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Herve Moulin
University of Glasgow and Higher School of Economics, St Petersburg

revised September 2016

Abstract

In the bilateral assignment problem, source a holds the amount ra
of resource of type a, while sink i must receive the total amount xi of
the various resources. We look for assignment rules meeting the powerful
separability property known as Consistency: "every subassignment of a
fair assignment is fair". They are essentially those rules selecting the
feasible flow minimizing the sum

∑
i,aW (yia), where W is smooth and

strictly convex.
Acknowledgments: insightful comments by Francois Maniquet, Peyton

Young, and seminar participants at the University of Glasgow, Oxford,
Vienna, and Queen Mary, have been very helpful. Special thanks to two
anonymous referees for their constructive criticisms.

1 The problem and the punchline

A preference relation over profiles of variables (w1, w2, · · · ) is separable in those
variables, if a change affecting only a subset of the variables can be evaluated
in complete ignorance of the values of the other unchanged variables, as long
as we know they do not change. This has obvious and well known advantages
in terms of computational simplicity and the ability to decentralize choice. For
tractability, most utility functions of empirical economic models are separable,
and the same applies to standard definitions of social welfare as a preference
relation over individual welfares (e.g., [18]).
Fair division problems such as the one we study here call for a division rule,

solving each problem in a given family of problems. Such rules are not neces-
sarily derived from maximizing a social preference over the feasible allocations
so the above notion of separability does not apply directly; however the widely
studied properties called Consistency and Inverse Consistency (explained in the
next paragraph, and defined in Section 3) convey a very similar idea without
invoking a preference relation, social or otherwise. As we recall below, in the
simple rationing problem any reasonable consistent rule actually maximizes a
separable preference relation. Our results extend this connection between the
two concepts to the bilateral assignment problem.
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Bilateral assignment is one of the oldest models in Operations Research. In
the shipping interpretation favoured in the flow-graph literature ([2]), there is
a set N of retailers (aka sinks) indexed by i, and a set A of warehouses (aka
sources) indexed by a; warehouse a stores the amount ra of some commodity,
while retailer i can absorb the total amount xi of commodity (irrespective of
the warehouse they come from). Critically, the assignment problem is balanced :∑
N xi =

∑
A ra. In the simple version we discuss here, there are no constraints

on the flow yia from warehouse a to retailer i. Common instances of the as-
signment problem include dividing jobs (measured in hours) between workers,
allocating students of different types (ethnic, academic) to schools, etc.. Con-
sistency of a division rule means that, if it selects a flow matrix [yia]N×A to ship
goods from warehouses in A to retailers in N , it will also select the submatrix
[yia]N ′×A′ in order to ship the corresponding goods from the subset A′ of ware-
houses to the subset N ′ of retailers. In the words of Balinski and Young ([5]),
"every part of a fair allocation must be fair". Converse Consistency says that
in order to check that the initial (large) flow matrix is fair, it is enough to check
that every 2× 2 submatrix is fair. Taken together, Consistency and its inverse
make local fairness equivalent to global fairness, with all the decentralization
advantages of separable preferences.
Which assignment we deem the "fairest" depends of course upon the con-

text. The most common principle is proportionality. For instance the numerous
measures of segregation discussed in the literature (e.g., [10]) view the propor-
tional assignment as the ideal of zero segregation: each school should have the
same mix of the various types of students, each type of job should have the same
gender balance, and so on. But other fairness principles are out there as well:
if the entry yia is the load of a truck from the warehouse a to the retailer i, we
may want to equalize the loads across all trucks, perhaps for effi ciency reasons;
full equality is not feasible as soon as the xi or the ra are not identical, so we
must pick the “most egalitarian”assignment according to some approximation
criterion: for instance we can minimize the variance of the entries yia, as in the
Minimal Trade model of the transportation literature (see [11]).
To fix ideas, and stress the connections of our model with the extensive

literature on dividing a single commodity according to individual claims, the
rationing or bankruptcy models (on which more below), we speak of the set of
resources A and agents N . In this interpretation the agents observe passively
the assignment selected by the benevolent manager, and care about its fairness;
but unlike in the rationing problem we take as given the total resource allocated
to each agent, so the agents care only about the distribution of the given total
between the different resources. An alternative interpretation, in the spirit of
the Operations Research literature in the two previous paragraphs, is the one-
person story of the manager who is bound by certain standards of rationality
like Consistency and looks for a systematic principle to solve any assignment
problem; in that view the individual retailers of the shipping story do not care
anymore about the origin of their deliveries.
Our punchline is that if the manager accepts the Consistency axiom, and
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two additional fairness requirements1 , he will end up using one of a fairly simple
family of division rules.
The first fairness axiom is the standard "horizontal equity", requiring a

symmetric treatment of the agents i, and the same for the resources a. The
second is a natural yet powerful Monotonicity property: transferring resources
from source a to source b results in a (weak) increase of the flow yib to each
agent i (and a similar statement for transferring capacity from agent i to agent
j). Together with Consistency, these properties essentially characterizes the
class of assignment rules minimizing a separable sum

∑
N×AW (yia), where W

is a smooth and strictly convex (anti)welfare function. We call these assign-
ment rules welfarist. This result is strikingly similar to the famous Debreu-
Gorman theorem ([7]) showing that, essentially, a separable preference relation
as in the first paragraph above is represented by an additively separable util-
ity U1(w1) + U2(w2) + · · · . The "essential" qualification, in our model as in
Debreu-Gorman, refers to additional boundary and continuity assumptions that
eliminate borderline solutions.
From a technical standpoint Young’s Theorem ([25]) on the parametric rep-

resentation of rationing rules is the most relevant to our result, because its
statement is similar; moreover it is a key component of our proof. More on this
in the next section, reviewing the relevant literature.
Section 3 defines the model and the Consistency axioms. Welfarist assign-

ment rules are introduced in Section 4. They are consistent (CSY) as well as
inverse consistent (CSY−1). A natural one-dimensional subset of such rules
obtains by imposing Scale Invariance: then W is mostly a power function
W q(z) = ±zq (Lemma 2). This family includes the minimal variance rule
(W 2(z) = z2), and the proportional rule (W 1(z) = z ln(z)). Section 5 intro-
duces the monotonicity and boundary conditions used in our main result: the
characterization theorem is stated in Section 6, where we also give a sketch of
its proof. Section 7 gathers concluding comments and some open questions. All
substantial proofs are in Section 8.

2 Related literature

The Consistency property appears first (under the name Uniformity) in the
work of Balinski and Young on apportionment ([5]), then in a paper by Balinski
and Demange on the proportional approximation of a given assignment ([4]).
It has been applied to a variety of models, from solutions of cooperative games
to competitive equilibrium, the allocation of indivisible goods, matching, and
more. See [22], [23] for an extensive discussion of the CSY and CSY−1 concepts
and their versatile applications.
One instance where Consistency has proven particularly useful is the famil-

iar rationing model: the amount r of a single resource must be divided between
agents labeled i who each have a legitimate claim xi, but there is not enough

1Consistency has no bearing on fairness: for instance it is compatible with rules giving
priorities to certain agents.

3



resource to meet all claims: r <
∑
N xi. Aumann and Maschler ([3]) use CSY

to justify the rationing rule known as "Talmudic", then Young ([25]) shows
that a symmetric, continuous, and consistent rationing rule solves a separably
additive program of the form arg miny

∑
i V (xi, yi). This resembles our own

welfarist rules solving arg miny
∑
iaW (yia), though in our model the Consis-

tency assumption applies in two dimensions hence has more bite. Two surveys
on the rationing model are [14] and [21].
The companion paper [15] develops a capacited version of the assignment

problem, where a different exogenous constraint (lower and upper bounds) ap-
plies to each entry yia. Taking for granted that the proportional assignment
should be selected if it is compatible with the constraints, it shows that minimiz-
ing the total entropy

∑
iaEn(yia) is the uniquely consistent way to accomodate

the constraints, if we do not endow them (the constraints) with any normative
content.
The model of bipartite rationing, recently introduced by this author and

Sethuraman ([16], [17]) generalizes both the standard one-resource rationing
model two paragraphs above and the assignment model here. Each retailer i
in N has a total demand xi, each warehouse a in A has capacity ra, and we
assume

∑
N xi ≥

∑
A ra; moreover transfers are confined to a given bipartite

graph. The bipartite proportional method in [16] generalizes the proportional
rule (2) here: assuming as in the previous paragraph that the rule must be
proportional in any one-resource problem, it turns out that, once again, the
only consistent way to extend it to multiple resources is by minimizing total
entropy of the flow.
In the current paper we are entirely agnostic about the assignment rule in the

one-resource case, and our welfarist assignment rules include much more than
the proportional rule. As explained in Section 7.2, it is a reasonable conjecture
that our main characterization result can be extended to the bipartite rationing
model.
Erlanson and Szwagrzak ([8]) discuss a generalization of standard rationing

with multiples resources, where each agent has a claim on each type of resource
(unlike here). They characterize a family of welfarist rationing rules similar to
ours by requiring both Consistency and Independence of Irrelevant Alternatives.
IIA is the familiar route to choice rules maximizing some preference relation,
so the combination of CSY and IIA is very powerful. It does not apply to our
model because the sets of feasible assignments in two distinct problems are never
nested.

3 Assignment problems and rules

The sets N of agents (or sinks) and A of resources(or sources) are both finite
with generic elements i and a respectively. We use the notation zD =

∑
d∈D zd,

and write iA, Na instead of {i}×A and N×{a} when this causes no confusion.
An assignment problem P = (N,A, x, r) specifies

the total allocation xi of each agent, so x ∈ RN+
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the endowment ra of the resource of type a, so r ∈ RA+
meeting the budget balance equation xN = rA = s.

