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A B S T R A C T  
 

We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission 

electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, fol- 

lowed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on 

the projected density of the element in each pixel. This method is compared with one that does not include deconvolution 

(although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruc- 

tion using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which 

are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results     

in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction    

is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 

3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge 

direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate 

use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction 

algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss  EELS. 
 

 

 

1. Introduction 

 

Electron tomography (ET) is now increasingly important for recov- 

ering the three-dimensional (3D) morphology of nanostructured mate- 

rials in the physical and life sciences [1,2]. ET typically involves the 

acquisition of a set of two-dimensional projection images at different 

tilts using (scanning) transmission electron microscopy ([S]TEM), fol- 

lowed by alignment and reconstruction using established algorithms 

to reconstruct a 3D volume that represents the physical morphology 

or 3D distribution or other property of the specimen under investiga- 

tion. In principle, the methodology is independent of the nature of the 

images and is applicable to any imaging technique that fulfils the pro- 

jection requirement [3] such that the signal should change monoton- 

ically with the physical property of the sample. This condition is ap- 

proximately fulfilled for mass-thickness contrast in bright field TEM 

of amorphous biological specimens, and, to a lesser extent, high angle 

annular dark field (HAADF) STEM imaging of thin specimens. Con- 

sequently, both imaging techniques have been widely used in ET. 

Recently, ET has been performed using spectroscopic signals, in- 

cluding X-ray spectroscopy [51,52], energy-filtered TEM (EFTEM) 

[53–56], and electron energy loss spectroscopy (EELS) [6,7,57] in 
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the STEM, to achieve a chemically sensitive 3D reconstruction. Ad- 

ditionally, low-loss EELS has recently been used to allow a three-di- 

mensional reconstruction of plasmon modes on silver nanocubes [4]. 

Whilst X-rays and EFTEM mainly allow the mapping of elemen-    

tal contents, core-loss EELS offers additional possibilities for study- 

ing detailed chemistry including bonding and valence states using the 

near-edge structure. Early studies have already shown the feasibility 

of core-loss EELS-STEM tomography [5–7]. Nevertheless, EELS sig- 

nals usually contain a significant amount of multiple scattering, except 

for the thinnest specimens. This means that the background-subtracted 

core loss signal is a non-linear function of thickness, which may lead 

to reconstruction artifacts. The use of single range EELS for 3D recon- 

struction is therefore only really justifiable for datasets where all pro- 

jections have a maximum thickness of ~30% of the mean free path for 

inelastic scattering. Extending EELS tomography to thicker specimens 

requires explicit account be taken of the multiple scattering, which re- 

quires that the low loss and core loss signals are simultaneously ac- 

quired, i.e. this necessitates the use of DualEELS [8,9] for the data ac- 

quisition. The multiple scattering can be dealt with by using either de- 

convolution [10] to remove it or modeling [11,12] to take account of 

it in the quantification. This has recently been used by Haberfehlner et 

al. [13] to perform chemically sensitive 3D reconstruction of precipi- 

tates in an Al–Si alloy containing Yb. 

It should be noted that the intensity in an EELS edge is given by 

the equation: 
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            where I is the intensity for a given energy range above 

the edge, I0 is the intensity of the zero loss peak, N is the projected 

areal density of atoms in the area sampled by the beam and σ is the 

partial cross-section for the edge of interest for this energy range and 

for the electron optical parameters used in the experiment (including 

probe convergence angle, spectrometer collection angle, and primary 

beam energy). This equation is the basis of all standard EELS quantifi- 

cation routines, although strictly only applies when the spectrum is a 

single scattering distribution (i.e. no plural scattering) (see Eq. 4.62, p. 

270 in [58]). For a constant density material, N will have a linear scal- 

ing with thickness and thus, in order to achieve a truly linear relation- 

ship between integrated, background-subtracted core-less signals and 

thickness, the signal I should be normalised by the intensity present in 

the zero loss peak I0. This normalisation is implicit in the model based 

approach used by Haberfehlner et al. [13] but needs to be performed 

explicitly if deconvolution, background subtraction and numerical in- 

tegration of edge intensity is to be used to produce maps for three-di- 

mensional reconstruction. 
The present article examines the advantages of using DualEELS 

for the chemically sensitive reconstruction of vanadium carbide pre- 

cipitates on an extraction replica prepared from a vanadium microal- 

loyed high manganese steel produced as part of an EU RFCS project 

(Precipitation in High Manganese Steels). An important step in recon- 

struction is the alignment procedure. Here a feature-based alignment 

is used, based on the procedure described in Section S.1 in Supple- 

mentary material, following the initial alignment by cross-correlation. 

