
This is the author’s final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/129045/

Deposited on: 23 September 2016
Hypermutation in pancreatic cancer

Jeremy L. Humphris 1*, Ann-Marie Patch 2,3*, Katia Nones 2,3, Peter J. Bailey 2,4, Amber L. Johns 1, Skye McKay 1, David K. Chang 1,4,5,6,7, David K. Miller 1,2, Marina Pajic 1,8, Karin S. Kassahn 2,9,10, Michael C. J. Quinn 1,3, Timothy J.C. Bruxner 1, Angelika N. Christ 2,11,12, Yvon Harliwong 2,13, Senel Idrisoglu 2,14, Suzanne Manning 2, Craig Nourse 2,8, Andrew Stone 1, Peter J. Wilson 2, Matthew Anderson 2, J. Lynn Fink 2, Oliver Holmes 2,3, Stephen Kazakoff 1,15, Conrad Leonard 1,16, Felicity Newell 2, Nick Waddell 2,5, Ronald S. Mead 1,11,12, Qinying Xu 2,3, Jianmin Wu 1, Mark Pineo 1,8, Marc J. Cowley 1,6, Marc D. Jones 1,4, Adnan M. Nagrial 1, Venessa T. Chin 1, Lorraine A. Chantrell 13, Amanda Mawson 1, Angela Chou 1,14, Christopher J. Scarlett 1,15, Andrea V. Pinho 1, Ilse Rooman 1, Marc Giry-Laterriere 1,16,17, James G. Kench 1,17,18, Neil D. Merrett 5,19, Christopher W. Toon 1, Krishna Epari 1, Anthony J. Gill 1,17,39, John V. Pearson 2,3, Sean M. Grimmond 2,40, Nicola Waddell 3,2‡, and Andrew V. Biankin 1,4,5,6,7‡.

1The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, AUSTRALIA; 2Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072 AUSTRALIA; 3QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD 4067, Australia; 4Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom; 5Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, AUSTRALIA; 6South Western Sydney Clinical School, Faculty of Medicine, UNSW Australia, Liverpool NSW 2170, AUSTRALIA; 7West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER UNITED KINGDOM; 8St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, AUSTRALIA; 9Genetic and Molecular Pathology, SA Pathology, Adelaide SA 5000; 10School of Biological Sciences, The University of Adelaide, Adelaide SA 5000; 11SEALS Pathology, Prince of Wales Hospital, Randwick, NSW 2031, Australia; 12Sonic Genetics, Douglass Hanly Moir Pathology, North Ryde, NSW 2113, Australia; 13Macarthur Cancer Therapy Centre, Campbelltown Hospital, NSW 2560, AUSTRALIA; 14Department of Anatomical Pathology, SYDPATH, St Vincent's Hospital, NSW 2010 Australia; 15School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW, 2258, Australia; 16Department of Surgery, Royal North Shore Hospital, St Leonards. Sydney NSW 2065, AUSTRALIA; 17University of Sydney, Sydney NSW 2006, AUSTRALIA; 18Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown NSW, AUSTRALIA; 19School of Medicine, Western Sydney University, Penrith, NSW 2175 AUSTRALIA; 20Department of Surgery, Fiona Stanley Hospital, Robin Warren Dr, Murdoch, WA, 6150; 21Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, AUSTRALIA; 22Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woolloongabba, QLD 4102, AUSTRALIA; 23School of Surgery M007, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvador Rd, Subiaco, WA, 6008; 24Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, G4 OSF, UNITED KINGDOM; 25Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UNITED KINGDOM; 26Department of Pathology, Southern General Hospital, Greater Glasgow & Clyde NHS, Glasgow G51 4TF, UNITED KINGDOM; 27Greater Glasgow and Clyde Bio-repository, Pathology Department, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow, G51 4TY, UNITED KINGDOM; 28Cancer Research UK Beatson Institute, Glasgow. G611BD. UNITED KINGDOM; 29Institute for
*These authors contributed equally to this work.
‡ Corresponding authors, these authors jointly contributed to the work

Corresponding authors:

Andrew V. Biankin
Wolfson Wohl Cancer Research Centre,
Institute of Cancer Sciences, University of Glasgow,
Garscube Estate, Switchback Road,
Bearsden, Glasgow Scotland G61 1BD, and
The Kinghorn Cancer Centre,
Cancer Division, Garvan Institute of Medical Research
384 Victoria St, Darlington, Sydney, NSW 2010, Australia
Tel: +44 141 330 5670 Fax: +44 141 330 5834
Email: andrew.biankin@glasgow.ac.uk