A feasible assignment is a matrix y ∈ RN×A+ such that yiA = xi for all i ∈ N ,
and yNa = ra for all a ∈ A. We write P for the set of assignment problems, and
Φ(P ) for the set of feasible assignments of problem P . Note that P contains
problems of arbitrary dimensions |N | and |A|.
An assignment rule selects y ∈ Φ(P ) for every P ∈ P. We restrict attention

to rules treating all agents, and all resources, symmetrically. We also require
that a small change in the demands xi, ra should have only a small influence on
the solution.
If σ is a bijection of N , from the new name i to the old name σ(i), and

y ∈ Φ(P ) is an assignment with the old names, the same assignment with the
new names is yσ: yσia = yσ(i)a; define similarly xσ, and write Pσ = (N,A, xσ, r).

Definition 1 An assignment rule F chooses for every P = (N,A, x, r) ∈ P
an assignment F (P ) = y ∈ Φ(P ), and meets the following properties:

• Symmetry in N (N-SYM): for any P ∈ P and bijection σ of N ,
F (P )σ = F (Pσ)

• Symmetry in A (A-SYM): same property after exchanging the roles of
N and A

• Continuity (CONT) of the mapping P 3 (x, r) → F (P ), for any fixed
N,A

We write F for the set of assignment rules.
The next property is critical. Given a rule F , a pair N,A, and a matrix

y ∈ RN×A+ , we say that y is F -fair if the rule F chooses y in the problem
(N,A, x, r) where xi = yiA for all i, and ra = yNa for all a.

• Consistency (CSY): every submatrix of an F -fair matrix is F -fair

If xi = 0 for some i, then yia = 0 for all a, so in the submatrix obtained
after deleting row i all sums in rows and columns are the same. Consistency
allows us to simply delete i altogether; similarly if ra = 0. Thus we can always
assume for convenience x, r � 0.
Finally, the property of Converse Consistency ensures that global fairness

can be verified locally. It is an appealing property of the rules we discuss, but
it will not be used in the characterization result.

• Inverse Consistency (CSY−1): if every 2× 2 submatrix of the N ×A
matrix y is F -fair, then y is F -fair as well

4 Welfarist assignment rules

We introduce a rich family of consistent assignment rules. Fix a strictly convex
and smooth function W on ]0,∞[, of which the derivative W ′ is continuous and
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strictly increasing on ]0,∞[. Define W (0) = limz→+0W (z), which could be
+∞, and W ′(0) = limz→0W

′(z), which could be −∞.
Definition 2 The W -welfarist assignment rule FW (W -rule for short) se-

lects at any P ∈ P the assignment

F (P ) = arg min
y∈Φ(P )

∑
N×A

W (yia) (1)

It is well defined because W is strictly convex and Φ(P ) is convex and compact.

Lemma 1 The assignment rule FW is symmetric, continuous, consistent,
and inverse consistent.
Proof Continuity follows from Berge Theorem and Symmetry is clear. For
CSY fix an FW -fair matrix y and P = (N,A, x, r) the corresponding assignment
problem. If the submatrix y[M×B] ∈ RM×B+ where M ⊆ N,B ⊆ A is not FW -
fair, there is some y′[M×B] with identical sums in all rows and columns such that∑
M×BW (y′ia) <

∑
M×BW (yia), so that (y′[M×B], y[N×A�M×B]) is feasible in

P and improves the objective. Finally Inverse Consistency is a consequence of
statement iii) in Lemma 4 below, as explained in Section 6.�
We give some examples. As discussed in the introduction, the most nat-

ural assignment rule is proportional : it guarantees that in any two rows (resp.
columns) the proportions of any two resources (resp. agents’shares) are identi-
cal. Formally we have (recall s = xN = rA):

F (P ) = y where yia =
xi × ra
s

for all i, a (2)

⇐⇒ y ∈ Φ(P ) and yia × yjb = yib × yja for all i, j, a, b

This is FW in Definition 2 if we choose for W the entropy function En(z) =
z ln(z). The claim follows easily from the KKT optimality conditions applied to
the convex and smooth program arg minΦ(P )

∑
N×AEn(yia) (or from statement

iii) in Lemma 4).
If we choose now W (z) = − ln(z), the W -welfarist rule picks y maximizing

the Nash product of all the entries yia.
For W (z) = z2 the W -welfarist rule chooses y minimizing the variance
1

|N |×|A|
∑
N×A(yia − s

|N |×|A| )
2.

All three rules just mentioned meet a familiar property:

• Scale Invariance (SI): for any P ∈ P and δ > 0, F (δ × P ) = δ × F (P ),
where P = (x, r) and δ × P = (δx, δr)

This axiom captures a one-dimensional family of welfarist assignment rules.

Lemma 2: The W -welfarist assignment rule is scale invariant if and only
if W is one of the following functions W q, q ∈ R:

W 1(z) = z ln(z) (the proportional rule)
W q(z) = zq for q > 1 and for q < 0
W 0(z) = − ln(z) (maximizing the Nash product)
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W q(z) = −zq for 0 < q < 1
Proof in Section 8.

When q → ±∞ the pointwise limits of the W q-rules are interesting in their
own right, in particular because they are not welfarist in the sense of Definition
2 but meet the same basic properties. If q → −∞ the limit ofW q is the maxmin
rule F−∞, choosing first the subset of Φ(P ) where the smallest entry of y is
as large as possible, then the sub-subset of those maximizing the next smallest
entry, and so on.2 Similarly when q → +∞ the W q-rule converges pointwise
to the minmax rule F+∞, minimizing first the largest entry of y, then the next
largest entry and so on.
The Symmetry and Consistency properties of F q are preserved by pointwise

convergence, and a direct argument shows that both rules F±∞ are continuous
as well. They are also scale invariant.

5 Monotonicity and limit properties

We need three new axioms for our characterization result: (two variants of) a
monotonicity property and two boundary conditions on individual shares.
The monotonicity property considers shifts of endowments toward a certain

resource, that keeps total endowment constant; or shifts toward the allocation
of a certain agent, leaving total allocation constant. In the former case we
require that all agents get a weakly larger share of the resource in question, in
the latter case that the agent in question gets a weakly larger share of every
resource. As is often the case in separability results, we actually need a slightly
stronger property guaranteeing strict increases in some cases.
To define formally the two variants of the property we say that r′ is an

a-shift of r (where r, r′ ∈ RA+ and a ∈ A) if r′a > ra, r
′
b ≤ rb for all b 6= a and

r′A = rA. We say similarly that x′ is an i-shift of x if x′i > xi, x
′
j ≤ xj for

all j 6= i and x′N = xN . In the two following definitions, y and y′ refer to the
assignments selected before and after the shift:

• Monotonicity (MON): if r′ is an a-shift of r then yia ≤ y′ia for all i;
if x′ is an i-shift of x, then yib ≤ y′ib for all b

• Monotonicity∗ (MON∗): if r′ is an a-shift of r and 0 < yia < xi for
some i, then yia < y′ia; if x

′ is an i-shift of x and 0 < yia < ra for some
a, then yia < y′ia

The main result uses two additional properties to pin down two sublasses of
welfarist assignment rules. The first one rules out zero entries whenever possible:

2The first step of this algorithm picks the smallest row-sum xi and the smallest column-
sum ra, then finds the smallest of

xi
|A| and

ra
|N| : if the former, we fill the i-row with equal

entries xi
|A| , if the latter we fill the a-column with equal entries

ra
|N| ; after substracting the

corresponding entries from the column sums in the former case, and from the row sums in the
latter case, we repeat.

7



• Positive Entries (PE): fix any i, a and P = (N,A, x, r) with y = F (P )

{xi > 0 and ra > 0} =⇒ yia > 0

The next property puts restrictions on problems where one entry is much
larger than the others. Given a problem P = (N,A, x, r) the range of entry yia
for y ∈ Φ(P ) is the following interval [LBia, UBia]:

(xi − rA�a)+ = (ra − xN�i)+ = LBia ≤ yia ≤ UBia = min{xi, ra}

(with the notation (z)+ = max{z, 0}). In the statement of the next axiom, we
fix N,A.

• Bounded Entries (BE): for any i, a and any sequence P δ = (N,A, xδ, rδ),
δ = 1, 2, · · ·

{ lim
δ→∞

LBδia =∞ and sup
δ→∞
{UBδjb} <∞ for all (j, b) 6= (i, a)}

=⇒ lim
δ→∞
{yδia − LBδia} = 0

This says that an entry of the assignment that has to be (by feasibility) ar-
bitrarily larger than any other entry, should be kept as small as permitted by
feasibility.

Lemma 3 The W -welfarist assignment rule
i) is Monotonic∗,
ii) meets Positive Entries if and only if W ′(0) = −∞,
iii) meets Bounded Entries if and only if W ′(∞) = +∞.

Proof in Section 8.

It is easy to check that MON∗ and Continuity together imply MON. There-
fore all welfarist rules meet MON.
The scale invariant welfarist rules FW

q

(Lemma 2) meet PE if and only if
q ≤ 1; they meet BE if and only if q ≥ 1. The proportional rule FW

1

is the
only one in this family meeting BE and PE.
The maxmin rule F−∞ and the minmax rules F+∞ meet MON but fail

MON∗; F−∞ is PE but no BE and F+∞ is BE but no PE.

Remark 1 Another standard axiom in one-dimensional rationing is Ranking: a
larger claim gets a weakly larger share of the resources. We define two versions
of the axiom, both of them useful in the proof of our main result (Section 8):
Ranking (RKG): fix any i, j and P = (N,A, x, r) with y = F (P )

xi > xj =⇒ yia ≥ yja for all a

Ranking∗ (RKG∗): fix any i, j and P = (N,A, x, r) with y = F (P )

{xi > xj and yia > 0} =⇒ yia > yja for all a

All welfarist rules meet both Ranking axioms.3

3Check that MON∗ and N -SYM imply RKG∗. This is clear if yja = 0. If yja > 0 we
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6 Characterizing welfarist assignment rules

Theorem
i) An assignment rule F is Consistent, Monotonic∗, and satisfies Positive

Entries if and only if it is a W -welfarist rule where W ′(0) = −∞;
ii) An assignment rule F is Consistent, Monotonic∗, and satisfies Bounded

Entries if and only if it is a W -welfarist rule where W ′(∞) = +∞.
The “if” statements follow from Lemma 1 and Lemma 3. We give a rough

sketch of the long proof of “only if”, detailed in the Appendix.
First we apply the KKT conditions to program (1), and derive the critical

additive structure structure of the assignment FW (P ) for any P . To state this
result we use the extension Γ of the inverse of W ′ to the entire real line. The
domain of W ′ is R+ ∪ {+∞} and its range is the interval [W ′(0),W ′(∞)[ such
that W ′(0) ≥ −∞ and W ′(∞) ≤ ∞ . We set: Γ(α) = 0 if α ≤ W ′(0) ;
Γ(α) = (W ′)−1(α) if W ′(0) ≤ α < W ′(∞) ; Γ(α) = ∞ if α ≥ W ′(∞). Thus Γ
is continuous, weakly increasing, and strictly so in the interval ]W ′(0),W ′(∞)[.

