by that inactivate host immune responses and inflammation (Du et al. 2014; Etheridge et al. 2014). Moreover, TgROP16 regulates host innate immunity through STAT3 and STAT6 phosphorylation (Jensen et al. 2013) and TgROP38 modulates MAPK signaling to control apoptosis and cell proliferation (Peixoto et al. 2010). In our case, NcROP40 has been described as a predicted member of the rhoptry kinase family (ROPK) lacking the key kinase sequence motifs (Talevich and Kannan 2013). The protein contains a structurally conserved N-terminal extension to the kinase domain that displays high sequence similarity to the NcROP5 and TgROP5 pseudokinases, among others. TgROP5 also lacks kinase activity (Reese and Boothroyd 2011), but in contrast to NcROP40, is clearly secreted during invasion and associates with the PVM (El Hajj et al. 2007). Therefore, the role of NcROP40 as pseudokinase remains unclear. Nevertheless, the protein could be implicated in the regulation of still unknown virulence factors. Unfortunately, little is known about the existence of rhoptry virulence factors that could alter the host transcriptome after the infection with *N. caninum*. To date, the information about the orthologues of TgROP5, TgROP16, TgROP18 and TgROP38 in *N. caninum* is limited, and the only study in which they have been described is restricted to genomic and transcriptomic information that highlights the divergence of rhoptry proteins between *T. gondii* and *N. caninum* (Reid et al. 2012). Hence, despite the common features of *N. caninum* and *T. gondii*, these distinct differences in their secreted virulence factors make it difficult to make direct extrapolations from one species to the other. However, the description of common mechanisms of the ROP2-family members required for the success of the lytic cycle and parasite proliferation could represent a valuable source for the development of novel vaccine candidates.
In summary, this study describes highly interesting features of the NcROP40 protein, and another member of the ROP2-family, NcROP2Fam-1, during the lytic cycle of *N. caninum* tachyzoites. Immunogold TEM clearly localized NcROP40 in the rhoptry bulbs of *N. caninum* tachyzoites but, in contrast to NcROP2Fam-1, we were unable to detect NcROP40 secretion into the host cell, which is likely an effect of the protein dilution within the host cytosol. mRNA quantification showed that NcROP40 is highly expressed during egress and invasion, although its mRNA levels were not affected when egress was induced by DTT supplementation. These findings suggest differences in the transcriptional regulation and functional role of NcROP40 and NcROP2Fam-1. In addition, no evidence was found for NcROP40 phosphorylation at the time point of egress, in contrast to NcROP2Fam-1. NcROP40, together with NcROP2Fam-1, is a promising vaccine candidate, thus further studies will be carried out in order to elucidate its functionality. Epitope-tag assays and generation of ∆rop40 knockout parasites would be useful to confirm more accurately whether NcROP40 is secreted or not, and to establish the role of the NcROP40 protein within the lytic cycle of *N. caninum*.

COMPETING INTERESTS

The authors declare that they have no competing interests. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

JRC, GAG and LMOM conceived and designed the experiments. IPF, EJR, VMH and AH performed the experiments. IPF, JRC, GAG and LMOM analyzed the data. IPF, JRC, EJR, GAG, VMH, AH and LMOM wrote the paper.
ACKNOWLEDGEMENTS

