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Bayesian cluster detection via adjacency
modelling

Craig Anderson, Duncan Lee, Nema Dean

Abstract

Disease mapping aims to estimate the spatial pattern in disease risk
across an area, identifying units which have elevated disease risk. Ex-
isting methods use Bayesian hierarchical models with spatially smooth
conditional autoregressive priors to estimate risk, but these methods
are unable to identify the geographical extent of spatially contiguous
high-risk clusters of areal units. Our proposed solution to this prob-
lem is a two stage approach, which produces a set of potential cluster
structures for the data and then chooses the optimal structure via a
Bayesian hierarchical model. The first stage uses a spatially adjusted
hierarchical agglomerative clustering algorithm. The second stage fits
a Poisson log-linear model to the data to estimate the optimal cluster
structure and the spatial pattern in disease risk. The methodology was
applied to a study of chronic obstructive pulmonary disease (COPD)
in local authorities in England, where a number of high risk clusters
were identified..
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1 Introduction

Disease risk varies geographically as a result of many factors, including differ-
ences in environmental exposures, and cultural and behavioural differences
between the inhabitants of different areas. Within a country such as Eng-
land, there are substantial inequalities in terms of health and disease risk,
with poverty being one of the most important reasons for these differences
(Marmot et al. (2010)) Disease maps allow us to illustrate these differences
graphically. Such maps are produced by partitioning the study region into
n non-overlapping areal units such as electoral wards or census tracts, and
then calculating the overall risk of disease for the population living in each
areal unit. Health agencies routinely produce such maps for numerous dis-
eases, including cancer (Public Health England (2010)) and cardiovascular
disease (Centers for Disease Control and Prevention (2011)). The main use
of these maps is that they allow public health officials to visually identify
high-risk clusters of areal units, allowing them to focus resources on those
areas exhibiting elevated disease risk.

Many different approaches have been proposed for the identification of
the spatial extent of high-risk clusters in spatial disease maps, including
Bayesian hierarchical modelling (Charras-Garrido et al. (2012)), scan statis-
tics (Kulldorff (1997)) and point process methodology (Diggle et al. (2005)).
The first of these is typically based on a Poisson log-linear model, where
covariates and/or a set of random effects are used to represent the spatial
disease risk pattern. The random effects are included to account for spatial
autocorrelation in the response that was not captured by the covariates; and
are typically modelled by a conditional autoregressive (CAR) prior. These
priors were proposed by Besag et al. (1991) and developed by Leroux et al.
(1999), and are a type of Gaussian Markov random field. CAR priors make
the naive assumption of global correlation between all pairs of random ef-
fects in geographically adjacent areal units, and therefore produce a spatially
smooth risk surface. However such smoothing is detrimental to our main aim,
which is to identify groups of areas which have much higher (or lower) risks
compared with surrounding areas, so an alternative approach is required.

Therefore, this paper outlines new methodology which allows for the esti-
mation of the spatial pattern in disease risk, whilst simultaneously detecting
the spatial extent of high or low risk clusters. In doing so the cluster struc-
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ture is accounted for when estimating disease risk, so that high risk clusters
are not smoothed towards their geographical neighbours that do not exhibit
elevated risks. The methodology brings together hierarchical agglomerative
clustering techniques and conditional autoregressive models in a two-stage
approach. The first stage is a spatially-adjusted hierarchical agglomerative
clustering algorithm first proposed in Anderson et al. (2014), which respects
the spatial contiguity of the study region. This algorithm is applied to disease
data preceding the study period to elicit n candidate cluster configurations
containing between 1 and n clusters. The second stage fits an extended Pois-
son log-linear model to the study data, where Markov Chain Monte Carlo
(MCMC) simulation methods are used to estimate both the optimal cluster
structure and disease risk.

Applying the clustering algorithm to the study data itself would necessi-
tate the information in the data being used twice, once for eliciting a set of
candidate cluster configurations and again for estimating the model param-
eters. To overcome this issue, a second data set is required for the clustering
stage, and emphasis should be placed on obtaining a dataset which is as sim-
ilar as possible to the study data. Possible choices include data on disease
risk in the time period prior to the study period or data on a different disease
from the same time period as the study data. This study utilises the for-
mer choice, because it is unlikely that there has been any substantial change
in the spatial patterns in the population characteristics governing disease
risk (such as poverty) unless substantial urban regeneration has taken place.
The approach proposed in this paper is thus appropriate for data on chronic
diseases whose risk factors are spatially stable, but would be unsuitable for
epidemic diseases such as influenza, where the spatial pattern in disease risk
in the years prior to an outbreak would be vastly different to the pattern
during an outbreak.