Lemma 4 Fix P ∈ P such that x, r � 0, and an assignment y ∈ Φ(P ).
The three following statements are equivalent:
i) y = FW (P )
ii) there exist α ∈ RN , β ∈ RA such that yia = Γ(αi + βa) for all i, a
iii) for all i, j, a, b : W ′(yia) +W ′(yjb) < W ′(yib) +W ′(yja) =⇒ yib × yja = 0
Proof in Section 8.

Note that the equivalence holds also when some xi, ra are zeros, provided we
allow then αi = −∞, βa = −∞, and extend the domain of Γ to include −∞.

Lemma 4 implies that the matrix y is FW -fair if and only if it can be written
in the additive form ii), and if and only if every 2×2 submatrix meets property
iii). In particular this implies that FW is inverse consistent.
Statement iii) impliesW ′(yia)+W ′(yjb) = W ′(yib)+W

′(yja) whenever these
four entries of y are strictly positive. In some cases this gives a closed form of the
assignment rule: for instance the proportional rule FW

1

, Γ is the exponential
function so that y � 0 and the above equality amounts to yia × yjb = yib × yja
hence yia = xi×ra

s .

Another example is the rule FW
0

maximizing the Nash product ΠN×Ayia:
Γ is the inverse function so we still get y � 0 and statements ii), iii) write:

{yia =
1

αi + βa
for all i, a} ⇐⇒ { 1

yia
+

1

yjb
=

1

yib
+

1

yja
for all i, j, a, b}

but no closed form representation of y follows.
Consider finally FW

2

choosing the assignment with the smallest variance.
We have Γ(z) = (z)+, and ii) gives yia = (αi + βa)+. Therefore yia + yjb =

have yia < xi. Change P to P ′ where x′i = x′j =
xi+xj
2

and the rest is as in P : by MON∗

y′ia < yia, y
′
ja > yja, and by N -SYM y′ia = y′ja. Finally CONT plus RKG∗ together imply

RKG.
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yib + yja holds only when those entries are strictly positive. If all entries are,
we get

{yia = αi + βa for all i, a} ⇐⇒ {yia + yjb = yib + yja for all i, j, a, b}

⇐⇒ yia =
1

|A|xi +
1

|N |ra −
1

|A| × |N |s

and this closed form is correct if and only if 1
|A|xi + 1

|N |ra ≥
1

|A|×|N |s for all i, a.

Remark 2 The maxmin rule F−∞ and the minmax rule F+∞ are not adressed
by Lemma 4 because they are not welfarist. But they can be parametrized in very
similar way: the interesting details are in Subsection 8.2.

We sketch now the proof of the Theorem. The first step associates a standard
rationing rule to any rule F ∈ F meeting CSY.

A rationing problem is (N, x, t), where x ∈ RN+ is the profile of demands,
t ≥ 0 is the amount to be divided, and t ≤ xN . A rationing rule h finds for
every problem a division y = h(N, x, t) of t among N such that 0 ≤ y ≤ x and
yN = t. Although a rationing problem is not a special case of an assignment
problem (there is a single resource but budget balance does not hold), it is
straightforward to adapt the definition of the properties N -SYM, CONT, and
CSY.
For any F ∈ F we define hF as follows. Given a rationing problem (N, x, t)

we construct the assignment problem P = (N, {a, b}, x, r) where ra = t and
rb = xN − t, and set hF (N, x, t) to be the a-column of F (P ). The rule hF meets
SYM, CONT, and CSY so by Young’s Theorem ([25]) hF is parametrized by a
continuous function θ(xi, λ), weakly increasing in λ ∈ R∪ {−∞,+∞} and such
that θ(xi,−∞) = 0 and θ(xi,∞) = xi:

hF (N, x, t) = y ⇐⇒ {∃λ : yi = θ(xi, λ) for all i, and
∑
N

θ(xi, λ) = t} (3)

Moreover by A-SYM of F the rationing rule hF is self dual : in any problem
(N, x, t) it distributes losses and gains in the same way

hF (N, x, t) + hF (N, x, xN − t) = x (4)

We use an alternative parametrization π(z, λ) of hF . For z ≥ 0 and λ ∈ R,
π(z, λ) solves the following equation in yi:

yi = π(z, λ)⇔ yi = θ(z + yi, λ)

(where the index i is just to remind us that yi is one-dimensional). Thus z is
the loss of an agent with demand z + yi. In fact existence of a solution to this
equation is not guaranteed for all z, λ, so the actual proof has to proceed more
carefully and use the additional assumptions MON∗, PE, and BE.
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The key consequence of CSY is that if the matrix y is F -fair, for any two
columns a, b there is a unique parameter λab ∈ R such that yib = π(yia, λ

a
b ) for

all i. Indeed the reduced N × {a, b} matrix [y[a], y[b]] is F -fair, therefore y[b] is
just hF (N, xab, rb) for the profile of demands xabi = yia + yib. Conversely if we
fix a column y[a] ∈ RN+ and arbitrary parameters λab for each b, we can show
that the matrix with b-column y[b] = π(y[a], λ

a
b ) is F -fair.

This allows us to define an inner product λ∗µ by the equality π(π(z, λ), µ) =
π(z, λ ∗ µ), for all z. Then CSY implies that the operation λ ∗ µ is associa-
tive, as well as continuous and strictly increasing, so by the well known As-
sociativity Theorem ([1], [12]) we get an additive representation of the form
λ∗µ = g−1(g(λ)+g(µ)). We can rescale the parameters λ so that λ∗µ = λ+µ,
and check that the range of α→ π(1, α) is R+.

Finally we take an arbitrary F -fair matrix y and fix a resource a. For every
i there is αi such that yia = π(1, αi). For every b 6= a there is a λb such that
y[b] = π(y[a], λb) thus yib = π(π(1, αi), λb) = π(1, αi + λb) for all i, b; setting
λa = 0 we now have the parametric representation in statement ii) of Lemma
3 for the function Γ(z) = π(1, z), therefore F = FW where W is a primitive of
Γ−1.�
Remark 3 Tightness of the characterization result. It is easy to see that new

assignment rules emerge if we drop one of the following axioms:
Consistency: take FW1 for some cardinalities of N and A, and a different FW2

otherwise;
Monotonicity∗: take the maxmin rule F−∞ for statement i), and the minmax
rule F+∞ for statement ii);
Symmetry in N : take the rule minimizing

∑
N×AWi(yia) over Φ(P ), where Wi

is strictly convex and varies with i;
Symmetry in A: take similarly arg miny∈Φ(P )

∑
N×AWa(yia)

Positive Entries: take FW
2

in Lemma 2, for which (W 2)′(0) = 0;

Bounded Entries: take FW
1
2 in Lemma 2, for which (W 2)′(∞) = 0;

However we are unable to decide if dropping either one of Continuity or
Monotonicity introduces additional rules.

7 Concluding comments

7.1 A new family of rationing rules

As explained in the previous section each welfarist rule FW defines a standard
rationing rule hW : these rules form an interesting new family defined as follows:

hW (N, x, t) = arg min
0≤y≤x ; yN=t

(
∑
N

W (yi) +W (xi − yi)) (5)

Case 1 W ′(0) = −∞ The solution y of (5) is strictly positive (provided
x � 0, t > 0) and is characterized by the existence of some λ ∈ R such that

11



W ′(yi)−W ′(xi − yi) = λ for all i. Thus a parametric representation of h as in
(3) is

yi = θ(xi, λ)⇐⇒W ′(yi)−W ′(xi − yi) = λ

and θ is continuous and strictly increasing in both variables.
For instance consider the Nash scale invariant rule FW

0

in Lemma 2: it
defines the rationing rule hW

0

maximizing the product Πiyi(xi − yi), of which
a parametrization is

1

yi
− 1

xi − yi
= λ⇐⇒ yi =

xi√
1 + λ2x2

i + 1− λxi
for λ ∈ R

Figure 1 depicts the graphs of xi → θ(xi, λ). Similar shapes obtain for hW
1
2

and hW
−1
see Figures 2,3.

When q → −∞ the rule hW
q

converges pointwise to the celebrated Talmudic
rule hW

−∞
([3]) parametrized by

θ(xi, λ) = min{xi
2
,− 1

λ
} for λ ≤ 0 ; θ(xi, λ) = max

i
{xi

2
, xi −

1

λ
} for λ ≥ 0

Case 2 W ′(0) is finite The solution of (5) may have some null coordinates,
and the parametrization takes the following form:

θ(xi, λ) = 0 if λ ≤W ′(0)−W ′(xi)

yi = θ(xi, λ) solves W ′(yi)−W ′(xi−yi) = λ if W ′(0)−W ′(xi) ≤ λ ≤W ′(xi)−W ′(0)

θ(xi, λ) = xi if W ′(xi)−W ′(0) ≤ λ

For instance hW
2

minimizes the variance of the joint profile of gains y2
i and

losses (xi − yi)2, and is parametrized as follows

θ(xi, λ) =
xi
2

+
λ

2
if − xi ≤ λ ≤ xi

(and 0 or xi elsewhere) See Figure 4. Similarly hW
3

is parametrized as

θ(xi, λ) =
x2
i + λ

2xi
if − x2

i ≤ λ ≤ x2
i

See Figure 5.