Nicola Waddell
QIMR Berghofer Medical Research Institute,
Medical Genomics Group,
300 Herston Road,
Brisbane, QLD, 4006
Tel: +61 7 3845 3538 Fax: +61 7 3362 0101
Email: nic.waddell@qimrberghofer.edu.au

Funding support:
National Health and Medical Research Council of Australia (NHMRC; 631701, 535903, 427601, 1112113)
Queensland Government (NIRAP)
University of Queensland
Institute for Molecular Bioscience
Australian Government: Department of Innovation, Industry, Science and Research (DIISR)
Australian Cancer Research Foundation (ACRF)
Cancer Council NSW: (SRP06-01, SRP11-01, ICGC)
Cancer Institute NSW: (10/ECF/2-26; 06/ECF/1-24; 09/CDF/2-40; 07/CDF/1-03; 10/CRF/1-01, 08/RSA/1-15, 07/CDF/1-28, 10/CDF/2-26,10/FRL/2-03, 06/RSA/1-05, 09/RIG/1-02, 10/TPG/1-04, 11/REG/1-10, 11/CDF/3-26,13ECF1-46, 13/CDF/1-01)
Garvan Institute of Medical Research
Avner Nahmani Pancreatic Cancer Foundation
Cancer Australia 1065022 Project Grant funding
Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harbouring different mechanisms of somatic inactivation of $MLH1$ and $MSH2$. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival of less than 5% with therapies offering only incremental benefit\(^3\), potentially due to the diversity of its genomic landscape\(^2\)-\(^4\). Recent reports link high mutation burden with response to immune checkpoint inhibitors in several cancer types\(^5\). Defining tumors that are hypermutated with an increased mutation burden and understanding the underlying mechanisms in pancreatic cancer has the potential to advance therapeutic development, particularly for immunotherapeutic strategies.

Whole genome (WGS, \(n=180\)) and whole exome (\(n=205\)) sequencing of 385 unselected predominantly sporadic PDAC (Supplementary Table 1) defined an average mutation load of 1.8 and 1.1 mutation per megabase (Mb) respectively (Supplementary Table 2). Outlier analysis identified 20 samples with the highest mutation burden (5.2%, 15 WGS and 5 exome) (Table 1 and Supplementary Figure 1A), 5 of which were considered extreme outliers and classified as hypermutated as they contained \(\geq 12\) somatic mutations/Mb, the defined threshold for hypermutation in colorectal cancer\(^6\). Immunohistochemistry (IHC) for mismatch repair (MMR) proteins (MSH2, MSH6, MLH1 and PMS2) identified 4 MMR deficient tumors, all of which were hypermutated (\(n = 180\), Figure 1).

KRAS mutation status and histopathological characteristics have been associated with MMR deficient pancreatic tumors\(^7\). Of the 4 MMR deficient tumors in our cohort, 2 were **KRAS** wild type; 3 had undifferentiated to moderately differentiated histology and one a signet-ring component. These features were not predictive of MMR deficiency in our cohort as 11 additional non-MMR deficient tumors had a signet-ring cell component or colloid histology and 131 of 347 assessable tumors had poorly- or undifferentiated histology.

Mutational signature analysis can detect MMR deficiency indirectly based on somatic mutations\(^8\). An MMR deficient signature dominated the MMR deficient tumors (with WGS), and was minimal in MMR intact tumors (Supplementary Figure 1). In addition, microsatellite instability (MSI), a hallmark of MMR deficiency in colorectal cancer, was detected in all three MMR deficient tumors with WGS using MSIsensor\(^9\) (Supplementary Table 2). MSI was not identified for the fourth MMR deficient sample potentially due to the reduced number of microsatellite loci in exome data.