A new compressed sensing based algorithm called dictionary learning 

electron tomography (DLET) [26] is used for the tomographic recon- 

struction. As it is new, the reliability of the reconstruction is assessed 

by comparing the experimental reconstruction with a reconstruction 

from a simulated tomography dataset calculated from a model precip- 

itate in the shape of a perfect octahedron. Experimental data are then 

reconstructed using both DLET algorithm and the more commonly 

used simultaneous iterative reconstruction technique (SIRT). 

 
2. Methods 

 

2.1. Materials and sample preparation 

 
As a test object for study, vanadium carbide precipitates from an 

austenitic high manganese steel are used. The steel composition is 

22Mn–0.6C–0.2V–0.01N (wt%–Fe balance) and it was heat treated at 

800 °C for 3 h to produce VCx precipitates a few tens of nm in size. 

The extraction procedure started with a steel sample with a mirror-pol- 
ished surface, which was then etched with 2% Nital to reveal the 
microstructure without damaging the precipitates. Following this,    a 

30–50 nm carbon film was deposited using an Edwards E306A coat- 

ing system. Prior to removing the film from the steel, it was scored   

to provide 3 mm squares. To remove the film with the precipitates at- 

tached, the sample was immersed completely in a 20% solution of ni- 

tric acid in water. This allowed the detachment of the squared-pieces 

of carbon replicas. These were then rinsed in ethanol and finally 

picked up on copper grids for TEM examination. 

Vanadium carbide precipitates, with well-developed facets were 

observed on the replicas. Initial studies have shown that these are of- 

ten facetted on {111} planes, and that precipitates appearing approxi- 

mately octahedral in shape are commonly observed. Whilst there have 

been studies of vanadium carbide or nitride precipitation in steels us- 

ing advanced analytical scanning transmission electron microscopy 

(e.g. Epicier et al. [59] and MacKenzie et al. [60]), these are predom- 

inantly in ferritic steels where the precipitate-matrix orientation rela- 

tionship is different and consequently the morphology is different. Re- 

cently, a method for the quantitative extraction of the precipitate sig- 

nal from a steel matrix was published with application to VC in a high 

Mn steel of similar composition to that studied in this work [61]. The 

VC precipitate studied in that work seemed to approximate to a cross 

section consistent with an octahedron. 

 

2.2. Instrumentation and experiment 

 

The tomography experiment was performed on a JEOL ARM200F 

scanning transmission electron microscope equipped with a cold field 

emission gun and operated  at  200 kV.  The  probe  half-angle  was 

29 mrad, the probe current was ~400 pA and the probe diameter  was 

~1 Å. 

The acquisition of the datasets and the subsequent processing of to- 

mography data using DualEELS is summarised in Fig. 1. The EELS 

spectrum image datasets were recorded using a Gatan GIF Quantum 

ER using a fast DualEELS mode with a drift tube offset of 150 eV be- 

tween the low loss and high loss datasets. The collection half angle 

was 36 mrad. The low loss was integrated for 0.000952 s and the high 

loss for 0.019055 s (i.e. an exposure ratio of 20). The spectrum images 

were 86 pixels horizontally, but varied in the vertical direction (from 

81 to 132 pixels) in order to have sufficient pixels to cover all precip- 

itates of interest (in practice, only a smaller sub-region was used for 

the reconstruction). Each pixel was 0.99×0.99 nm and the total acqui- 

sition time for each DualEELS dataset was about 7½ min. 

The sample was held in a JEOL tomography holder which allows a 

nominal tilt range of ±80°, although in practice, we were limited to a 

range of approximately −50° to +50° because of shadowing from grid 

bars on the sample support. Spectrum images were recorded at 10° in- 

tervals in this range starting at ~−50° and finishing at ~+50°. 

 

 
 

Fig. 1. Schematic illustration of tomography using DuallEELS that has been performed in this work – the acquired spectrum-image data set at each tilt in the series is used to generate 

2D chemical maps, one for each element under investigation, and thence to reconstruct 3D chemical maps for each element. After [14]. 
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2.3. Post-acquisition procedure 

 

The low loss and high loss spectra were acquired as spectrum im- 

ages. In a recent publication, a procedure for the extraction of precip- 

itate signals from the two spectrum images was described [15]. The 

early stages of this procedure were applied in the present case: energy 

alignment, spectrum cropping, subtraction of any stray signal from the 

low loss spectrum, noise reduction using principal component analysis 

[16,17], splicing of the low loss and high loss spectra, and Fourier-log 

deconvolution to remove the multiple scattering. Following this, vana- 

dium elemental maps were extracted from each spectrum image us- 

ing background subtraction with a window from 470 to 505 eV and 

the signals were integrated using a window from 510 to 570 eV. (This 

energy range is only usable in the absence of any oxygen in the sam- 

ple, which was the case for this extraction replica). Similarly, for car- 

bon, all maps were produced using a background window from 245  

to 275 eV and a signal window from 280 to 340 eV. Finally, all maps 

were normalised by I0, the intensity of the zero loss peak, to produce 

maps that should have a linear relationship of the intensity to the pro- 

jected atomic content in each pixel. 