7.2 An open question

Recall from Section 2 that a bilateral rationing problem P = (N,A, x, r) differs
from an assignment problem only in that the balancedness condition is replaced
by the deficit inequality

∑
N xi ≥

∑
A ra. Then a feasible assignment y is a

matrix in RN×A+ such that yNa = ra for all a, and yiA ≤ xi for all i. Consis-
tency of the rule F becomes: if F (P ) = y and we drop resource a, the reduced
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problem P ′ = (N,A�a, x′, r−a) with the reduced claims x′i = xi − yia, has
the same solution F (P ′) = y−a; and a similar statement holds if we drop an
agent i and reduce the amount of resource a to ra − yia. As noted in [16],
[17], for any strictly convex function W and convex function V , the program
arg miny

∑
N×AW (yia) +

∑
N V (xi− yiA) delivers a consistent (as well as sym-

metric and continuous) bilateral rationing rule. Extending the characteriza-
tion result of our Theorem to bilateral rationing, with the help of appropriate
monotonicity and boundary assumptions, is worthy of future research.

7.3 Asymmetric assignment rules

Symmetry is a critical assumption in Young’s Theorem for standard rationing
problems. It is easy to define asymmetric consistent rationing rules by mini-
mizing

∑
i Vi(xi, yi), but it has proven diffi cult to capture the entire class of

Consistent and Continuous rules. A flurry of recent literature characterizes a
variety of interesting subclasses: [13], [6], [24], [19], [20], [9]. In our assignment
model, an obvious family of asymmetric consistent assignment rules minimizes
a welfarist objective of the form

∑
N×AWia(yia). A challenging open question

is to capture all or part of this family under additional axiomatic requirements.

8 Appendix: proofs

8.1 Lemma 2

The result plays no essential role so we only sketch its proof.That all rules FW
p

are SI is clear. Conversely it follows from statement iii) in Lemma 3 that for

any FW the assignment matrix
a b
c d

where all entries are strictly positive

and W ′(a) + W ′(d) = W ′(b) + W ′(c), is FW -fair. Therefore SI implies, for all
positive a, b, c, d, δ:

W ′(a) +W ′(d) = W ′(b) +W ′(c)⇐⇒W ′(δa) +W ′(δd) = W ′(δb) +W ′(δc)

Assume for simplicty thatW ′ is differentiable (it must be so almost everywhere;
we omit the details of the general argument). Fix a, c, and δ; for any small
enough ε there exists λ > 0 such that W ′(a+ ε)−W ′(a) = W ′(c+λε)−W ′(c).
By the equivalence above, this amounts to W ′(δa + δε) −W ′(δa) = W ′(δc +
λδε)−W ′(δc). ThereforeW ′′(a)−λW ′′(c) = o(ε) andW ′′(δa)−λW ′′(δc) = o(ε),
where λ depends on ε but must converge by differentiability of W ′. This gives
W ′′(a) · W ′′(δc) = W ′′(c) · W ′′(δa), from which follows, after rescaling W ′′,
W ′′(ab) = W ′′(a) · W ′′(b) for all a, b > 0. Thus W ′′ is a power function by
standard arguments.�

8.2 Lemma 4

We prove Lemma 4 before Lemma 3 because it is used in the proof of the latter.
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We must show that the three following statements are equivalent:
i) y = FW (P )
ii) there exist two vectors α ∈ RN , β ∈ RA such that yia = Γ(αi + βa) for all
i, a
iii) for all i, j, a, b : {W ′(yia) +W ′(yjb) < W ′(yib) +W ′(yja)} =⇒ yib× yja = 0
Statement i) ⇐⇒ ii): The assignment y minimizes

∑
N×AW (yia) under the

following equality and inequality constraints:

yiA = xi , yNa = ra ; yia ≥ 0 for all i, a

The Lagrangien of the problem is L(y, α, β, γ), where α ∈ RN , β ∈ RA and
γ ∈ RN×A+ :

L(y, α, β, γ) =
∑

(N×A)

W (yia)−

−
∑
N

αi(yiA − xi)−
∑
A

βa(yNa − ra)−
∑

N×A�τ(P )

γiayia

From |N×A| ≥ 2 max{|N |, |A|} the linear mapping RN×A 3 y → (yiA, yNa) ∈
RN∪A is of maximal rank. Also there is some feasible and strictly positive y
because x, r � 0, hence the qualification constraints hold. Therefore there exist
some KKT multipliers α, β, γ, such that

min
y∈Φ(P )

∑
N×A

W (yia) = min
y∈RN×A

L(y, α, β, γ)

Moreover y solves the Left Hand program above if and only if 1) y minimizes L
over the entire space; 2) y ∈ Φ(P ); 3) and γiayia = 0 for all ia.
If y = FW (P ) it cancels the derivative of L(y, α, β, γ):

W ′(yia) = αi + βa + γia for all i, a

If yia > 0 this implies W ′(yia) = αi + βa ⇐⇒ yia = Γ(αi + βa). If yia = 0 we
get W ′(yia) = W ′(0) ≥ αi + βa =⇒ Γ(αi + βa) = 0 = yia.

Conversely pick a feasible y as in statement ii): yia = Γ(αi + βa) implies
W ′(yia) ≥ αi + βa, therefore y cancels the derivative of L(y, α, β, γ) for some
γ meeting the complementarity conditions 3) above. As L is strictly convex
and smooth this means that y is the absolute minimum of L(y, α, β, γ) and we
conclude y = FW (P ).

Statement ii) =⇒ iii) Pick y ∈ Φ(P ) and α ∈ RN , β ∈ RA as in ii). Fix any
i, j, a, b such that yib, yja are both strictly positive: we must show W ′(yia) +
W ′(yjb) ≥ W ′(yib) + W ′(yja). By construction of Γ we have yia = Γ(αi +
βa) =⇒W ′(yia) ≥ αi +βa and similarly W

′(yjb) ≥ αj +βb. On the other hand
W ′(yib) = αi + βb and W

′(yib) = αi + βb, and the claim follows.

Statement iii) =⇒ ii) Fixing a matrix y meeting iii), we must show that
y = FW (P ). We proceed by induction on the number of zeros in y. If y � 0
property iii) gives the diagonal equalityW ′(yia)+W ′(yjb) = W ′(yib)+W ′(yja)

14



for all i, j, a, b. Fixing agent 1 and resource a∗ we write this as yjb = Γ(W ′(y1b)+
W ′(yja∗) −W ′(y1a∗)) for all j, b. Setting αj = W ′(yja∗) −W ′(y1a∗) and βb =
W ′(y1b) gives the parametrization of y in ii), so we are done.

Next we assume the claim proven for up to K zeros in y, and assume y has
K + 1 zeros. Fix 1, a∗ such that y1a∗ = 0 and define A+ = {a|y1a > 0} and
A0 = {a 6= a∗|y1a = 0}, and N+ = {i|yia∗ > 0}, N0 = {i 6= 1|yia∗ = 0}, where
both A+ and N+ are non empty. Note that for all i ∈ N+, a ∈ A+ assumption
iii) implies W ′(yia∗) +W ′(y1a) ≤ W ′(y1a∗) +W ′(yia); as W ′(y1a∗) = W ′(0) <
W ′(yia∗),W

′(y1a) we deduce W ′(yia) > W ′(yia∗),W
′(y1a) > W ′(0). Then

yia > 0 and the following diagonal equality holds:

W ′(yia) = W ′(yia∗) +W ′(y1a)−W ′(y1a∗) for all i ∈ N+, a ∈ A+ (6)

The inductive assumption implies that the (N�1) × (A�a∗)-submatrix of
y is FW -fair, so by property ii) there exist α ∈ RN�1, β ∈ RA�a∗ such that
yia = Γ(αi + βa) for all i 6= 1, a 6= a∗. We extend this definition to 1 and a∗ as
follows

α1 = αi +W ′(y1a)−W ′(yia) for any i ∈ N+, a ∈ A+ (7)

βa∗ = βa +W ′(yia∗)−W ′(yia) for any i ∈ N+, a ∈ A+ (8)

and we check first that these definitions makes sense. The sum in (7) does not
depend on i, j ∈ N+ if αi −W ′(yia) = αj −W ′(yja) which follows from (6) and
W ′(yia) = αi + βa in N+ × A+. The same sum does not depend on a, b ∈ A+

if W ′(y1a) − W ′(yia) = W ′(y1b) − W ′(yib) which is the diagonal equality in
{1, i} × {a, b} where all entries of y are strictly positive. A similar argument
shows that (8) defines βa∗ unambiguously.
It remains to check the equality yia = Γ(αi + βa) in ({1}×A)∪ (N ×{a∗}).