The remainder of this paper is organised as follows. Section 2 gives a brief
introduction to Bayesian disease mapping, and discusses the existing methods
of cluster identification that have been proposed in this context. Section 3
proposes our new methodological extension, while Section 4 establishes its
efficacy via simulation. Section 5 presents the motivating application for
our methodology, a study of chronic obstructive pulmonary disease (COPD)
mortalities in English local authorities in 2010. Finally, Section 6 discusses
the implications of this paper and ideas for future work.
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2 Bayesian disease mapping

2.1 Study Design and Modelling

The study region A is partitioned into n non-overlapping areal units A =
{A1, . . . ,An}, and Y = (Y1, . . . , Yn) and E = (E1, . . . , En) represent the
observed and expected numbers of disease cases in each unit during the study
period. The latter are constructed by external standardisation, based on the
age and sex demographics of the population living in each areal unit. A
Poisson log-linear model is commonly used to estimate disease risk, and a
general form is given by

Yi|Ei, Ri ∼ Poisson(EiRi) i = 1, ..., n, (1)

ln(Ri) = xT
i β + φi.

Here Ri represents disease risk in areal unit Ai, and is modelled by a
vector of covariates xT

i = (1, xi1, . . . , xip), with coefficients β = (β0, . . . , βp),
and a random effect φi. The random effects φ = (φi, . . . , φn) account for the
spatial autocorrelation induced into the disease data by factors such as un-
measured confounding, neighbourhood effects and grouping effects. They are
modelled by a conditional autoregressive (CAR) prior, which induces spatial
autocorrelation via a binary neighbourhood matrix W , where wij = 1 if areal
units (Ai,Aj) share a common border (denoted i ∼ j) and wij = 0 otherwise.
Note that wii = 0 for all i. CAR priors can be specified as a set of n univariate
conditional distributions f(φi|φ−i), where φ−i = (φ1, . . . , φi−1, φi+1, . . . , φn).
The simplest of these CAR priors was the intrinsic prior proposed by Besag
et al. (1991), and this model is given by

φi|φ−i ∼ N

(∑n
j=1wijφj∑n
j=1wij

,
1

τ(
∑n

j=1wij)

)
i = 1, . . . , n, (2)

where τ is a conditional precision parameter. The conditional expectation
of φi is the mean of the random effects in neighbouring areal units, while
the variance is inversely proportional to the number of neighbouring units.
This set of conditional distributions correspond to a multivariate Gaussian
distribution, with mean zero but an improper precision matrix given by Q =
diag(W1)−W , where W1 is a vector containing the number of neighbours
for each areal unit.
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2.2 Literature review

Previous research has proposed a number of extensions of the Bayesian hi-
erarchical model outlined above to identify the spatial extent of high or low
risk clusters in disease maps. The majority of these treat the elements of
the neighbourhood matrix {wij|i ∼ j} corresponding to adjacent areas as bi-
nary random quantities, where estimating wij = 0 corresponds to identifying
a boundary between (Ai,Aj) because (φi, φj) are conditionally independent
and are not smoothed over in the modelling process. One of the first exam-
ples of this approach came from Lu et al. (2007), who proposed a logistic
regression model for {wij|i ∼ j} using a measure of dissimilarity between
(Ai,Aj) as the covariate. However, this results in an excessively large num-
ber of parameters, which led Lee and Mitchell (2012) to treat {wij|i ∼ j}
as a deterministic function of a small number of parameters and the areal
level measure of dissimilarity. The same authors (Lee and Mitchell (2013))
also proposed iteratively re-estimating {wij|i ∼ j} and the remaining model
parameters conditional on the other until a convergence criterion is reached,
where {wij|i ∼ j} was updated deterministically based on the other model
parameters. Finally, Li et al. (2011) fitted multiple models with different
W specifications and thus different potential sets of boundaries to the data,
and used the Bayesian Information Criterion (BIC) to choose the best model.