This work was supported by the AGL2010-22191/GAN and the AGL2013-44694-R grants from the Spanish Ministry of Economy and Competitiveness (M.I.N.E.C.O.) and the S2013/ABI2906 grant from the Community of Madrid. Iván Pastor-Fernández was supported by a fellowship from the Spanish Ministry of Education, Culture and Sports (M.E.C.D.), as part of the Program of Training of University Staff (F.P.U., grant number AP2009-0354). Andrew Hemphill was supported by the Swiss National Science Foundation (grant No. 310030 146162). We gratefully acknowledge Prof. Mª Teresa Miras Portugal’s group from the Department of Biochemistry and Molecular Biology IV of the Complutense University (Madrid) for their confocal microscopy system. We also thank Dr. Diana Williams from the Liverpool School of Tropical Medicine (Liverpool, UK) for the *N. caninum* Nc-Liv isolate, and Dr. David Sibley from the Washington University School of Medicine (St. Louis, MO, USA) for the NcMIC2 antibody.
Fig. 1. A: Sequence alignment of the ROP40 protein, both in *N. caninum* (NCLIV_012920) and *T. gondii* (TGME49_091960). NcROP40-long is referred to the NcROP40 sequence incorporating and additional 134 aminoacids in the N-terminus. SP: signal peptide. Empty arrow head: potential phosphorylation sites. Filled arrow head: origin of the NcROP40 protein as shown in ToxoDB. Boxes and roman numerals: conserved motifs of likely inactive rhoptry kinase regions as described for Talevich and colleagues in 2013. B: Comparison of the RAH domains among rhoptry proteins from the ROP2-family. Boxes designate the three domains described for El Hajj and colleagues in 2006. Sequences were obtained from ToxoDB with the following accession numbers: TGME49_005250 (TgROP18), TGME49_108080 (TgROP5), TGME49_095110 (TgROP7), TGME49_015780 (TgROP2A), TGME49_015770 (TgROP8), TGME49_091960 (TgROP40) and NCLIV_012920 (NcROP40). For A and B asterisks (*) indicate fully conserved residues, whilst colons (:) and periods (·) indicate conservation between groups of strongly or weakly similar properties, respectively. C: Secondary structure predictions of the NcROP40-long RAH domains by PSSpred, PSIPRED and Jpred3 servers. H: helix. C: coil. Dashes: undefined.

Fig. 2: *N. caninum*-based Western-blots showing the immuno-reactivity of α-rNcROP40 and α-rNcROP2Fam-1 antibodies. Five bands of approximately 53, 44, 38, 32 and 28 kDa were detected with α-NcROP40 antibodies, whilst six different bands of approximately 58, 48, 40, 36, 34 and 26 kDa were detected with α-NcROP2Fam-1 antibodies. B: Phosphorylation detection of NcROP40 and NcROP2Fam-1 by Phos-Tag SDS-PAGE. Tachyzoite extracts obtained at 56 hpi were processed with alkaline
phosphatase (CIP) and phosphatase inhibitors (PI), electrophoresed on SDS-PAGE and Phos-Tag SDS-PAGE gels, and blotted to nitrocellulose membranes. Then, both proteins were detected by their respective antibodies in order to detect a mobility shift of the proteins treated with PI.

Fig. 3. NcROP40 is a rhoptry protein associated with rhoptry bulbs. Transmission electron microscopy and immunogold staining in tachyzoites (A-B) and bradyzoites (C-D). Rhoptries (rh), dense granules (dg) and micronemes (mic) are indicated on the pictures. Bars represent 1 µm.

Fig. 4. Confocal laser scanning microscopy of NcROP40 along the lytic cycle of tachyzoites. Infected cultures were fixed with metanol (MeOH), paraformaldehyde (PFA) and paraformaldehyde combined with glutaraldehyde (PFA+GA) and double labelled with affinity purified antibodies against NcROP40 (red) and monoclonal antibodies against NcSAG1 (green). Nuclei were stained with DAPI (blue). All the images show a single 1 µm slice. Bars represent 4 µm.

Fig. 5. Confocal laser scanning microscopy of NcROP2Fam-1 along the lytic cycle of tachyzoites. Infected cultures were fixed with metanol (MeOH), paraformaldehyde (PFA) and paraformaldehyde combined with glutaraldehyde (PFA+GA) and double labelled with affinity purified antibodies against NcROP2Fam-1 (red) and monoclonal antibodies against NcSAG1 (green). Nuclei were stained with DAPI (blue). PFA-fixed cultures were also labelled with phalloidin to delimitate host-cell surface (white). All the images show a single 1 µm slice. Bars represent 4 µm.
Fig. 6. mRNA expression of NcROP40 and NcROP2Fam-1. Real time-PCR was employed to assess the mRNA expression of both proteins along the lytic cycle. Top panel: photomicrographs showing the infection dynamics of the Nc-Liv isolate on MARC-145 cultures at recent invasion (6 h), PV formation and maturation (24 h), exponential growth of parasites (48 h) and tachyzoite egress (56 h and 48 h + DTT). A: mRNA expression levels of NcROP40 and NcROP2Fam-1 during the lytic cycle. B: Effect of DTT supplementation to artificially induce egress at 48 h on mRNA expression for both proteins. For A and B, each point represents a single sample and bars represent the mean value. a, b and c indicate significant differences (P<0.005; Kruskal-Wallis test).