We prove this in {1}×A and omit the similar argument in N ×{a∗}. Together
(7), (8) and (6) give

α1+βa∗ = W ′(y1a)+W ′(yia∗)−W ′(yia) = W ′(y1a∗) = W ′(0) for any i ∈ N+, a ∈ A+

so that Γ(α1 + βa∗) = 0 = y1a∗ .
Next for a 6= a∗ the definition (7) gives α1+βa = αi+βa+W ′(y1a)−W ′(yia)

for any i ∈ N+. Distinguish two cases. If a ∈ A+ we showed above W ′(yia) =
αi + βa therefore α1 + βa = W ′(y1a) so we are done. If a ∈ A0 we have y1a = 0
and yia = Γ(αi + βa). By construction of Γ we have W ′(Γ(α)) ≥ α for all α,
hence

α1 + βa = W ′(0) + (αi + βa −W ′(yia)) ≤W ′(0)

ad we conclude Γ(α1 + βa) = 0 = y1a as desired. This completes the induction
step.�
Remark 4 The maxmin rule F−∞ and the minmax rule F+∞ are not adressed

by Lemma 4 because they are not welfarist. But they can be parametrized in very
similar way.
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Lemma 4∞ Fix P ∈ P and y ∈ Φ(P ). The three following statements are
equivalent
i) y = F−∞(P ) (resp. y = F+∞(P ))
ii) there exist two vectors α ∈ RN+ , β ∈ RA+ such that

yia = min{αi, βa} for all i, a (resp. yia = max{αi, βa} for all i, a)

iii) min{yia, yjb} = min{yib, yja} for all i, j, a, b
(resp. max{yia, yjb} = max{yib, yja} for all i, j, a, b)

In particular the two rules F±∞ are inverse consistent.
We give the proof for the maxmin rule, the proof for the minmax rule is

similar. We show first that statements ii) and iii) are equivalent. Clearly
ii) =⇒ iii). Now assume iii) and set γ = minia yia: for any i 6= j and a 6= b
{yia > γ and yjb > γ} =⇒ {yib > γ and yja > γ}. Therefore {ia|yia > γ}
is a rectangle, and its complement C is a union of rows and columns. We
set αi = βa = γ for all such columns and rows (typically a single row or
column). Then we repeat this construction inside (N × A)�C, find the union
C ′ or columns and/or rows where yia is minimal, and set αi, βa as this smallest
value γ′. Now for every entry ia where each coordinate is in C ∪C ′ the desired
equality yia = min{αi, βa} holds. Moreover C ∪C ′ is also a union of rows and
columns, so the iteration is now clear.
We check next i) =⇒ iii). Fix P ∈ P and y = F−∞(P ) and call k1, k2, · · · , kp, · · · ,

the sequence of columns or rows successively filled in the algorithm defining y.
Each entry yia appears in exactly one such column or row denoted kp(ia). More-
over all entries appearing in kp are equal to some zp and the sequence zp is
weakly increasing. Note that if zp = zp+1 the order in which they appear is
arbitrary. For any i, j, a, b if p = p(ia) is the earliest appearance among the
four entries of {, i, j} × {a, b}, then yib = yia = zp and/or yja = yia = zp; if
yib = zp then yjb, yja ≥ zp as they appear later, so min{yia, yjb} = min{yib, yja};
the argument is similar if yja = zp, completing the proof.
We show finally ii) =⇒ i). Assume y is feasible and yia = min{αi, βa} for

all i, a. Suppose αi = minj,a{αj , βa} so that yia = αi = xi
|A| for all a: clearly

xi = minj xj and ra = yNa ≥ |N |αi implying ra
|N | ≥

xi
|A| for all a. Therefore

row i is the first step in the algorithm defining F−∞(P ); then we iterate by
choosing the smallest among the remaining αj , βa, and so on.�

8.3 Lemma 3

We fix a welfarist rule FW throughout the proof.
Statement i) For any two problems P, P ′, with y = FW (P ), y′ = FW (P ′) we
set dia = y′ia − yia and ∂ia = (α′i + β′a)− (αi + βa) where the latter comes from
the parametric representation in statement ii) of Lemma 4. The following facts
are easily checked, and require no assumption on the shift from P to P ′. First
because Γ is weakly increasing

dia > 0 =⇒ ∂ia > 0 and dia < 0 =⇒ ∂ia < 0 for all i, a

16



For all i, j, a, b, the identity ∂ia + ∂jb = ∂ib + ∂ja gives

{∂ia, ∂jb ≥ 0, ∂ib ≤ 0, with at least one strict inequality} =⇒ ∂ja > 0} (9)

dia, djb > 0 and dib, dja < 0 is impossible

Now we fix P, P ′ as in the premises of MON∗ with a1 the resource increasing
strictly in size.

Step 1 We show first yia ≤ y′ia for all i, i.e., property MON. We assume y1a1 >
y′1a1 ⇐⇒ d1a1 < 0 and derive a contradiction. Note that ∂1a1 < 0 as well.
Because x1 is the same in P and P ′ there is some a2 such that d1a2 > 0,
hence ∂1a2 > 0 as well. As ra2 decreases weakly there is some agent 2 such
that d2a2 , ∂2a2 < 0. Applying (9) to 1, 2, a1, a2 (with a change of sign) we get
∂2a1 < 0 and d2a1 ≤ 0 (but we cannot claim d2a1 < 0 as y2a1 , y

′
2a1 could both

be zero). We have shown

∂1a1 , ∂2a1 , ∂2a2 < 0 < ∂1a2

We cannot have A = {a1, a2} because d2a1 ≤ 0, d2a2 < 0 but x2 does not change.
Thus we can pick a3 such that d2a3 , ∂2a3 > 0. Now we apply (9) to 1, 2, a2, a3

to get ∂1a3 > 0 and d1a3 ≥ 0; as ra3 decreases weakly there some agent 3 such
that d3a3 , ∂3a3 < 0 (so N 6= {1, 2}). Applying (9) successively to 1, 3, a1, a3 and
to 2, 3, a2, a3 we get ∂3a1 , ∂3a2 < 0 hence d3a1 , d3a2 ≤ 0, so we have now

{∂kal < 0 for 1 ≤ l ≤ k ≤ 3} and {∂kal > 0 for 1 ≤ k < l ≤ 3} (10)

As above we cannot have A = {a1, a2, a3} because d3a1 + d3a3 + d3a3 < 0 and
x3 stays put.
The induction pattern is now clear: we can choose a4 such that d3a4 > 0;

after using (9) to show ∂ka4 > 0, dka4 ≥ 0 for k = 1, 2, we can choose 4 ∈ N such
that d4a4 < 0 and show ∂4al < 0 for l = 1, 2, 3; then we reach the pattern (10)
where 4 replaces 3, and again we cannot have exhausted A. The contradiction
follows because N and A are finite.

Step 2 Now we consider an entry 1a1 such that 0 < y1a1 < x1. By step 1 we
have y1a1 ≤ y′1a1 and we must prove y1a1 = y′1a1 is impossible. We assume this
equality and derive a contradiction. Thus d1a1 = 0, and ∂1a1 = 0 as well because
y1a1 > 0 and Γ increases strictly when it takes positive values. We distinguish
two cases.
Case 1 We assume there is at least one resource a2 such that d1a2 > 0, hence
∂1a2 > 0 as well. Then we proceed exactly as in Step 1 to construct agent
2, resource a3, agent 4, etc..The only difference is that d1a1 , ∂1a1 = 0 instead
of d1a1 , ∂1a1 < 0, but each time the application of (9) involves entry 1a1 the
equality ∂1a1 = 0 is enough. And in the pattern (10) we make an exception for
∂1a1 . Then we derive the same contradiction.
Case 2 We are left with the case where d1a ≤ 0 for all a 6= a1. Because d1a1 = 0
and x1 is constant, this gives d1a = 0 for all a. This does not allow in general to
sign ∂1a if y1a = 0. But the premises of MON∗ specify y1a1 > 0 and Γ increases
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strictly when it takes positive values, therefore ∂1a1 = 0. Furthermore y1a1 < x1

implies there exists some a2 such that y1a2 > 0, therefore ∂1a2 = 0 as well. As
ra1 < r′a1 , there an agent 2 such that d2a1 > 0, and ∂2a1 > 0 as well. Apply
now (9) to 1, 2, a1, a2, to get ∂2a2 > 0 hence d2a2 ≥ 0. As x2 is constant and
d2a1 + d2a2 > 0 there is an a3 such that d2a3 , ∂2a3 < 0. Again (9) at 1, 2, a1, a3

gives ∂1a3 < 0, but as d1a3 = 0 we get y1a3 = y′1a3 = 0.
Check y2a2 > 0: indeed d2a3 < 0 gives y2a3 > 0 so y2a2 = 0 would give the

{1, 2}×{a2, a3}-submatrix of y:
[
y1a2 0

0 y2a3

]
, with the diagonal terms strictly

positive, in contradiction of statement iii) in Lemma 3. Now y2a2 , ∂2a2 > 0
imply d2a2 > 0, and in turn d1a2 + d2a2 > 0 while ra2 decreases at least weakly:
so there is an agent 3 such that d3a2 , ∂3a2 < 0. Apply (9) at 1, 3, a1, a2 and at
2, 3, a2, a3 to get respectively ∂3a1 < 0 ⇒ d3a1 ≤ 0 and ∂3a3 < 0 ⇒ d3a3 ≤ 0,
and finally d3a1 + d3a2 + d3a3 < 0 while x3 stays put. Then we can pick a4 such
that d3a4 , ∂3a4 > 0.
From then on we construct sequences 3, 4, 5, · · · , and a1, a2, a3, a4, · · · , such

that

∂kal < 0 for 3 ≤ l ≤ k, and ∂kal > 0 for 1 ≤ k < l

For instance to pick agent 4 we check first ∂1a4 , ∂2a4 > 0 by (9) at 1, 3, a1, a4

then at 2, 3, a1, a4, so that d1a4 , d2a4 ≥ 0 and d1a4 + d2a4 + d3a4 > 0. Then
as usual there is some 4 such that d4a4 , ∂4a4 < 0, and we check ∂4al < 0 for
l = 1, 2, 3, by (9) at 3, 4, al, a4. And so on. This construction cannot stop, so
we reach a contradiction.
Statement ii) If for some problem P and some entry of y = FW (P ) we have
yia = 0, then by statement ii) in Lemma 4 and the construction of Γ we get
αi + βa ≤W ′(0) which requires W ′(0) > −∞. Conversely if W ′(0) is finite, by
continuity of W ′ there is some z, 0 < z < 1, such that W ′(1)+W ′(0) > 2W ′(z).
Then in the 2× 2 problem P = ({1, 2}, {a, b}, x = (1 + z, z), r = (1 + z, z)) the

rule FW chooses
[

1 z
z 0

]
.