The approaches developed in the above literature produce open bound-
aries, which are a set of potentially disjoint boundary segments that do not
necessarily enclose an areal unit or group of units. In contrast, the aim
here is to identify distinct groups of areal units that exhibit substantially
different risks compared to their neighbours, and this has the natural conse-
quence that the boundary surrounding them is closed. One of the first and
still most widely used cluster detection approaches are scan statistics (Kull-
dorff (1997)), which identify clusters of areal units that exhibit an elevated
risk of disease. Their popularity is in part down to the availability of the
SaTScan software, which allows the approach to be easily implemented by
others. However, scan statistics merely identify high-risk clusters, and do
not simultaneously estimate the spatial pattern in disease risk. This has led
to a number of hierarchical modelling approaches such as Knorr-Held (2000),
Green and Richardson (2002), Charras-Garrido et al. (2012) and Wakefield
and Kim (2013) being proposed, and a first comparison to scan statistics is
given by Charras-Garrido et al. (2013). This paper, together with Charras-
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Garrido et al. (2012), also assesses the utility of identifying clusters by apply-
ing a post processing clustering algorithm to an estimated disease risk map,
although the spatial contiguity of the clusters is not guaranteed. Finally, a
two-stage approach was proposed by Anderson et al. (2014), where a set of
potential cluster structures are identified in the first stage, and then a sep-
arate Bayesian hierarchical model is fitted to each of these in turn in stage
two, with the best structure being chosen using model comparison techniques.
This paper will follow a similar two-stage approach, but will simultaneously
estimate the cluster structure and disease risk in a single model. This has
the advantages of computational simplicity (only fitting a single model), and
correctly allowing the uncertainty in the cluster structure to be incorporated
when estimating disease risk.

One major difference between the existing approaches is that Knorr-
Held (2000), Wakefield and Kim (2013) and Anderson et al. (2014) force
the clusters to be spatially contiguous, while Green and Richardson (2002)
and Charras-Garrido et al. (2012) do not. However, in all cases except for
Anderson et al. (2014) disease risk is assumed to be constant within a clus-
ter, which allows the relative risk to be partitioned into risk classes/clusters
which are easy to interpret for epidemiologists. However, for real data it
is likely that disease risk varies within a cluster, and the model proposed
here allows for such within cluster variation. The other disadvantage of
these approaches is that they involve computationally complex estimation
approaches, such as reversible jump Markov chain Monte Carlo algorithms
(e.g. Knorr-Held (2000)) or the Monte Carlo Expectation-Maximisation al-
gorithm (e.g. Charras-Garrido et al. (2012)). Such approaches are beyond
the scope of most epidemiologists, and no publicly available software exists
to allow others to implement them.

3 Method

We propose a two-stage approach for estimating the spatial pattern in disease
risk and identifying spatially contiguous clusters that exhibit either elevated
or reduced disease risks. In the first stage (Section 3.1) we utilise the spa-
tially adjusted hierarchical agglomerative clustering algorithm proposed by
Anderson et al. (2014), and use it to elicit a set of candidate cluster con-
figurations for the data. In the second stage (Section 3.2) we propose a

6



hierarchical Bayesian model for the disease data which can simultaneously
select the optimal cluster configuration from the candidates elicited in Stage
1 and also estimate disease risk. Inference for this model uses MCMC simu-
lation and software to implement both Stage 1 and Stage 2 are provided as
supplementary material.

3.1 Stage 1 - Eliciting cluster configurations using hi-
erarchical agglomerative clustering

The method of clustering (for details see Hastie et al. (2001)) involves group-
ing together objects that are similar whilst separating those that are different,
which is appropriate here because we wish to identify groups of areal units
with similar disease risks. The clustering algorithm is taken from Anderson
et al. (2014) and is applied to disease data preceding the study period, be-
cause it is likely to exhibit a similar spatial risk pattern to the study data
unless substantial urban regeneration has taken place. If this assumption
does not hold, either because of substantial socio-economic changes or vast
population migration, then alternative clustering data such as covariate in-
formation could be used instead.

Let (Y (1),E(1)), . . . , (Y (q),E(q)) denote the observed and expected dis-
ease counts for the q time intervals (usually years) preceding the study pe-
riod. These earlier data are used to elicit a set of n potential cluster config-
urations for the study data, which are denoted here by {C1, . . . , Cn}. Here
Ck = {Ck(1), . . . , Ck(k)} partitions the n areal units A = {A1, . . . ,An} into
k spatially contiguous groups, where Ck(j) is the j th cluster. The set of all
possible spatially contiguous cluster configurations for the study region A
is very large, so we use this clustering step to vastly reduce the number of
potential cluster structures to be considered in stage 2.