Fig. 7: Phosphorylation detection of NcROP40 and NcROP2Fam-1 by Phos-Tag SDS-PAGE. Tachyzoite extracts obtained at 56 hpi were processed with alkaline phosphatase (CIP) and phosphatase inhibitors (PI), electrophoresed on SDS-PAGE and Phos-Tag SDS-PAGE gels, and blotted to nitrocellulose membranes. Then, both proteins were detected by their respective antibodies in order to detect a mobility shift of the proteins treated with PI.
Table 1: Primers used to amplify NcROP40, NcROP2Fam-1, NcSAG1 and NcTubulin alpha sequences by real time-PCR.

<table>
<thead>
<tr>
<th>Protein</th>
<th>ToxoDB accession number</th>
<th>Primer sequences</th>
<th>Reference</th>
<th>Length</th>
<th>Introns</th>
<th>Slope</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>NcROP40</td>
<td>NCLIV_012920</td>
<td>Fw-CATCAAGCAGCCCCGAATCA Rv-TGGTGACTGCGACCAACTTA</td>
<td>This study</td>
<td>94 bp. 1021-1114</td>
<td>No</td>
<td>-3.71</td>
<td>0.996</td>
</tr>
<tr>
<td>NcROP2Fam-1</td>
<td>NCLIV_001970</td>
<td>Fw-TTCTTTCCTCTCAAAGCGACA Rv-TTGAGCTCGTCCCAGAGTTG</td>
<td>Alaeddine et al., 2013</td>
<td>140 bp. 1604-1743</td>
<td>No</td>
<td>-3.68</td>
<td>0.996</td>
</tr>
<tr>
<td>NcSAG1</td>
<td>NCLIV_033230</td>
<td>Fw-CGTTGTCGCAATGTGCTCTT Rv-ACGGTCGTCCAGAACAAAC</td>
<td>Fernández-García et al., 2006</td>
<td>150 bp. 504-653</td>
<td>No</td>
<td>-3.24</td>
<td>0.997</td>
</tr>
<tr>
<td>NcTUBα</td>
<td>NCLIV_05890</td>
<td>Fw-GGTAACGCTCTGCTGGAG Rv-GTCCAAATCCAGGAAGACGCA</td>
<td>Alaeddine et al., 2013</td>
<td>166 bp. 49-214</td>
<td>Yes*</td>
<td>-3.24</td>
<td>0.994</td>
</tr>
</tbody>
</table>

* Primers for intron-containing sequences were designed using cDNA as template. * Forward primer for NcTUBα amplification annealed at intron splice junction to prevent amplification of genomic DNA.

Descriptive values of real time-PCR from standard curves for each pair of primers are shown.
REFERENCES

Blackman M. J. and Carruthers V. B. (2013). Recent insights into apicomplexan parasite egress provide new views to a kill. *Current Opinion in Microbiology* 16, 459-464.

infection in mice infected with *Neospora caninum* tachyzoites. *International Journal for Parasitology* **38**, 1455-1463.

Dunn J. D., Ravindran S., Kim S. K. and Boothroyd J. C. (2008). The *Toxoplasma gondii* dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected
association with the rhoptry proteins ROP2 and ROP4. *Infection and Immunity* **76**, 5853-5861.

gondii VEG and Neospora caninum LIV genomes with tachyzoite stage transcriptome and proteome defines novel transcript features. PloS One 10, e0124473.

STAT1 while simultaneously blocking IFN\(\gamma\)-induced STAT1 transcriptional activity.