Fig. 2 shows HAADF-STEM images and EELS elemental maps  

of C from the datasets acquired at different tilt angles, together with  

a spliced and deconvolved EELS spectrum (on a log scale) showing 

both the low loss and core loss regions in a single spectrum from one 

pixel on a precipitate in the 0° projection. The tilt axis is vertical in 

the orientation of this figure. It may be noted that the carbon contri 

 

bution from the support is asymmetric about the 0° tilt position and is 

thicker on the −50° side. This could have occurred either because the 
carbon replica surface is locally rough, or because it is slightly buck- 

led so that the surface normal is not at 0°. Either way, it seems that the 

area investigated had a higher angle to the surface normal at −50° than 

at +50°. 

The resulting tilt sequences of projected normalised 2D elemental 

maps for C and V were then aligned to a common tilting axis and used 

as the input for the tomographic reconstruction as outlined in Fig. 1 (in 

this case for V). 

To allow demonstration of the advantages of using deconvoluted 

data, a sequence of maps was also created in the same way, but with- 

out removing the effects of multiple scattering by deconvolution, but 

still normalising by division of the edge intensity by I0. 

To obtain high-quality reconstructed results, accurate alignment is 

critical before reconstruction. Errors in image registration or align- 

ment to a common tilt axis cause artifacts in the constructed volume 

[19]. The conventional alignment approach that is commonly used in 

electron tomography depends on cross-correlation [18,19]. This ap- 

proach was not accurate in aligning our current dataset. Fig. 3(a) 

shows an XZ slice from SIRT reconstruction of a tilt series that was 

aligned using cross-correlation method. The tilt axis still suffers from 

a degree of misalignment; which causes the reconstruction to smear 

out into ’arcs’. To overcome this limitation, a feature-based align- 

ment method using contour detection and centre of gravity approach  

is adopted (see Section S.1 in Supplementary material). The experi- 

mental results in Fig. 3(b) indicate that this approach provides   accu 

 

 
 

Fig. 2. (Top Row) HAADF-STEM projection 2D image and normalised EELS elemental maps of C from the tilt series. (last Row) A Fourier-ratio deconvolved EELS spectrum 

extracted from pixel (α) in the first precipitate, displayed using a log-linear plot. 
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Fig. 3. The effect of tilt-axis misalignment on the reconstruction of a vanadium carbide precipitate. (a) XZ slice from a SIRT Reconstruction of a tilt series that was aligned using a 

standard cross-correlation method. A distinctive “arcing” artefact is observed, which is a known signature of misalignment. The curvature of this arcing is dependent on the direction 

and the magnitude of misalignment. (The interested reader is referred to Fig. 11.4 in [24] for further clarification). (b) The same slice after using the improved feature-based alignment 

procedure described in S.1 in Supplemental material. 
 

rate alignment compared to the cross-correlation method for the 

dataset in this study. 

 

2.4. Three-dimensional image reconstruction 

 

The reconstruction of 3D elemental maps was performed using 

both the well-known SIRT algorithm, as well a new compressed sens- 

ing based algorithm, DLET [25–27]. SIRT reconstructions were  per- 

formed using IMOD [21]. Determining the optimal iteration number 

in SIRT is critical and this is usually selected empirically. Large num- 

bers of iterations will produce a solution that is similar to the weighted 

back projection algorithm (which can be problematic [26,49]), while 

very small iterations will produce less accurate reconstruction and lose 

important features of the tomogram. In this work, the IMOD guideline 

was followed, which is to select an iteration number in the range 8–25. 

It was found that 15 iterations provided a visually sensible solution. 