The data are clustered on the log standardised incidence ratio scale, that
is ln(Y (j)/E(j)), because this corresponds to the linear predictor scale in
(1). Let ψ = [ln(Y (1)/E(1)), . . . , ln(Y (q)/E(q))] be the n× q matrix whose
columns comprise ln(Y (j)/E(j)) for j = 1, . . . , q, and denote the ith row

by ψi = [ln(Y
(1)
i /E

(1)
i ), . . . , ln(Y

(q)
i /E

(q)
i )], the vector of q values for areal

unit Ai. The data are clustered using a modified hierarchical agglomera-
tive clustering algorithm, which initially considers each data point as its own
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singleton cluster, and then joins together the two least dissimilar clusters
at each stage to form a larger cluster. This process is repeated until only
one cluster containing all data points remains. For a configuration with k
clusters the dissimilarity, dij, between clusters i (Ck(i)) and j (Ck(j)) can be
measured by a number of metrics called linkage methods, but based on the
results of Anderson et al. (2014) we will proceed with centroid linkage in this
paper.

Centroid linkage measures the dissimilarity as the Euclidean distance be-
tween the average of the two clusters, that is dij = ||C̄k(i) − C̄k(j)||, where
C̄k(i) = (1/ni)

∑
f :Af∈Ck(i)

ψf , and ni is the number of areal units in cluster

Ck(i). The hierarchical agglomerative clustering algorithm described above
is extended so that it produces spatially contiguous clusters, which is achieved
by only allowing clusters containing two areal units which share a common
border to be merged at each step. The algorithm produces a set of candidate
cluster structures {C1, . . . , Cn} as follows:

Algorithm

1. Construct Cn = {Cn(1), . . . , Cn(n)}, an initial cluster structure where
each areal unit is in its own singleton cluster.

2. Repeat the following steps for h = n, . . . , 2, where step h produces Ch−1
from Ch.

(a) Compute the h× h distance matrix D, whose klth element is
given by

Dkl =

{
|dkl| if k ∼ l& k > l
∞ otherwise,

where dkl is the distance between clusters (Ch(k), Ch(l)) as
measured by centroid linkage, and k ∼ l means that the clusters
contain at least one pair of areas that share a common border.

(b) Set {i, j} = arg min(Dkl), that is the identifiers of the two clusters
that have the minimum dissimilarity. In case of ties, {i, j} is
randomly selected from these.
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(c) Compute

Ch−1 = {Ch(1), . . . , Ch(i−1), Ch−1(i), Ch(i+1), . . . , Ch(j−1), Ch(j+1), . . . , Ch(h)},

where Ch−1(i) = Ch(i) ∪ Ch(j).

3.2 Stage 2 - A model for estimating the cluster struc-
ture and disease risk

The study data are denoted by (Y ,E), and the best cluster structure for
these data from the set of n candidates {C1, . . . , Cn} elicited from stage 1
is estimated together with disease risk by extending the Poisson log-linear
CAR model given by (1) and (2) in two main ways. This approach takes ad-
vantage of the natural ordering of the cluster structures to allow the number
of clusters to be considered as a univariate parameter within the model. The
mechanism for implementing a given cluster structure is the neighbourhood
matrix W , which is altered so that wij only equals one if areal units (Ai,Aj)
share a border and are in the same cluster. Thus if two adjacent areal units
are in the same cluster their random effects are partially autocorrelated and
are smoothed over in the modeling, while if they are in different clusters they
are conditionally independent and are not smoothed over. Thus there is a
one-to-one relationship between the number of clusters and the value of W ,
and the n candidate values of W are denoted by (W1, . . . ,Wn). Here W1

corresponds to a single cluster and thus equals W , the original adjacency
structure of the region. This value thus enforces strong spatial smoothing
across the region, as no high or low risk clusters have been identified. In
contrast, Wn corresponds to all n areal units being assigned to their own
cluster of size one, and thus Wn is the zero matrix. This value thus corre-
sponds to independent random effects with no spatial smoothing constraints.