Fig. 1. A: Sequence alignment of the ROP40 protein, both in N. caninum (NCLIV_012920) and T. gondii (TGME49_091960). NcROP40-long is referred to the NcROP40 sequence incorporating and additional 134 aminoacids in the N-terminus. SP: signal peptide. Empty arrow head: potential phosphorylation sites. Filled arrow head: origin of the NcROP40 protein as shown in ToxoDB. Boxes and roman numerals: conserved motifs of likely inactive rhoptry kinase regions as described for Talevich and colleagues in 2013. B: Comparison of the RAH domains among rhoptry proteins from the ROP2-family. Boxes designate the three domains described for El Hajj and colleagues in 2006. Sequences were obtained from ToxoDB with the following accession numbers: TGME49_005250 (TgROP18), TGME49_108080 (TgROP5), TGME49_095110 (TgROP7), TGME49_015780 (TgROP2A), TGME49_015770 (TgROP8), TGME49_091960 (TgROP40) and NCLIV_012920 (NcROP40). For A and B asterisks (*) indicate fully conserved residues, whilst colons (:) and periods (·) indicate conservation between groups of strongly or weakly similar properties, respectively. C: Secondary structure predictions of the NcROP40-long RAH domains by PSSpred, PSIPRED and Jpred3 servers. H: helix. C: coil. Dashes: undefined.
Fig. 2: *N. caninum*-based Western-blot showing the immuno-reactivity of α-rNcROP40 and α-rNcROP2Fam-1 antibodies. Five bands of approximately 53, 44, 38, 32 and 28 kDa were detected with α-NcROP40 antibodies, whilst six different bands of approximately 58, 48, 40, 36, 34 and 26 kDa were detected with α-NcROP2Fam-1 antibodies. B: Phosphorylation detection of NcROP40 and NcROP2Fam-1 by Phos-Tag SDS-PAGE. Tachyzoite extracts obtained at 56 hpi were processed with alkaline phosphatase (CIP) and phosphatase inhibitors (PI), electrophoresed on SDS-PAGE and Phos-Tag SDS-PAGE gels, and blotted to nitrocellulose membranes. Then, both proteins were detected by their respective antibodies in order to detect a mobility shift of the proteins treated with PI.

79x98mm (300 x 300 DPI)
Fig. 3. NcROP40 is a rhoptry protein associated with rhoptry bulbs. Transmission electron microscopy and immunogold staining in tachyzoites (A-B) and bradyzoites (C-D). Rhoptries (rh), dense granules (dg) and micronemes (mic) are indicated on the pictures. Bars represent 1 µm.

145x209mm (300 x 300 DPI)
Fig. 4. Confocal laser scanning microscopy of NcROP40 along the lytic cycle of tachyzoites. Infected cultures were fixed with metanol (MeOH), paraformaldehyde (PFA) and paraformaldehyde combined with glutaraldehyde (PFA+GA) and double labelled with affinity purified antibodies against NcROP40 (red) and monoclonal antibodies against NcSAG1 (green). Nuclei were stained with DAPI (blue). All the images show a single 1 µm slice. Bars represent 4 µm.

176x185mm (300 x 300 DPI)
Fig. 5. Confocal laser scanning microscopy of NcROP2Fam-1 along the lytic cycle of tachyzoites. Infected cultures were fixed with metanol (MeOH), paraformaldehyde (PFA) and paraformaldehyde combined with glutaraldehyde (PFA+GA) and double labelled with affinity purified antibodies against NcROP2Fam-1 (red) and monoclonal antibodies against NcSAG1 (green). Nuclei were stained with DAPI (blue). PFA-fixed cultures were also labelled with phalloidin to delimitate host-cell surface (white). All the images show a single 1 µm slice. Bars represent 4 µm.

176x251mm (300 x 300 DPI)
Fig. 6. mRNA expression of NcROP40 and NcROP2Fam-1. Real time-PCR was employed to assess the mRNA expression of both proteins along the lytic cycle. Top panel: photomicrographs showing the infection dynamics of the Nc-Liv isolate on MARC-145 cultures at recent invasion (6 h), PV formation and maturation (24 h), exponential growth of parasites (48 h) and tachyzoite egress (56 h and 48 h + DTT). A: mRNA expression levels of NcROP40 and NcROP2Fam-1 during the lytic cycle. B: Effect of DTT supplementation to artificially induce egress at 48 h on mRNA expression for both proteins. For A and B, each point represents a single sample and bars represent the mean value. a, b and c indicate significant differences (P<0.005; Kruskal-Wallis test).