Statement iii) The function Γ for large values of z is as follows:
Case 1: W ′(∞) =∞, then Γ(α) is always finite and limα→∞ Γ(α) =∞
Case 2: W ′(∞) = C <∞, then limα→C Γ(α) =∞, and Γ(α) =∞ for α ≥ C
We must show that FW meets BE in case 1, but not in case 2.
In case 1 pick i, a and a sequence of problems P t = (N,A, xt, rt) as in the

premises of BE; by statement ii) of Lemma 4 there are parameters αt ∈ RN , βt ∈
RA such that ytjb = Γ(αtj+β

t
b) for all j, b and t. We can always choose α

t, βt such
that αti = βta, by adding a constant to all α

t
i and taking it away from the β

t
a. Set

λt = αti = βta. By assumption y
t
ia = Γ(2λt)→∞ as t→∞, therefore λt →∞.

For j 6= i we know that Γ(αtj + λt) is uniformly bounded in t, hence αtj → −∞;
similarly βtb → −∞ for any b 6= a: we conclude ytjb = Γ(αtj + βtb)→ Γ(−∞) = 0

for all j 6= i and b 6= a. Feasibility implies xtj−ytja =
∑
b6=a y

t
jb → 0 for all j 6= i;

then from ytia +
∑
j 6=i y

t
ja = ra we deduce ytia − (ra − xtN�i) → 0, as was to be

proved.
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In case 2 we invoke the continuity of W ′ to choose z such that

W ′(z) =
1

3
W ′(0) +

2

3
C ⇐⇒ z = Γ(

2

3
C +

1

3
W ′(0))

Then we consider the sequence P t = ({1, 2}, {a, b}, xt = (1+t, z), rt = (1+t, z))
where clearly LBt1a = (1 + t− z)+ →∞ with t, while UBt1b, UB

t
2a, UB

t
2b remain

bounded by z. In the parametrization of yt in statement ii) of Lemma 4, we
can choose αti, β

t
b respecting the symmetry of P

t, so that for some λt, µt ∈ R we
have

yt1a = Γ(2λt) ; yt1b = yt2a = Γ(λt + µt) ; yt2b = Γ(2µt)

From Γ(2λt)→∞ we get λt → 1
2C. If (yt1a − (1 + t− z))→ 0 ,as requested by

BE, then yt2b → 0 by feasibility. By construction of Γ the statement Γ(2µt)→ 0
means lim supt→∞ µt ≤ 1

2W
′(0) therefore

lim sup
t→∞
{Γ(λt + µt) + Γ(2µt)} ≤ Γ(

1

2
W ′(0) +

1

2
C)

which contradicts z = Γ(λt + µt) + Γ(2µt) for all t.�

8.4 Theorem

We only need to prove the "only if" statement. We fix an assignment rule F
meeting CSY and MON∗.

Step 1We discuss properties of the rationing rule hF associated with F , defined
after the statement of the Theorem.
We write simply h in lieu of hF from now on, and choose a parametrization

θ(xi, λ) of h as in (3). Recall λ ∈ R ∪ {−∞,+∞}, θ is continuous and weakly
increasing in λ, and θ(xi,−∞) = 0, θ(xi,∞) = xi. In particular θ(0, λ) = 0 for
all λ. Without loss of generality we assume that θ is "proper" in the sense that
the two functions θ(·, λ) and θ(·, λ′) are different if λ 6= λ′.

Self-duality of h ((4)) implies h(N, x, xN2 ) = 1
2x, therefore there is a para-

meter λ∗ such that θ(xi, λ
∗) = xi

2 for all xi. In all examples of welfarist rules in
Figures 1 to 5, we have λ∗ = 0. We will say that λ is low if λ < λ∗ and high
if λ > λ∗. For a low λ we have θ(z, λ) ≤ z

2 therefore we can have z > 0 and
θ(z, λ) = 0, but not z > 0 and θ(z, λ) = z; for a high λ the latter is possible but
not the former.
Ranking (Remark 1 Section 5) implies at once that θ(z, λ) increases weakly

in z. By self-duality xi > xj =⇒ xi − hi(N, x, t) ≥ xj − hj(N, x, t), which then
means that θ(z, λ) is weakly 1-contracting in z: z < z′ =⇒ θ(z′, λ) − θ(z, λ) ≤
z′ − z.
For a low λ we set τλ = sup{z|θ(z, λ) = 0} so that θ(z, λ) = 0 exactly on

[0, τλ] and θ(z, λ) < z for all z.
For a high λ we set τλ = sup{z|θ(z, λ) = z} so that θ(z, λ) = z exactly on

[0, τλ] (by weak 1-contraction) and θ(z, λ) > 0 for all z > 0.
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Whether λ is high or low, we say that z is λ-regular if z ∈]τλ,∞[, i.e., if
0 < θ(z, λ) < z. Note that all values are λ∗-regular, while there is no ±∞-
regular value.
For the scale invariant welfarist rules FW

q

of Lemma 2, τλ is zero if q ≤ 1

and positive otherwise: for instance FW
2

(Figure 4) has τλ = |λ|
2 , and F

W 3

(Figure 5) has τλ =
√
|λ|.

Property MON∗ applied to two-resource problems implies that t→ hi(N, x, t)
is strictly increasing whenever 0 < hi(N, x, t) < xi, for all i. This in turn
means that θ(z, λ) increases strictly in λ at λ-regular values. Suppose, on
the contrary, 0 < θ(z, λ) = θ(z, λ′) < z and λ < λ′. Because θ is proper
there is some z′ such that θ(z′, λ) < θ(z′, λ′), but then the strict monotonic-
ity of t → hi(N, x, t) is violated going from ({1, 2}, (z, z′), θ(z, λ) + θ(z′, λ)) to
({1, 2}, (z, z′), θ(z, λ′) + θ(z′, λ′)).
Ranking∗ implies similarly {xi > xj , t > 0, and hi(N, x, t) > 0} =⇒

hi(N, x, t) > hj(N, x, t). From this we see easily that θ(z, λ) increases strictly
in z whenever θ(z, λ) > 0. Apply RKG∗ to the dual of h, which is h itself, to get
{xi > xj , t < xN , and hi(N, x, t) < xi} =⇒ xi − hi(N, x, t) > xj − hj(N, x, t).
Therefore θ(z, λ) is strictly 1-contracting in z whenever θ(z, λ) < z. Gathering
our results we have shown

θ(z, λ) increases strictly in z whenever θ(z, λ) > 0, which is true for all
z > 0 if λ ≥ λ∗, and all λ-regular values if λ < λ∗

θ(z, λ) increases strictly in λ at all λ-regular values
θ(z, λ) is strictly 1-contracting in z at all λ-regular values: for all z′ ∈ R

z < z′ =⇒ 0 < θ(z′, λ)−θ(z, λ) < z′−z ; z′ < z =⇒ 0 < θ(z, λ)−θ(z′, λ) < z−z′
(11)

Fix λ and consider a pair N, x, such that |N | ≥ 2 and each xi is λ-regular.
Self duality applied to the problem (N, x, t =

∑
N θ(xi, λ)) implies there is some

λ′ such that θ(xi, λ) + θ(xi, λ
′) = xi for all i. Fix λ and take two pairs N, x,

N ′, x′ such that N,N ′ overlap but are not nested: because θ increases strictly
in λ for those values of xi, x′i, the parameter λ

′ is the same for N, x and N ′, x′;
therefore it does not depend on N, x at all. This defines the "inverse" λ−1 of λ
by the identity

θ(z, λ) + θ(z, λ−1) = z (12)

for all λ-regular values z. Moreover (λ−1)−1 = λ. In particular (λ∗)−1 = λ∗ and
∞−1 = −∞. Note that λ−1 is high if and only if λ is low and vice versa,because
θ(z, λ∗) = z

2 .
We check now τλ = τλ−1 and that (12) holds in fact for all z. Suppose λ

is low. Then (12) holds for z = τλ by CONT, and implies τλ−1 ≥ τλ. The
opposite inequality obtains by applying (12) at λ−1. Now (12) holds as well on
[0, τλ] by definition of τλ, τλ−1 .

Step 2 We define an alternative parametrization π(z, λ) of the rationing rule
h.
Keep in mind that in this step all variables are of dimension 1.
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For all z ≥ 0 and −∞ ≤ λ ≤ +∞, π(z, λ) solves the following equation in y
:

y = π(z, λ)⇔ y = θ(z + y, λ) (13)

Such a solution may not exist: for instance if λ = +∞ it boils down to y = z+y.
On the other hand for λ = −∞ we have π(z,−∞) = 0 for all zi, and θ(z, λ

∗) = z
2

implies π(z, λ∗) = z for all z, so π is well defined for λ = −∞, λ∗.
We claim that if λ is low, λ < λ∗, π(z, λ) is uniquely defined for all z. We

have 0 ≤ θ(z + 0, λ) and θ(z + y, λ) ≤ θ(z + y, λ∗) = z+y
2 ≤ y for y ≥ z, so (13)

has a solution by continuity of θ in z. Suppose z is λ-regular and (13) has two
solutions y, y′ and y < y′: then θ(z+y′, λ)−θ(z+y, λ) = y′−y, a contradiction
of the 1-contracting property (11) because z+y is still λ-regular. Now if z ≤ τλ
one solution of (13) is y = 0, and if there was another solution y′, z + y′ would
be λ-regular and the previous argument would apply. This proves the claim,
and that π(z, λ) = 0 for z ≤ τλ.
We turn to the case of a high value λ > λ∗, where two diffi culties arise. First

equation (13) has multiple solutions at z = 0 if τλ > 0 (recall θ(y, λ) = y on
[0, τλ]), and in this case we set π(0, λ) = [0, τλ]. Thus π can be multi-valued,
but only for z = 0. Indeed pick z > 0 and assume y, y′ are two solutions
of (13): both z + y and z + y′ are above τλ by definition of the latter, and
θ(z + y′, λ)− θ(z + y, λ) = y′ − y contradicts (11).

The next problem is that the equation may have no solution at all. Define
for all λ > 0

κλ = lim
x→∞

{x− θ(x, λ)} (14)

This number is positive (because θ(x, λ) ≡ x holds only if λ = +∞) and possibly
infinite. For instance κλ = ∞ for FW

2

and FW
3

on Figures 4,5 because the
slope ∂xθ(x, λ) goes to 1

2 ; but for λ positive κλ = 1
2λ for F

W 0

on Figure 1

because ∂xθ(x, λ) goes to 1, and similarly κλ = 1√
λ
for FW

−1
on Figure 2,

κλ = 1
4λ2

for FW
1
2 on Figure 3.