However, the intrinsic CAR prior outlined in (2) is not appropriate here,
since our model could produce a neighbourhood matrix W in which an areal
unit has no neighbours due to it being a singleton cluster. If this was areal
unit i, this would cause

∑n
j=1wij = 0, yielding an infinite mean and variance

in (2). Instead, our random effects are modelled via the localised CAR model
outlined in Lee et al. (2014), where an extended random effects vector φ̃ =
(φ, φ∗) is used, with φ∗ being the global random effect which is potentially
common to all areas and prevents the infinite mean and variance problem
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outlined above. An extended (n+1) × (n+1) neighbourhood matrix W̃ is
specified for this vector, which takes the form

W̃ =

(
W w∗
wT
∗ 0

)

where w∗ = (w1∗, . . . , wn∗) and wi∗ = I[
∑

i∼j(1 − wij) > 0]. Here, I[.]
denotes an indicator function, which sets wi∗ = 1 if any entry in row i of the
neighbourhood matrix W is changed from a 1 to a 0 due to a neighbouring
area being in a different cluster. Otherwise, w∗i = 0. Based on this extended
neighbourhood matrix, φ̃ is modelled as φ̃ = N(0, τ 2Q(W̃ , ε)−1) with the
precision matrix

Q(W̃ , ε)−1 = diag(W̃1)− W̃ + ε1. (3)

This corresponds to the intrinsic CAR model for the extended random
effects vector φ̃, with a small positive constant added to the diagonal of the
precision matrix to ensure that it is invertible. The invertibility of Q(W̃ , ε)−1

is required as its determinant is computed when updating W , and Lee and
Mitchell (2013) suggest that the results are insensitive to ε and set ε = 0.001.
The full conditionals of this extended CAR model are given by

φi|φ̃−i ∼ N

(∑n
j=1wijφj + wi∗φ∗∑n
j=1wij + wi∗ + ε

,
τ 2∑n

j=1wij + wi∗ + ε

)
, (4)

φ∗|φ̃−∗ ∼ N

( ∑n
j=1wj∗φj∑n
j=1wj∗ + ε

,
τ 2∑n

j=1wj∗ + ε

)
.

This means that the conditional expectation is a weighted average of
the random effects in neighbouring areas and the global random effect φ∗,
with binary weights based on the current choice of W matrix. Here, W̃ =
(W̃1, . . . , W̃n) is the set of extended neighbourhood matrices related to the set
of cluster structures elicited in (3.1), where W̃j is the matrix corresponding
to the cluster structure with j clusters. Given this extended CAR prior the
overall Bayesian hierarchical model we propose is given by

Yi|Ei, Ri ∼ Poisson(EiRi) for i = 1, . . . , n,

ln(Ri) = β0 + φi,
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φ̃ ∼ N(0, τ 2Q(W̃ , ε)−1),

W̃ ∼ Discrete(W̃1, . . . , W̃n; π1, . . . , πn),

πj =
exp(−jθ)
n∑

i=1
exp(−iθ)

, (5)

β0 ∼ N(0, 1000) for j = 1, . . . , p,

θ ∼ Uniform(0, 1),

τ 2 ∼ Uniform(0, 1000).

Initially, a discrete uniform prior was considered for W̃ , but it may not
be appropriate to give equal weighting to structures with extremely large
numbers of clusters as the spatial autocorrelation present in the data sug-
gests the number of clusters will be relatively small. Therefore our prior
probabilities for (W̃1, . . . , W̃n) are given by (π1, . . . , πn), with an additional
parameter θ being introduced to control the strength of the weights. When
θ = 0 a discrete uniform prior is assumed for W̃ , while θ = 1 corresponds
to a scaled exponential weighting which gives larger prior weight to values of
W corresponding to fewer clusters.

Inference for this model is carried out using a Markov-Chain Monte Carlo
(MCMC) algorithm, which produces posterior distributions for each of the
model parameters. The estimated number of clusters in the data should
be chosen as the average value from the posterior distribution of W̃ , with
uncertainty estimated via a 95% credible interval. Here we will select the
number of clusters using the posterior mode, because it is the most commonly
occuring cluster structure in the MCMC algorithm, but the median could also
be used. The mean would not be sensible because the number of clusters
follows a discrete distribution and requires an integer value.