182x182mm (300 x 300 DPI)
Fig. 7: Phosphorylation detection of NcROP40 and NcROP2Fam-1 by Phos-Tag SDS-PAGE. Tachyzoite extracts obtained at 56 hpi were processed with alkaline phosphatase (CIP) and phosphatase inhibitors (PI), electrophoresed on SDS-PAGE and Phos-Tag SDS-PAGE gels, and blotted to nitrocellulose membranes. Then, both proteins were detected by their respective antibodies in order to detect a mobility shift of the proteins treated with PI.
Additional files

Additional file 1: Primers used for NcROP40 sequencing among three *N. caninum* isolates of different origins (Nc-Liv, Nc-Spain7 and Nc-Spain1H).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequences</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fw-chrV_ROP40</td>
<td>5’-TAAGAACGCATGGCTGACTG-3’</td>
<td>This study</td>
</tr>
<tr>
<td>Rv-chrV_ROP40</td>
<td>5’-CTGACAACGGCTCCTCCTTTC-3’</td>
<td>This study</td>
</tr>
<tr>
<td>Fw-ROP40</td>
<td>5’-CGAGCTCATGGTGAATCCCTGCAAG-3’</td>
<td>Regidor-Cerrillo et al., 2012</td>
</tr>
<tr>
<td>Rv-ROP40</td>
<td>5’-CCTTAATTATCACCCACCACCACGAGCGC-3’</td>
<td>Regidor-Cerrillo et al., 2012</td>
</tr>
<tr>
<td>Rv-ROP40-int</td>
<td>5’-CTTCTGGCTTTGTGCTTCC-3’</td>
<td>This study</td>
</tr>
<tr>
<td>Fw-ROP40-int</td>
<td>5’-ACGCACCTCTTTTGCTTGT-3’</td>
<td>This study</td>
</tr>
</tbody>
</table>
Additional file 2: Primers used for NcROP40, NcROP2Fam-1, NcSAG1 and NcTUBα cloning.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Toxodb accession number</th>
<th>Primer sequences</th>
<th>Reference</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>NcROP40</td>
<td>NCLIV_012920</td>
<td>Fw-SacI-CGAGCTCATGGTGAATCCCTGCACAAG</td>
<td>Regidor-Cerrillo et al., 2012</td>
<td>1176 bp. 1-392 aa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rv-PacI-CCTTAATTAATCACCCCCACCTGAACGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NcROP2Fam-1</td>
<td>NCLIV_001970</td>
<td>Fw-SacI-GAGCTCTTTGTGGCGTAATCAGAAGC</td>
<td>Pastor-Fernández et al., 2015</td>
<td>1076 bp. 236-595 aa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rv-HindIII-AAGCTTTTATAGCCTCGTGTCCTCCGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NcSAG1</td>
<td>NCLIV_033230</td>
<td>Fw-CACTGGTGCGTTCTTGTGAC</td>
<td>This study</td>
<td>889 bp. 56-944 aa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rv-GCTATCGAGCTACGAGTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NcTUBα</td>
<td>NCLIV_058890</td>
<td>Fw-GGTAACGCCTGCTGGGAG</td>
<td>Alaeddine et al., 2013</td>
<td>1294 bp. 49-1342 aa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rv-CTTCCTTCACCTCGCCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional file 3: The NcROP40-long gene model was corroborated by reverse transcription PCR. mRNA was obtained from tachyzoites at 24 and 56 hours post-infection as described in the methods section (Evaluation of NcROP40 and NcROP2Fam-1 mRNA expression levels). The whole NcROP40-long ORF was amplified from cDNA with the following primers: Fw-NcROP40-long (5’-ATGAGACACTCCTTGTGCTTTTCG-3’) and Rv-NcROP40-long (5’-TCACCCCCACCACTGAACG-3’). In addition, the same forward primer was used with the reverse internal primer employed for the q-PCR assays (5’-TGGTGACTGCGACCAACTTA-3’, from Table 1). In all the cases, PCR amplification yielded a single fragment with the expected molecular weight (see figure below).
Additional file 4: Sequence alignment of the coding region for the NcROP40 protein and its up and down-stream regions within the chromosome V of the Nc-Liv genome. NCLIV_chrV (662772-665947 position), NcROP40 and NcROP40-long are displayed as templates and were obtained from the ToxoDB source as described in methods section. Consensus sequences among Nc-Liv, Nc-Spain1H and Nc-Spain7 isolates were obtained by DNA sequencing and aligned based on the template sequences. Predicted aminoacidic sequence of the NcROP40-long protein is also displayed.