We claim that for a high λ equation (13) has a solution if and only if z < κλ.
Fix such a pair z, λ, and choose x such that z < x− θ(x, λ)⇐⇒ θ(z+ y, λ) < y
for y = x− z, so the “if”statement follows as above by continuity of θ in z and
0 ≤ θ(z + 0, λ). If z ≥ κλ, then x− θ(x, λ) < z for all x as x− θ(x, λ) increases
strictly. Hence y < θ(z + y, λ) for y = x − z, where y ranges over R+, and the
claim is proven.
Now for a low value λ ≤ λ∗ we have κλ =∞, so the claim is true for all λ.

To sum up, π(z, λ) is defined for all z < κλ and only there; it is then single-
valued, except possibly at zero if λ > λ∗: π(0, λ) = [0, τλ].

Moreover we have the following self-duality properties, for all λ,−∞ ≤ λ ≤
+∞:

lim
z→κλ

π(z, λ) = κλ−1 (15)

y = π(z, λ)⇔ z = π(y, λ−1) for all z < κλ (16)
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The first statement is clear for λ = ±∞. For λ ∈ R note that (12) and (14) to-
gether imply κλ−1 = limx→∞ θ(x, λ). If κλ =∞ the equality limz→∞ π(z, λ) =
limx→∞ θ(x, λ) is clear by definition of π. If κλ < ∞, then λ ≥ λ∗ and
κλ−1 =∞, so we must check limz→κλ π(z, λ) =∞. Fix an arbitrary large w > 0,
x such that x > w + κλ, and z such that x− θ(x, λ) < z < κλ. Then π(z, λ) is
well defined and θ(z + (x− z), λ) > (x− z) implying π(z, λ) > (x− z) because
θ is 1-contracting in z, and in turn π(z, λ) > w. The second statement follows
from (12) once we see that y < κλ−1 is a consequence of limz→κλ π(z, λ) = κλ−1 .
Clearly π is continuous in (z, λ) because θ is so the graph of π is closed. In

particular for λ > λ∗ the correspondence z → π(z, λ) is upper-heni continuous
at 0.
We check finally the monotonicity properties of π:
π(z, λ) increases weakly in z and λ
π(z, λ) increases strictly in z if λ ≤ λ∗ and z ≥ τλ, and if λ > λ∗

π(z, λ) increases strictly in λ if λ ≤ λ∗ and z ≥ τλ, and if λ > λ∗ and
z > 0

For the second claim fix λ ≤ λ∗, z, z′ such that τλ < z < z′, and set y =
π(z, λ), y′ = π(z′, λ). Then θ(·, λ) increases strictly from z+y to z′+y, therefore
y < θ(z′+y, λ), while y′ = θ(z′+y′, λ); so y′ = y is impossible, and y′ < y implies
that t→ t−θ(z′+t, λ) decreases from y′ to y, in contradiction of (11). Next take
λ > λ∗, z, z′ such that 0 < z < z′ < κλ, and set y = π(z, λ), y′ = π(z′, λ). We
showed in step 1 that θ(·, λ) increases strictly everywhere, moreover y, y′ > τλ
implies that θ(·, λ) is strictly 1-contracting between z + y and z′ + y′, therefore
the same argument applies. The case z = 0 < z′ is left to the reader for brevity.

For the third claim fix λ, λ′ such that λ < λ′ ≤ λ∗, z ≥ τλ ≥ τλ′ and
y = π(z, λ), y′ = π(z, λ′). As θ increases strictly in λ (shown in step 1) we have
y < θ(z + y, λ′), while y′ = θ(z + y′, λ′). Thus y′ ≤ y contradicts (11) exactly
as in the previous paragraph. For the case λ∗ ≤ λ < λ′, 0 < z < κλ′ ≤ κλ,
and y = π(z, λ), y′ = π(z, λ′), we have y > τλ, y

′ > τλ′ , so z + y is λ-regular:
therefore θ(z+ y, ·) increases strictly from λ to λ′, and the contracting property
(11) holds, so the same argument applies.
Finally π(z, λ) = 0 whenever z < τλ implies the first claim.

Step 3 The role of assumptions PE and BE.
Positive Entries implies hi(N, x, t) > 0 if xi, t > 0. This is clearly equivalent

to θ(xi, λ) > 0 when xi > 0 and λ > −∞ (recall from Step 1 that θ is a proper
parametrization). By definition of τλ, we deduce τλ = 0 for a low λ. Now
λ → λ−1 exchanges low and high values, and we showed τλ = τλ−1 at the
end of step1. So for all λ > −∞ we have τλ = 0, i.e., all positive values are
λ-regular. In particular
PE implies τλ ≡ 0 so π(z, λ) > 0 if and only if z > 0; also π(z, λ) is

single-valued , continuous, and strictly increasing in both variables everywhere
on 0 ≤ z < κλ: for low λ we have κλ =∞; for high λ, π(z, λ) is not defined for
z ≥ κλ.

Applying Bounded Entries to the sequence of assignment problems (N, (x1 +
δ, x−1), (t, xN +δ− t)) we see that h(N, (x1 +δ, x−1), t) = y → (t, 0−1) as δ goes
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to ∞. We check that this implies limx→∞ θ(x, λ) =∞ for all λ > −∞. Assume
λ is such that limx→∞ θ(x, λ) = ω < ∞ and derive a contradiction. Note first
that λ must be low. Choose w such that θ(w, λ) = 3

4ω, and x1 large enough
that it is λ-regular and x1 > w. Consider the solution (θ(x1, λ

′), θ(w, λ′)) of the
two-person problem ({1, 2}, (x1, w), t = 3

2ω): from x1 > w, θ(w, λ)+θ(w, λ) = t,
and θ(·, λ) increases strictly by λ-regularity, we deduce λ′ < λ. Thus

θ(x1, λ
′) < θ(x1, λ) < ω = t− ω

2

so that θ(w, λ′) ≥ ω
2 no matter how large x1, a contradiction of BE.

Pick now a low λ, and recall from step 2 that π(z, λ) is defined for all z. By
the very definition (13) of π, limz→∞ θ(z, λ) =∞ implies limz→∞ π(z, λ) =∞,
and by (15) this gives κλ−1 =∞, in other word π(z, λ−1) is defined for all z as
well. We have shown

BE implies κλ ≡ ∞: π(z, λ) is defined and continuous everywhere; for low
λ it is zero iff 0 ≤ z ≤ τλ and for high λ we have π(0, λ) = [0, τλ]; elsewhere
π(z, λ) strictly increases in both variables.

Step 4 We characterize the F -fairness of the matrix y ∈ RN×A+ in terms of π.
Writing the a-column of y as y[a], we prove two facts.

Fact 1: If y is F -fair and yNb > 0 for all b ∈ A ( y has no null column), then
for any a ∈ A there is a unique parameter λb ∈ R, one for each b 6= a, such
that

yib = π(yia, λb) for all i ∈ N , all b ∈ A�{a} (17)

Indeed for each b 6= a the reduced N × {a, b} matrix [y[a], y[b]] is F -fair by
CSY, therefore y[b] is just h(N, xab, rb) for the profile of demands xabi = yia +
yib. By definition of the parametrization θ, there is some λb such that yib =
θ(xabi , λb). We cannot have λb = ±∞ because no column of y is null. Thus
yib = θ(xabi , λb) ⇐⇒ yib = π(yia, λb) for all i, as claimed. Uniqueness follows if
π(z, λ) increases strictly in λ. By step 2 if this is not true we must have either
z = 0 (and λ > λ∗) or z < τλ and π(z, λ) = 0: neither case can arise because in
(17) yia is positive for some i, and yjb for some j.

System (17) is written below as y[b] = π(y[a], λb). Now we prove the converse
of Fact 1:
Fact 2: Fix a ∈ A and for each b 6= a some parameter λb ∈ R. Choose a column
y[a] such that 0 ≤ yia < minb∈A�{a} κλb for all i, and define y[b] = π(y[a], λb).
Then the matrix y = [y[a], y[b]]b∈A�a is F -fair.
Proof If y[a] = 0 the statement is trivial, so we assume without loss y[a] 6= 0.

If y[b] = 0 for some b as well we simply drop it and prove that the reduced matrix
is F -fair: by CSY augmenting a F -fair matrix by a null column maintains its
fairness. So we assume from now on y[b] 6= 0 for all b. Let x, r be the sums
of rows and columns of y, and ỹ = F (x, r). We show y = ỹ. By Fact 1
there are parameters λ̃b such that ỹ[b] = π(ỹ[a], λ̃b) for all b 6= a. Assume first
y[a] = ỹ[a]. As y and ỹ have the same column sums, this implies

∑
N π(yia, λb) =∑

N π(yia, λ̃b) for all b 6= a. If this equality holds with λb 6= λ̃b then π(yia, λb) =
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π(yia, λ̃b) for all i because π increases weakly in λ (step 2) implying y[b] = ỹ[b];

this equality is also true if λb = λ̃b so we are done.
Assume next y[a] 6= ỹ[a] and partition N as N+ = {i ∈ N |yia > ỹia} and

N− = {i ∈ N |yia ≤ ỹia}, both non empty. Set λa = λ̃a = λ∗ so that y[b] =

π(y[a], λb) and ỹ[b] = π(ỹ[a], λ̃b) hold for all b. Define A+ = {b ∈ A|λb ≥
λ̃b}, containing a, and A− = {b ∈ A|λb < λ̃b}, which could be empty. Write
dib = yib − ỹib. The monotonicity properties of π (step 2) imply dib ≤ 0 if
i ∈ N−, b ∈ A− and dib ≥ 0 if i ∈ N+, b ∈ A+; moreover dia > 0 for i ∈ N+

and a is in A+. Therefore∑
N+×A+

dib > 0 ;
∑

N−×A−
dib ≤ 0

Sum up all columns in A+∑
N+×A+

dib +
∑

N−×A+

dib = 0 =⇒
∑

N−×A+

dib < 0

then sum all rows in N−∑
N−×A−

dib +
∑

N−×A+

dib = 0 =⇒
∑

N−×A+

dib ≥ 0

a contradiction.