The underlying causes of MMR deficiency in the 4 cases were private somatic events. For 2 cases **MSH2** was disrupted by different structural rearrangements, 1 case contained a missense **MSH2** mutation and the last, methylation of the **MLH1** promoter (Figure 1). The missense mutation caused an **MSH2** splice acceptor site mutation that alters the same nucleotide reported to result in a pathogenic skipping of exon 13 in germline studies\(^10\). Hypermethylation of the **MLH1** promoter is the predominant mechanism of MSI in sporadic colon cancer\(^11\). The remaining hypermutated tumor contained an intact MMR pathway, and was a cell line (ATCC, CRL-2551) with an unidentified mutational signature; therefore the high mutation burden in this sample may be the result of long term cell culture.

The 15 samples (11 WGS and 4 exome) identified in the outlier analysis with high mutation burden, but not hypermutated (\(~4 - 12\) mutations/Mb) contained no evidence of MMR deficiency. Mutational signature analysis of the WGS samples indicated homologous recombination (HR) repair deficiency as the most substantial (range 1.0 - 3.4 mutations/Mb) contributor to the mutation burden for 8 WGS mutation load outlier tumors. In support of a HR defect\(^4\); 7 of these tumors contained high levels of genomic instability.
with >200 structural variants and mutations in genes involved in HR were present for 6/8 cases (Supplementary Table 2). In addition, one case that had undergone exome sequencing had a somatic BRCA2 nonsense mutation that likely contributed to HR deficiency in this sample. A mutational signature associated with T>G mutations at TT sites previously described in other cancers, including esophageal cancer\(^\text{12}\) was the major contributor (>3 mutations/Mb) in 2 samples. For these two and the remaining 4 cases, no potential causative event could be identified.

Although germline defects in MMR genes are well reported in pancreatic cancer\(^\text{13}\) in our cohort, they did not contribute to MMR deficiency even in those with familial pancreatic cancer or a personal or family history of Lynch-related tumors. A germline truncating variant was detected in PMS2 for 1 case but did not have loss of the second allele, therefore had normal IHC staining and did not display a MMR mutational signature (Supplementary Table 2). MMR deficiency is important in the evolution in a small, but meaningful proportion of pancreatic cancers with a prevalence of 1% (4/385) in our cohort. This is consistent with recent studies using the Bethesda PCR panel\(^\text{14}\), and with previous estimates of MSI prevalence of 2-3%\(^\text{15}\). However, in tumors with low epithelial content that underwent exome sequencing, the sensitivity of somatic mutation detection is reduced, which will affect mutation burden and signature analysis. Whilst cognizant of small numbers, immunohistochemistry was the most accurate in defining MMR due to multiple genomic mechanisms of MMR gene inactivation. Multiple methods to define MMR deficiency may be required for clinical trials that aim to recruit MMR deficient participants for clinical trials examining checkpoint inhibitors or other therapies in pancreatic cancer. Homologous recombination deficient tumors, and those with a novel signature seen in esophageal cancer had an increased mutation burden, and need further evaluation as potential patient selection markers for clinical trials of checkpoint inhibitor and other therapies that target tumors with a high mutation burden.

References

Author names in bold designate shared co-first authorship

List of abbreviations:

- APGI: Australian Pancreatic Genome Initiative
- DNA: Deoxyribonucleic acid
- HR: Homologous recombination
- ICGC: International Cancer Genome Consortium
- IHC: Immunohistochemistry
- Mb: Megabase
- MMR: Mismatch Repair
- MSI: Microsatellite Instability
- PDAC: Pancreatic Ductal Adenocarcinoma
- SV: Structural Variant
- WGS: Whole Genome Sequencing

Acknowledgements:

We would like to thank Cathy Axford, Deborah Gwynne, Mary-Anne Brancato, Clare Watson, Michelle Thomas, Gerard Hammond and Doug Stetner for central co-ordination of the Australian Pancreatic Cancer Genome Initiative, data management and quality control. Mona Martyn-Smith, Lisa Braatvedt, Henry Tang, Virginia Papangelis and Maria Beilin for biospecimen acquisition. Sonia Grimaldi and Giada Bonizzato of the ARC-Net Biobank for biospecimen acquisition.

Figure Legends

Figure 1. Molecular mechanisms of MMR deficiency. IHC images (scale bars indicate 100µm) indicating loss of staining of MMR proteins in tumor cells (blue) and normal staining in adjacent cells (brown) with schematics of underlying genetic aetiology. A, MHS2 absence due to a homozygous deletion (ICGC_0076). B, MHS2 absence and a structural rearrangement disrupting the MSH2 locus through insertion of a 27Kb DNA segment (ICGC_0548). C, MHS2 absence and a missense acceptor splice site variant at exon 13 (ICGC_0090). D, MLH1 absence through hypermethylation of the promoter region (ICGC_0297). The average beta value of 45 CpG sites in the promoter of MLH1 for
pancreatic cancer (n=174) and adjacent non-malignant pancreas tissue samples (n=29) is shown.
Table 1. Clinical and histological features and proposed aetiology for highly mutated PDAC tumors (n=20).