See attached PDF
Additional file 5: Determination of NcROP40 and NcROP2Fam-1 secretion by evacuole assays. These experiments were carried out as described previously by Dunn et al., (2008), by incubating cytochalasin D-treated tachyzoites with human foreskin fibroblasts (HFFs) for 1 h prior to fixation. Evacuoles were detected by confocal laser-scanning microscopy using the affinity purified PAbs α-NcROP40 (red, left) and α-NcROP2Fam-1 (red, right). The MAb α-NcSAG1 (green) was employed as a surface marker. Only NcROP2Fam-1 was detected in evacuoles, whilst NcROP40 release was not observed. Images represent three merged stacks of 1 µm each. Bars represent 1 µm.
Additional file 6: Effect of A23187, ethanol and DTT on secretion of NcROP40 and NcROP2Fam-1 proteins as shown by Western-blot using respective antibodies. The same protein samples were also probed by immunoblotting with α-NcMIC2 and α-TUBα antibodies to (i) confirm induced secretion and (ii) exclude inadvertent tachyzoite lysis, respectively. Rhoptry discharge was not observed in culture supernatants upon any of these treatments, whilst NcMIC2 secretion was evident after A23187, ethanol and DTT supplementation. Tachyzoite lysis was not detected. All the antibodies specifically reacted against their respective protein on tachyzoite extracts.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>>NCLIV_chrV</td>
<td>GGCATTTGGATTCCGAGGAGTTCTGACAGCAGACACAGCACACAGGAGGAGGAGCAGCGAGCGG</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>GGCATTTGGATTCCGAGGAGTGTTCTGACAGCAGACACAGCACACAGGAGGAGGAGCAGCGAGCGG</td>
</tr>
<tr>
<td>Consensus</td>
<td>GGCATTTGGATTCCGAGGAGTTCTGACAGCAGACACAGCACACAGGAGGAGGAGCAGCGAGCGG</td>
</tr>
<tr>
<td>Consensus</td>
<td>GGCATTTGGATTCCGAGGAGTTCTGACAGCAGACACAGCACACAGGAGGAGGAGCAGCGAGCGG</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>nAlaLeuGlyPheAlaGluGlySerAspSerGlulThrGlulHisGluAlaAlaSerGlu</td>
</tr>
<tr>
<td>>NCLIV_chrV</td>
<td>CGACACACTTTTTGGGCAAGTACACCCACGACGCGAGAAGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>CGACACACTTTTTGGGCAAGTACACCCACGACGCGAGAAGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>CGACACACTTTTTGGGCAAGTACACCCACGACGCGAGAAGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>CGACACACTTTTTGGGCAAGTACACCCACGACGCGAGAAGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>yAspThrProLeuValGlyAlaArgProArgLysArgSerProLeuSerArgLeuGlu</td>
</tr>
<tr>
<td>>NCLIV_chrV</td>
<td>CAGTGAAGAAGGAGAACAGCTGTTAGGTCACCCCAGCCACACACACACACGGGGGGGCCT</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>CAGTGAAGAAGGAGAACAGCTGTTAGGTCACCCCAGCCACACACACACACGGGGGGGCCT</td>
</tr>
<tr>
<td>Consensus</td>
<td>CAGTGAAGAAGGAGAACAGCTGTTAGGTCACCCCAGCCACACACACACACGGGGGGGCCT</td>
</tr>
<tr>
<td>Consensus</td>
<td>CAGTGAAGAAGGAGAACAGCTGTTAGGTCACCCCAGCCACACACACACACGGGGGGGCCT</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>aSerGluGluGlyGluGlnLeuLeuGlyHisProSerHisThrHisThrArgGlyGlyLe</td>
</tr>
<tr>
<td>>NCLIV_chrV</td>
<td>GCGGTTCGGGCACAAATAAACAGAATTACCCGACGAGGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>GCGGTTCGGGCACAAATAAACAGAATTACCCGACGAGGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GCGGTTCGGGCACAAATAAACAGAATTACCCGACGAGGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GCGGTTCGGGCACAAATAAACAGAATTACCCGACGAGGAAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>uArgPheGluGluGluGlnLeuLeuGlyHisProSerHisThrHisThrArgGlyGlyLe</td>
</tr>
<tr>
<td>>NCLIV_chrV</td>
<td>GTCCTTGACGACAGCGACGACGAGGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>GTCCTTGACGACAGCGACGACGAGGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GTCCTTGACGACAGCGACGACGAGGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GTCCTTGACGACAGCGACGACGAGGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>sPheLeuSerLysAsnValGluAlaMetValLysSerLeuHisLys</td>
</tr>
<tr>
<td>>NCLIV_chrV</td>
<td>GTCTTTGACGAGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>>NcROP40</td>
<td>GTCTTTGACGAGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GTCTTTGACGAGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Consensus</td>
<td>GTCTTTGACGAGGAAATAATTTGGAAGAGACTCTCAAGGCGC</td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>sPheLeuSerLysAsnValGluAlaMetSerLeuGluAspPheValAlaGluLeuGlu</td>
</tr>
</tbody>
</table>
>NCLIV_chrV TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
>NcROP40 TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
>NcROP40-long TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
Consensus NcLiv TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
Consensus NcSp7 TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
Consensus NcSp1H TGTCGACCATCGTGCAATTCAACCTCCATTCTTTCGCAAGGGCGAGGGCGCGTCGAGAGC
Aa.sequence yValAspHisArgAlaIleGlnProProPheArgLysGluGlyAlaSerArgAl