Step 5 We define an inner product λ ∗ µ for the parameters λ, µ ∈ R, not
necessarily distinct.
We use the equality π(π(z, λ), µ) = π(z, λ∗µ), for all z such that π(π(z, λ), µ)

is well defined. Problems can arise if z is too large, i.e., z ≥ κλ or π(z, λ) ≥ κµ,
then the expression is not defined; or if z is too small, i.e., z < τλ so π(z, λ) = 0
and π(π(z, λ), µ) is multi-valued. Our assumptions PE or BE allow us to focus
on one type of problem only.

Case 1 PE holds We claim that π(π(z, λ), µ) is well defined if and only if
z < π(κµ, λ

−1), with the convention π(z, λ) = κλ−1 if z ≥ κλ.
Supose first λ ≤ λ∗ so that π(z, λ) is well defined for all z and we only

need π(z, λ) < κµ. By (15) we have limz→∞ π(z, λ) = κλ−1 , so there are no
restrictions on z if κµ ≥ κλ−1 , just as we claim: π(κµ, λ

−1) = κλ = ∞. If on
the other hand κµ < κλ−1 , then the only restriction is π(z, λ) < κµ ⇐⇒ z <
π(κµ, λ

−1) (by (16)). Suppose next λ > λ∗, then we need z < κλ and π(z, λ) <
κµ. Now limz→κλ π(z, λ) = κλ−1 = ∞. If κµ < ∞ we have π(z, λ) < κµ ⇐⇒
z < π(κµ, λ

−1) and π(κµ, λ
−1) < limz→∞ π(z, λ−1) = κλ, proving the claim. If

κµ = ∞, we only need z < κλ, and with our convention π(κµ, λ
−1) = κλ. The

claim is proven.
Case 2 BE holds We claim that π(π(z, λ), µ) is well defined and strictly pos-
itive if z > π(τµ, λ

−1).
Recall from step 3 that π(z, λ) is well defined everywhere, single valued if

z > 0, and strictly positive if z > τλ. To ensure π(π(z, λ), µ) > 0 we need
µ ≥ λ∗ and/or π(z, λ) > τµ; by (16) the latter inequality is z > π(τµ, λ

−1).
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Defining λ ∗ µ. We fix λ, µ and set in case 1 J(λ, µ) =]0, π(κµ, λ
−1)[, while

in case 2 J(λ, µ) =]π(τµ, λ
−1),∞[. We also choose A = {a, b, c} and some N

with |N | ≥ 3. For an arbitrary profile z = (zi) ∈ J(λ, µ)N we construct the
N × {a, b, c} assignment matrix y with strictly positive entries:

yia = zi , yib = π(zi, λ) , yic = π(π(zi, λ), µ) for all i

Setting z′i = yib, and using (16), an equivalent description of the matrix is

yia = π(z′i, λ
−1) , yib = z′i , yic = π(z′i, µ) for all i

The matrix y is F -fair by Fact 2 in step 4 applied to the latter description of y.
By Fact 1 applied to the former description of y, there exists a parameter ρ such
that yic = π(yia, ρ). Thus we have π(π(zi, λ), µ) = π(zi, ρ) for all zi. Clearly ρ
is unique because π(zi, ρ) increases strictly in ρ (step 2), and in fact it does not
depend at all on the choice of the zi-s: if we take two profiles N, z and N ′, z′

such that N,N ′ overlap in at least one coordinate z1 = z′1, then π(z1, ρ) is the
same for both profiles, implying that ρ did not change. We define λ ∗µ = ρ and
we have

π(π(z, λ), µ) = π(z, λ ∗ µ) for all z ∈ J(λ, µ) (18)

The identity π(z, λ∗) = z means that λ∗ is the neutral element of this oper-
ation, and (16) implies λ ∗ λ−1 = λ∗. Note that we do not define λ ∗ µ when
one of them is ±∞.
Step 6 We show that λ ∗ µ is an associative product, and derive an additive
representation of this operation from the Associativity Functional Equation ([1],
[12]).
For any three parameters λ, µ, v, associativity follows the repeated applica-

tion of (18):

π(z, (λ∗µ)∗v) = π(π(z, (λ∗µ)), v) = π(π(π(z, λ), µ), v) = π(π(z, λ), µ∗v) = π(z, λ∗(µ∗v))

where those expressions are all well defined for z in a positive interval [0,K[
if PE holds, or in an interval ]K,∞[ if BE is true. For instance under PE
π(π(π(z, λ), µ), v) is well defined whenever π(z, λ) is well defined, and π(z, λ) <
π(κv, µ

−1), which amounts to z < κλ and z < π(π(κv, µ
−1), λ−1). We omit the

similar arguments for the other four terms, and under assumption BE.
Associativity of ∗ implies the identity (λ∗µ)∗(µ−1∗λ−1) = λ∗, i.e., (λ∗µ)−1 =

µ−1 ∗ λ−1.
We check now that (λ, µ) → λ ∗ µ is continuous and strictly increasing in

both variables. For continuity pick any two λ, µ and observe that in a small
enough neighborhood of (λ, µ), equation (18) in z holds on a non empty open
interval: under PE this is because π(κµ, λ

−1) decreases weakly in both λ and
µ; under BE the same is true of π(τµ, λ

−1). As π is strictly monotonic in both
variables by construction, the product λ ∗ µ is defined in this neighborhood of
(λ, µ) by equation (18) at a single value z: therefore the graph of (λ, µ)→ λ ∗µ
is closed by continuity of π, so this mapping is continuous at (λ, µ). By the
same argument it increases strictly in λ and µ.
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By the Associativity Theorem (section 6.2 in [1]) an associative, continuous,
and strictly monotonic product ∗ in R is represented as follows by a continuous
and strictly increasing function g on R:

λ ∗ µ = g−1(g(λ) + g(µ)) for all λ, µ ∈ R

In particular g(λ∗) = 0 is the neutral element, and λ ∗ λ−1 = λ∗ becomes
g(λ−1) = −g(λ).
Thus g is an homeomorphism of R into its range, and its range must be R:

it is an interval stable by addition and symmetry around 0. We use now the
new variable β = g(λ) to parametrize the rationing rule h: we set θ̃(z, β) =

θ(z, g−1(β)) for β ∈ R, and θ̃(z,−∞) = 0, θ̃(z,+∞) = z. The rule h is still
represented by θ̃ through property (3), and the entire discussion of steps 1 to
5, including the definition of π̃ through (13), the domain restrictions captured
by the critical parameters τ̃β = τg−1(β) , κ̃β = κg−1(β), and the regularity

properties of θ̃ and π̃, are preserved. The advantage of this parametrization is
that equation (18) takes the form

π̃(π̃(z, β), γ) = π̃(z, β + γ) for all z ∈ J(λ, µ) (19)

Now the duality operation is just β−1 = −β and β∗ = 0.

Step 7 We show that F is a W -welfarist assignment rule.
The goal is to construct the function Γ in statement ii) of Lemma 3, then

derive W from Γ = W ′−1. First we check that the range of β → π̃(1, β) over all
β for which it is defined (i.e., such that 1 < κ̃β), is R+. By continuity of θ̃, for
any ∆ > 0 there exists β such that ∆− θ̃(∆ + 1, β) = 0, because this expression
is ∆ > 0 at β = −∞ and −1 at β =∞. This equality is just ∆ = π̃(1, β). Note
that π̃(1, β) is defined for all β ≤ 0 (by step 2, e.g., π̃(1, 0) = 1) and for β <,
where C = min{β|κ̃β ≤ 1} (by step 2 π(z, λ) is defined iff z < κλ). Under BE
we have C = +∞, but this is not necessarily the case under PE.
We pick now an arbitrary problem P = (N,A, x, r) with all xi, ra > 0, and

set y = F (N,A, x, r). Fix an arbitrary a ∈ A and use Fact 1 in step 4: for
each b 6= a there is a parameter βb such that y[b] = π̃(y[a], βb). On the other
hand the argument in the previous paragraph shows that for each i there is a
parameter αi such that yia = π̃(1, αi). Combining these equations and (19)
gives yib = π̃(yia, βb) = π̃(π̃(1, αi), βb) = π̃(1, αi+βb) for all i, all b ∈ A�a. We
set βa = 0 so that we have

yib = π̃(1, αi + βb) for all i ∈ N, b ∈ A (20)

Now we define Γ from R ∪ {±∞} onto R+:

Γ(−∞) = 0 ; Γ(α) = π̃(1, α) if −∞ < α < C ; Γ(α) =∞ if α ≥ C

From the properties of π̃ in step 2 Γ is continuous and weakly increasing, strictly
so if Γ(α) > 0; also Γ(0) = 1. From the more detailed properties in step 3 we
have also

26



→ if PE holds C may be finite, and Γ is an increasing homeomorphism from
[−∞, C] into [0,∞];
→ if BE holds C =∞ and Γ(α) = 0 for all α ≤ D = max{β|β ≤ 0 and τ̃β ≥ 1}
(which could be −∞); then Γ is an increasing homeomorphism from [D,∞] into
[0,∞].
We define W ′ : [0,∞] → R to be the inverse of Γ in the following precise

sense:
for 0 < t <∞ : W ′(t) = α⇐⇒ Γ(α) = t

if PE holds: W ′(0) = −∞ and W ′(+∞) = C

if BE holds: W ′(0) = D and W ′(+∞) = +∞

so that W ′ is continous and strictly increasing.
Then (20) says precisely yia = Γ(αi + βa) for all i, a, and Γ is constructed

from W ′ exactly as in Lemma 3 section 5, therefore y = FW (P ) where W is
any primitive of W ′.�
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