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Personal and family history of malignancy</th>
<th>Histology</th>
<th>Mutation Load (Mutations/Mb)</th>
<th>IHC result</th>
<th>MSsensor score</th>
<th>KRAS mutation</th>
<th>Predominant mutation signature (mutations/Mb)</th>
<th>SV subtype (no of events)</th>
<th>Proposed aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICGC_0076T</td>
<td>None</td>
<td>Mixed signet ring, mucinous and papillary adenocarcinoma.</td>
<td>38.55</td>
<td>Absent MLH1 and PMS2</td>
<td>28.3</td>
<td>p.G12V</td>
<td>MMR (18.3)</td>
<td>Scattered (131)</td>
<td>MMR deficiency: >2800kb somatic homozygous deletion over MSH2</td>
</tr>
<tr>
<td>ICGC_0297T</td>
<td>None</td>
<td>Undifferentiated adenocarcinoma</td>
<td>60.62</td>
<td>Absent MSH2 and MSH6</td>
<td>27.33</td>
<td>WT</td>
<td>MMR (33.4)</td>
<td>Scattered (75)</td>
<td>MMR deficiency: Somatic MLH1 promoter hypermethylation</td>
</tr>
<tr>
<td>ICGC_0548T</td>
<td>None</td>
<td>Ductal adenocarcinoma, moderately differentiated</td>
<td>30.13</td>
<td>Absent MSH2 and MSH6</td>
<td>17.47</td>
<td>WT</td>
<td>MMR (16.6)</td>
<td>Stable (49)</td>
<td>MMR deficiency: >27kb somatic inversion rearrangement disrupting MSH2</td>
</tr>
<tr>
<td>ICGC_0090</td>
<td>1 FDR, father CRC</td>
<td>Ductal adenocarcinoma, moderately differentiated</td>
<td>12.9</td>
<td>Absent MSH2 and MSH6</td>
<td>0.21</td>
<td>p.G12C</td>
<td>N/A</td>
<td>N/A</td>
<td>MMR deficiency: Somatic MSH2 splice site c.2006G>A</td>
</tr>
</tbody>
</table>