4 Simulation study

A simulation study was conducted to establish the efficacy of the two-stage
modelling approach outlined in the previous section. The template for the
study was based on the set of 324 local authorities in England, which is also
the study region for the motivating application presented in Section 5. A
study was conducted comparing the two-stage approach proposed here with
existing alternatives, and the results are summarised below.
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4.1 Data Generation

Clustered disease data were generated according to the template shown in
Figure 1. The template consists of 15 clusters of different sizes, which include
one large cluster shaded in light grey and 14 smaller clusters shaded in either
white (low risk clusters) or dark grey (high risk clusters), some of which are
singletons. Disease data were generated under this template from model (1),
with the simplification that no covariates were included. The random effects
were generated from a multivariate Gaussian distribution with a spatially
correlated precision matrix defined by the CAR model proposed by Leroux
et al. (1999). The intrinsic model (2) is not used for the data generation be-
cause its precision matrix is singular. Clustered disease data were obtained
by specifying a piecewise constant mean function for φ, which follows the
template shown in Figure 1. The values in Figure 1 are multiplied by C,
with larger values of C representing larger differences between the clusters,
which should thus be easier to identify. Values of C = 0, 0.5, 1 are used in this
study, with C = 0 corresponding to a spatially smooth risk surface which is
equivalent to having a single cluster covering the entire study region. For the
analyses described in this section the expected disease counts are set equal
to 100 for each area.

Each of the simulated data sets consist of the study data plus three sets
of “prior” data, with the “prior” data being used for the clustering step. To
allow for the fact that the log risk surfaces for the study and prior data sets
are unlikely to be identical, uniform random noise was added to the random
effects from the three prior data sets, which corresponds to multiplicative
random noise on the risk scale. To provide a suitable analogue with real
data across three different years, different levels of noise were added to the
three prior data sets, with larger noise added to the data which were further
away in time. This noise is added to account for variation from year to year
in the real data, with the assumption that these differences are larger as the
time differences increase. The uniform random noise for the three prior data
sets were on the following intervals [−0.05, 0.05], [−0.1, 0.1] and [−0.15, 0.15],
and were chosen to approximate the correlations between the study and prior
data sets in the motivating application in Section 5. 200 datasets were gen-
erated for each of the three scenarios (C = 0, 0.5, 1), and the model proposed
here was compared against two alternatives. The first was the proposal of
Anderson et al. (2014) which used fixed effects to model the clusters, and
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the second was the Besag-York-Mollié (Besag et al. (1991)) model, hereafter
known as BYM, which is commonly used in disease mapping. In the case of
the BYM model, the posterior classification approach described in Charras-
Garrido et al. (2012) and Charras-Garrido et al. (2013) was implemented to
identify the clusters, which is based on model-based clustering with Gaussian
mixtures (Fraley et al. (2012)). However, this approach does not produce spa-
tially contiguous clusters, so a further post-processing step was implemented
to partition the clusters identified into spatially contiguous groups. We note
that we have not compared our approach to a method such as Knorr-Held
(2000) or Charras-Garrido et al. (2012), because software to implement these
complex estimation methods is not publicly available.

4.2 Results

The results of the study are summarised in Figure 2, which displays a com-
parison of the relative performances of our approach and the two alternatives
using three different metrics. The accuracy of the risk surfaces estimated by
each approach is quantified by their root mean square error (RMSE), while
the correctness of the estimated cluster structures is quantified by both the
number of clusters identified and the Rand Index (Rand (1971)) between
the true and estimated cluster structures. The latter is a measure of the
similarity between two cluster structures and lies in the interval [0, 1]. It is
computed as the proportion of pairs of areal units classified either in the same
or in different clusters by both methods, that is the proportion of pairwise
agreements between the two methods. A value of one indicates complete
agreement between the two cluster configurations, while a value of zero in-
dicates that no pair of areal units are classified in the same way under both
configurations.

The top panel of Figure 2 shows boxplots of the numbers of clusters esti-
mated by each method in the 200 simulated data sets, where the true values
of 1 (when C = 0) and 15 (when C = 0.5, 1) are represented by dashed lines.
The middle panel displays boxplots of the Rand index for all simulated data
sets, while the bottom panel shows the RMSE values for the estimated risk
surface.

The top panel shows that when C = 0 all three methods estimate the
correct number of clusters on average, but our method has the lowest stan-
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dard deviation with a value of 0.25 compared with 1.39 for the fixed effect
model and 5.06 for the BYM. When C = 0.5 both our model and the ran-
dom effects model estimate the correct number of clusters, while the BYM
overestimates the number of clusters, with a median of 17 clusters observed.
Again, our model provides the most precise estimates, with a standard devi-
ation of 1.45 compared to 3.15 for the fixed effect approach. When C = 1, all
three models estimate the correct number of clusters on average, but again
the model proposed here has the lowest standard deviation (0.25) compared
with the fixed effect (1.30) and BYM (2.41) approaches. This suggests that
our model estimate the correct number of clusters with less error than the
other methods.

