Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane

Karnik, R. , Zhang, B. , Waghmare, S. , Aderhold, C., Grefen, C. and Blatt, M. R. (2015) Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Plant Cell, 27(3), pp. 675-694. (doi: 10.1105/tpc.114.134429) (PMID:25747882)

Full text not currently available from Enlighten.

Abstract

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Blatt, Professor Michael and Zhang, Dr Ben and Grefen, Dr Christopher and Karnik, Dr Rucha and Waghmare, Dr Sakharam
Authors: Karnik, R., Zhang, B., Waghmare, S., Aderhold, C., Grefen, C., and Blatt, M. R.
College/School:College of Medical Veterinary and Life Sciences > School of Molecular Biosciences
Journal Name:Plant Cell
Publisher:American Society of Plant Biologists
ISSN:1040-4651
ISSN (Online):1532-298X
Published Online:06 March 2015

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
563751MAGIC - A Multi-tiered approach to generating increased carbon dioxide in the chloroplastMichael BlattBiotechnology and Biological Sciences Research Council (BBSRC)BB/I024496/1RI MOLECULAR CELL & SYSTEMS BIOLOGY
616991Directed control of secretory vesicle fusionMichael BlattBiotechnology and Biological Sciences Research Council (BBSRC)BB/K015893/1RI MOLECULAR CELL & SYSTEMS BIOLOGY
626121Stomatal-based systems analysis of water use efficiencyMichael BlattBiotechnology and Biological Sciences Research Council (BBSRC)BB/L001276/1RI MOLECULAR CELL & SYSTEMS BIOLOGY
563753MAGIC - A Multi-tiered approach to generating increased carbon dioxide in the chloroplastMichael BlattBiotechnology and Biological Sciences Research Council (BBSRC)BB/M01133X/1RI MOLECULAR CELL & SYSTEMS BIOLOGY