>1100 1110 1120 1130 1140
....|....|....|....|....|....|....|....|....|....|....|....|
>1150 1160 1170 1180 1190 1200
....|....|....|....|....|....|....|....|....|....|....|....|
>1200 1210 1220 1230 1240 1250 1260
....|....|....|....|....|....|....|....|....|....|....|....|
>1270 1280 1290 1300 1310 1320
....|....|....|....|....|....|....|....|....|....|....|....|
>1330 1340 1350 1360 1370 1380
....|....|....|....|....|....|....|....|....|....|....|....|
>1390 1400 1410 1420 1430 1440
....|....|....|....|....|....|....|....|....|....|....|....|
>1490 1500 1510 1520 1530 1540 1550
....|....|....|....|....|....|....|....|....|....|....|....|
>1600 1610 1620 1630 1640 1650 1660
....|....|....|....|....|....|....|....|....|....|....|....|
>1720 1730 1740 1750 1760 1770 1780
....|....|....|....|....|....|....|....|....|....|....|....|
>1830 1840 1850 1860 1870 1880 1890
....|....|....|....|....|....|....|....|....|....|....|....|
....|....|....|....|....|....|....|....|....|....|....|....|
>2070 2080 2090 2100 2110 2120 2130
....|....|....|....|....|....|....|....|....|....|....|....|
>2150 2160 2170 2180 2190 2200 2210
....|....|....|....|....|....|....|....|....|....|....|....|
>2270 2280 2290 2300 2310 2320 2330
....|....|....|....|....|....|....|....|....|....|....|....|
>2360 2370 2380 2390 2400 2410 2420
....|....|....|....|....|....|....|....|....|....|....|....|
>2490 2500 2510 2520 2530 2540 2550
....|....|....|....|....|....|....|....|....|....|....|....|
>2580 2590 2600 2610 2620 2630 2640
....|....|....|....|....|....|....|....|....|....|....|....|
>2670 2680 2690 2700 2710 2720 2730
....|....|....|....|....|....|....|....|....|....|....|....|
>2750 2760 2770 2780 2790 2800 2810
....|....|....|....|....|....|....|....|....|....|....|....|
>2860 2870 2880 2890 2900 2910 2920
....|....|....|....|....|....|....|....|....|....|....|....|
>2930 2940 2950 2960 2970 2980 2990
....|....|....|....|....|....|....|....|....|....|....|....|
>3000 3010 3020 3030 3040 3050
....|....|....|....|....|....|....|....|....|....|....|....|
>3070 3080 3090 3100 3110 3120 3130
....|....|....|....|....|....|....|....|....|....|....|....|
>3150 3160 3170 3180 3190 3200 3210
....|....|....|....|....|....|....|....|....|....|....|....|
>3240 3250 3260 3270 3280 3290 3300
....|....|....|....|....|....|....|....|....|....|....|....|
>3330 3340 3350 3360 3370 3380
....|....|....|....|....|....|....|....|....|....|....|....|
>3400 3410 3420 3430 3440 3450
....|....|....|....|....|....|....|....|....|....|....|....|
>3460 3470 3480 3490 3500 3510 3520
....|....|....|....|....|....|....|....|....|....|....|....|
>3540 3550 3560 3570 3580 3590 3600
....|....|....|....|....|....|....|....|....|....|....|....|
>3630 3640 3650 3660 3670 3680 3690
....|....|....|....|....|....|....|....|....|....|....|....|
>3760 3770 3780 3790 3800 3810 3820
....|....|....|....|....|....|....|....|....|....|....|....|
>3830 3840 3850 3860 3870 3880 3890
....|....|....|....|....|....|....|....|....|....|....|....|
>3910 3920 3930 3940 3950 3960 3970
....|....|....|....|....|....|....|....|....|....|....|....|
>3980 3990 4000 4010 4020 4030 4040
....|....|....|....|....|....|....|....|....|....|....|....|
>4060 4070 4080 4090 4100 4110 4120
....|....|....|....|....|....|....|....|....|....|....|....|
>4130 4140 4150 4160 4170 4180 4190
....|....|....|....|....|....|....|....|....|....|....|....|
>4200 4210 4220 4230 4240 4250 4260
....|....|....|....|....|....|....|....|....|....|....|....|
>4270 4280 4290 4300 4310 4320 4330
....|....|....|....|....|....|....|....|....|....|....|....|
>4340 4350 4360 4370 4380 4390 4400
....|....|....|....|....|....|....|....|....|....|....|....|