Highly mutated tumors

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Personal and family history of malignancy</th>
<th>Histology</th>
<th>Mutation Load (Mutations/Mb)</th>
<th>IHC result</th>
<th>MSsensor score</th>
<th>KRAS mutation</th>
<th>Predominant mutation signature (mutations/Mb)</th>
<th>SV subtype (no of events)</th>
<th>Proposed aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICGC_0054T</td>
<td>None</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>6.52</td>
<td>Normal</td>
<td>0.01</td>
<td>p.G12V</td>
<td>HR deficiency (1.3)</td>
<td>Unstable (310)</td>
<td>HR deficiency: No germline or somatic cause found.</td>
</tr>
<tr>
<td>ICGC_0290T</td>
<td>None</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>6.54</td>
<td>Not Available</td>
<td>0.07</td>
<td>p.G12V</td>
<td>HR deficiency (3.1)</td>
<td>Unstable (558)</td>
<td>MMR deficiency: Germline BRCA2 mutation c.7180A>T, p.A2394*. Somatic CN-LOH.</td>
</tr>
<tr>
<td>ICGC_0215T</td>
<td>2 FDR lung cancer, 2 FDR prostate cancer. Previous CRC and melanoma</td>
<td>Ductal adenocarcinoma, moderately differentiated</td>
<td>6.27</td>
<td>Normal</td>
<td>0.01</td>
<td>p.G12V</td>
<td>HR deficiency (1.9)</td>
<td>Scattered (111)</td>
<td>HR deficiency: Germline ATM mutation c.7539_7540delAT, p.Y2514*. Somatic CN-LOH.</td>
</tr>
<tr>
<td>ICGC_0324</td>
<td>None</td>
<td>Ductal adenocarcinoma, moderately differentiated</td>
<td>6.24</td>
<td>Normal</td>
<td>0</td>
<td>p.G12D</td>
<td>N/A</td>
<td>N/A</td>
<td>Undefined</td>
</tr>
<tr>
<td>ICGC_0131T</td>
<td>Lung cancer after PC</td>
<td>Ductal adenocarcinoma, moderately differentiated</td>
<td>5.63</td>
<td>Normal</td>
<td>0</td>
<td>p.G12D</td>
<td>T>G at TT sites (3.0)</td>
<td>Focal (147)</td>
<td>T>G at TT sites signature: etiology potentially associated with DNA oxidation</td>
</tr>
<tr>
<td>ICGC_0006T</td>
<td>1 FDR, father lung cancer</td>
<td>Adenocarcinoma arising from IPMN, moderately differentiated</td>
<td>5.29</td>
<td>Normal</td>
<td>0.01</td>
<td>p.G12D</td>
<td>HR deficiency (1.2)</td>
<td>Unstable (211)</td>
<td>HR deficiency: Somatic BRCA2 c.5351dupA, p.N1747*. Somatic CN-LOH.</td>
</tr>
<tr>
<td>ICGC_0321T</td>
<td>2 FDR, mother and cousin breast cancer</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>4.79</td>
<td>Not Available</td>
<td>0</td>
<td>p.G12D</td>
<td>HR deficiency (2.1)</td>
<td>Unstable (286)</td>
<td>HR deficiency: Germline BRCA2 c.6699delTT, p.F2234LfsTer7. Somatic CN loss - 1 copy.</td>
</tr>
<tr>
<td>ICGC_0309T</td>
<td>None</td>
<td>Adenocarcinoma arising from IPMN, moderately differentiated</td>
<td>4.74</td>
<td>Normal</td>
<td>0.03</td>
<td>p.G12V</td>
<td>T>G at TT sites (3.1)</td>
<td>Unstable (232)</td>
<td>T>G at TT sites signature: etiology potentially associated with DNA oxidation</td>
</tr>
<tr>
<td>ICGC_0005T</td>
<td>1 FDR, mother CRC</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>4.72</td>
<td>Not Available</td>
<td>1</td>
<td>p.G12V</td>
<td>HR deficiency (1.1)</td>
<td>Focal (95)</td>
<td>HR deficiency: No germline or somatic cause found.</td>
</tr>
<tr>
<td>ICGC_0016T</td>
<td>None</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>4.61</td>
<td>Normal</td>
<td>3.03</td>
<td>p.G12V</td>
<td>HR deficiency (1.7)</td>
<td>Unstable (447)</td>
<td>HR deficiency: potentially linked to Somatic RPA1 c.273G>T, p.R91S</td>
</tr>
<tr>
<td>ICGC_0046</td>
<td>1 FDR, brother PC</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>4.3</td>
<td>Normal</td>
<td>0</td>
<td>p.Q61H</td>
<td>N/A</td>
<td>N/A</td>
<td>Undefined</td>
</tr>
<tr>
<td>GARV_0668T</td>
<td>None</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>4.3</td>
<td>Not Available</td>
<td>2.19</td>
<td>p.G12V</td>
<td>HR deficiency (1.6)</td>
<td>Unstable (464)</td>
<td>HR deficiency: Germline BRCA2 c.7068_7069delTC, p.L2428fsTer7. Somatic CN loss - 1 copy.</td>
</tr>
<tr>
<td>ICGC_0291</td>
<td>None</td>
<td>Ductal adenocarcinoma, well differentiated</td>
<td>3.84</td>
<td>Not Available</td>
<td>0.03</td>
<td>p.G12R</td>
<td>N/A</td>
<td>N/A</td>
<td>HR deficiency: Somatic BRCA2 c.7263T>A, p.L2428*</td>
</tr>
<tr>
<td>ICGC_0256</td>
<td>None</td>
<td>Ductal adenocarcinoma, poorly differentiated</td>
<td>3.72</td>
<td>Not Available</td>
<td>0.06</td>
<td>p.G12D</td>
<td>N/A</td>
<td>N/A</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

† Sample sequenced by whole genome sequencing (WGS), other samples by exome sequencing.
FDR, First degree relative; PC, Pancreatic cancer; CRC, Colorectal cancer; N/A, not applicable to exome data.