A median Rand Index of 1 is obtained for all three models when C = 0
or C = 1, while when C = 0.5 we obtained a medians of 0.983 for the BYM
model and 1 for both our model and the fixed effect model. Our model has
the best standard deviation for C = 0, with a value of 0.0018 compared to
0.0092 for the fixed effect and 0.0655 for the BYM. For C = 0.5 and C = 1,
our model outperforms the BYM in terms of standard deviation, but has
higher values than the fixed effect model; for C = 0.5, the fixed effect model
has a value of 0.0069 compared to 0.0512 for our approach, and for C = 1 the
fixed effect approach has a value of 0.0009 compared to 0.0024 for our model.
Under each scenario, our model obtained the correct cluster structure more
often than either of the other approaches; for C = 0 we obtained a Rand
Index of 1 on 187 occasions, compared to 161 for the fixed effect and 185
for the BYM. For C = 0.5, we obtained the correct cluster structure on 142
occasions, compared to 122 for the fixed effect and 1 for the BYM, and when
C = 1 we correctly identified the cluster structure on 190 occasions, com-
pared to 149 for the fixed effect approach and 185 for the BYM. It therefore
appears that our approach performs best of the three in terms of correctly
identifying the true cluster structure.

Finally, the bottom panel shows that the model proposed here performs
the best of the three in terms of RMSE when C = 0, with a median of 0.042
compared with 0.051 and 0.074 for the fixed effects and BYM approaches
respectively, but performs poorest of the three for RMSE when C = 1, with
a median of 0.161 compared with 0.066 and 0.105. It seems likely that our
model performs worse than the BYM model in this respect because our model
has a single set of random effects, while the BYM model has two sets to share
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the modelling burden in this extreme case and thus the independent random
effects are able to capture the jumps in risk between clusters. It appears
that our model can provide the best model fit when C = 0 and there is no
underlying clustering present, which means we are less likely than the other
methods to identify a ‘false positive’ result. In the cases where C = 0.5 and
C = 1 we are able to do a better job than the other methods at estimating
the cluster structures, but the model fit is slightly affected in these cases.

5 Motivating application

5.1 Study design

The study region is the country of England, which is the largest of the four
constituent nations of the United Kingdom and has a population of approx-
imately 53 million people. The country is divided into n = 324 local au-
thorities, containing populations of between 7338 and 1061074 people with
a median value of 124781. The disease data are the numbers of mortalities
with a primary diagnosis of chronic obstructive pulmonary disease (COPD)
in each local authority in 2010. The expected mortality numbers were calcu-
lated using external standardisation, based on age and sex adjusted rates for
the whole of England. The top panel of Figure 3 displays the Standardised
Incidence Ratio (SIR) for COPD mortalities, which is the ratio of the ob-
served to the expected numbers of mortalities. The figure identifies regions
of high risk in the north of the country, which includes deprived regions such
as Northumberland and Merseyside. Additionally, there are high risk areas
identified in the south east of England, including areas of Essex and Kent.

5.2 Results

The two-stage clustering model proposed in Section 3 was applied to these
data, where the clustering step used respiratory disease data from 2007 to
2009. The fitted risk surfaces for these data sets exhibit similar spatial pat-
terns to the 2010 study data, with Pearson’s correlation coefficients of 0.97
for each year in turn. Markov-Chain Monte Carlo inference was used to ob-
tain these results, with 5000 samples used for burn-in and a further 5000
used for the inference. Figure 4 displays the posterior probabilities for the
different cluster structures, and the optimal cluster structure was chosen to
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be that corresponding to the mode cluster number, which in this case was 40.
Our method has the advantage of being able to quantify the uncertainty in
the number of clusters identified, and a 95% credible interval for this ranges
between 31 and 47. In addition, the median cluster number was 39. Note
that due to the agglomerative nature of the clustering algorithm in Section
3.1, the 31 cluster structure could be formed by merging together 16 of the
clusters in the structure containing 47 clusters.