Cambridge University Press
Parasitology
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCLIV_chrV</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td>rLysValAlaAlaAsnLysLeuTyrTyrGluThrGluGlyGlyAlaLeuValGluGluPr</td>
</tr>
<tr>
<td>NcROP40</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td></td>
</tr>
<tr>
<td>NcROP40-long</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcLiv</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp7</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp1H</td>
<td>AAAAAAAAAAAGTAGCGGAAACAAGCTGTACTACGAGACCGAGGGGGGCGCCCTGGTCGAGGAGCC</td>
<td></td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>rLysValAlaAlaAsnLysLeuTyrTyrGluThrGluGlyGlyAlaLeuValGluGluPr</td>
<td></td>
</tr>
<tr>
<td>NCLIV_chrV</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>NclROP40</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>NclROP40-long</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcLiv</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp7</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp1H</td>
<td>GCCGAACGTGACTTCCAGGGGGAGACGGTTCACCGCTGAAGACAACGCAGCAGACTTAGG</td>
<td></td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>oProAsnValThrSerArgGlyArgArgPheThrAlaGluAspAsnAlaAlaAspLeuGl</td>
<td></td>
</tr>
<tr>
<td>NCLIV_chrV</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>NclROP40</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>NclROP40-long</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcLiv</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp7</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp1H</td>
<td>ACGCACTCTCTTTGGCTTGTGGTGCGGCGGTTCGCTTCCTGAGGATGAACCGAGTGGGCG</td>
<td></td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>yArgThrLeuPheGlyLeuTrpCysGlySerLeuProGluAspGluProSerGlyAr</td>
<td></td>
</tr>
<tr>
<td>NCLIV_chrV</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>NclROP40</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>NclROP40-long</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>Consensus NcLiv</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp7</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp1H</td>
<td>GGCCGACGTGGATTTCTCCAATTGCGGGACAGACCTGCCGGATCCTGTCAAGAAGTTAAT</td>
<td></td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>gAlaAspValAspPheSerAsnCysGlyThrAspLeuProAspProValLysLysLeuI</td>
<td></td>
</tr>
<tr>
<td>NCLIV_chrV</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>NclROP40</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>NclROP40-long</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcLiv</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp7</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>Consensus NcSp1H</td>
<td>TATGGGAGTGTCCGGCTCCCACGGACGCGCCCCTCTCAGCGCCTCCCAGGTCCTCGATAC</td>
<td></td>
</tr>
<tr>
<td>Aa.sequence</td>
<td>eMetGlyValSerGlySerHisGlySerAlaProLeuSerAlaSerGlnValLeuAspTh</td>
<td></td>
</tr>
</tbody>
</table>