The estimated risk surface (greyscale) and cluster structure (white dots)
for the configuration with 40 clusters are displayed in the bottom panel of
Figure 3, which has the same scale as the SIR plot in the top panel of that
figure. In the majority of cases, there do appear to be differences in risks
between neighbouring clusters. In particular, there appears to be a suggestion
of a “north-south” divide, with two high risk clusters identified in the north
of the country - one containing Northumberland and Cumbria in the far
north, and the other containing the cities of Manchester and Liverpool as
well as their surrounding areas. In contrast, the large cluster covering most
of the south of the country, has a much lower risk of COPD. There is another
distinct high-risk cluster in the south-east of the country, covering Essex and
the east of London. The clusters appear to be based around grounds of
socio-economic deprivation, which is well known to be linked with disease
risk. The high risk areas in Figure 3 are generally areas with high levels of
deprivation, while the lower risk areas are more affluent.

6 Discussion

The main aim of this paper was to develop statistical methodology to simul-
taneously estimate the spatial pattern in disease risk and identify clusters
of areas exhibiting high (and low) risk. To achieve this aim a new method-
ology has been developed which fuses together spatial agglomerative hier-
archical clustering techniques with an extended conditional autoregressive
model, with inference based on Markov-Chain Monte Carlo simulation. This
approach allows us to identify an optimal cluster structure which best de-
scribes the data, and it extends Anderson et al. (2014) by quantifying the
uncertainty in the cluster structure. The clustering techniques are applied
to disease risk data prior to our study period, allowing us to elicit candi-
date cluster structures for the study data. The prior clustering approach is
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intended for use on chronic diseases in socio-economically stable regions; if
this is not the case alternative clustering data such as covariate information
should be used. These candidate structures have a natural ordering in terms
of the number of clusters, which allows them to be considered as a univariate
parameter in our Bayesian hierarchical model. This model estimates disease
risk directly via the random effects, allowing for correlation between neigh-
bouring areal units which are in the same cluster, but not enforcing it for
areas in different clusters. Our approach differs from that used in Anderson
et al. (2014), where the cluster structure was fixed when estimating the re-
maining model parameters. Here we are able to produce a credible interval
for the number of clusters and can identify other potential alternative cluster
structures which are supported by the data. The model outlined here does
not contain covariate information because our aim was to identify clusters in
the risk surface rather than in the residual error surface after accounting for
known covariates.

The simulation study in Section 4 shows that our model generally outper-
forms the BYM model with the posterior classification step, with improved
performances for both risk estimation and cluster identification. This is un-
surprising, since our model attempts to estimate the cluster structure in the
data, while the BYM approach estimates a smooth risk surface and then
attempts to identify clusters in this smooth surface. One of our key aims was
to develop a method which picked out extreme clusters; our model obtained
a median Rand Index of 1 all three simulated cases, which indicates that in
most cases it is able to correctly pick out all of the extreme clusters. Our
model also performs well compared with the fixed effects approach proposed
by Anderson et al. (2014), in terms of identifying the correct number of clus-
ters. However our risk estimates do not appear to be quite as accurate as
those obtained under the fixed effects model in cases where there is clustering
present in the data. This is because the fixed effects approach has extra pa-
rameters in the mean model, while our approach accounts for clusters in the
correlation structure of the random effects. However, in the case where no
clustering is actually present, our model performs the best of the three. This
is important to note, since in many cases it will not be known beforehand
whether clusters actually exist within the data.

There is scope to extend this method into the spatio-temporal domain,
thus allowing us to identify changes in the risk surface over time. This would
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allow the authorities to identify whether a particular health intervention
has had the desired effect in terms of reducing disease risk in a high-risk
cluster. It would also allow for identification of clusters where the disease
risk has increased over time, thus allowing health authorities to investigate
the possible causes for any such deterioration in health.

Supplementary material

The supplementary material available online contains software which allows
the user to run this model on the simulated data outlined in Section 4 of this
paper.
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Figure 1: Plot of the simulated cluster structure in the English local author-
ities.
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Figure 2: Summary of the simulation study results. The top, middle and
bottom panels display boxplots of the estimated number of clusters, the
Rand Index and the root mean square error of the estimated risk surface for
each model in turn. The results relate to C = 0 (left panels), C = 0.5 (middle
panels) and C = 1 (right panels). Within each panel, the boxplots relate to
our proposed random effects model (left), fixed effects model (middle) and
BYM (right). In the top panel the dashed lines represent the true number of
clusters.
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Figure 3: The top panel displays the standardised incidence ratio (grey-
scale) for COPD mortalities in English local authorities in 2010. The bottom
plot displays the estimated risk surface (grey-scale) from the model with 40
clusters (white dots). 22
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Figure 4: Plot of the posterior probability of each cluster configuration.
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