The DLET algorithm is based on Compressed Sensing (CS)    the- 

ory [28,29] and sparse code learning [30]. Compressed sensing has 

been recently applied to ET [13,31–34] and shows promise for re- 

ducing missing wedge artefacts. The use of image sparsity, as a   pri- 

ori knowledge to enhance the accuracy of reconstruction, can reduce 

the number of projections than what is required by conventional tech- 

niques. However, most of the applications of CS to ET are based on  

a fixed sparsifying transform in which, despite its success, the re- 

construction quality can be limited. For example, total variation (TV) 

minimisation can be effective for reconstruction if the object under 

study can be described as a piecewise constant. However, many sam- 

ples can be partially sparse under TV transform and this can intro- 

duce false structures and artefacts (such as the staircase artefact in 

Fig. 20(d) in [26]). Other drawbacks of using the TV operator include 

over-smoothing of fine structures, difficulties in separating true struc- 

tures from noise, degradation of spatial resolution (which becomes es- 

pecially apparent in noisy examples) and sensitivity to reconstruction 

parameter, which is user-defined and therefore subjective. 

DLET overcomes such limitations by combining the concept of 

redundancy in CS [35] and sparsity with sparse code learning [30]. 

This makes it possible to tailor the sparsifying transform in a way that 

is adapted for specific types of training images. The result enhances 

the degree of compression and the accuracy of reconstruction. Sparse 

representation with learned transforms outperforms predefined trans- 

forms in a range of image processing applications such as de-noising, 

de-blurring and in-painting [36–38]. Furthermore, the recent work  in 

Stevens et al. [39] showed the feasibility of using the dictionary learn- 

ing-based technique to infer missing pixels in STEM images from 

scanning a random selection of just 5% of the total number of pix-   

els in the image area. In this work, the DLET parallel implementation 

was run for 20 iterations with the dictionary learning stage performed 

for 20 iterations. All implementations were executed on Matlab v7.12 

(R2013a) installed on a 64-bit Windows 7 operating system with an 

Intel Core i5 processor running at 3.10 GHz with 24 GB memory and 

a NVIDIA GPU card with 336 cores. 

 

2.5. Visualisation 

 
Following the image reconstruction step, the constructed volume 

was then segmented, to generate triangulated surfaces to be visu- 

alised. The segmentation was performed using the Otsu method [40], 

which is an automated thresholding technique to avoid subjective 

judgment. All visualisation performed here were using AMIRA  (FEI 

– Visualisation Sciences Group). Orthoslices through reconstructions 

are shown with linear mapping between the maximum and minimum 
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pixel values in each image. The missing wedge direction is paral-    

lel to the z-axis on the orthoslices which is also parallel to the op-    

tic axis. The y-axis is parallel to the tilt direction and the x-axis is 

perpendicular to both. The voxel projection visualisations of the re- 

constructed volumes were generated using the volume-rendering mod- 

ule in AMIRA with a restricted display windows and the alpha value 

(overall transparency) decreased until the density from the object(s) 

prevailed over the background. An arithmetic octahedron was fitted to 

each surface to provide a visual assessment as in Figs. 5 and 10. The 

fitting strategy was to find a transform A that applies rotations and   a 

 

uniform scale factor that minimises the root mean square distance (Eu- 

clidean measure) between the points on the segmented model surface 

to the corresponding points on the reference octahedron surface. This 

was performed using the iterative closest point algorithm (ICP) [41]. 

 

3. Simulations and experimental results 

 
A simulation study has been performed to support the investigation 

of the experimental data. 

 

 
 

Fig. 4. Simulation of 3D reconstruction of an octahedron from a tilt series of −50° to +50°: (a1–c1) volume rendering of the original object along the three principal axes of the 

octahedron, together with orthoslices taken from the central slice for each the corresponding view (on black backgrounds). (a2–c2) SIRT and (a3–c3) DLET reconstructions from 

simulated projections, together with their central orthoslices. For visualisation purposes, the image intensities of the orthoslices were enhanced. 

 

 
Fig. 5. A comparison of reconstructions of the simulated octahedron VCx using (a) SIRT and the (b) DLET algorithm showing a comparison to an idealised octahedron. Note that the 

distortion in the z (missing wedge) direction is much reduced using DLET. 
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3.1. Simulation study: reconstructions on simulated tilt series from an 

idealised octahedron 

 
Since the precipitates are expected to approximate to octahedra in 

shape, a regular octahedral precipitate was computer generated and the 

imaging process was then simulated upon these precipitates. The sim- 

ulated tilt series were obtained taking into consideration the  imaging 

process by which a value on a continuous scale of measurement is 

mapped to a discrete value. Quantising with L bit depth gives discrete 

intensity values that can be assigned. The mapping between quantised 

and detected intensity was assumed to be equal . The formula for 

the quantised intensity      at each pixel after the addition of noise is: 

conditions, such as detector resolution, bit depth and intensity. ET re-    
construction was then performed on the simulated tilt series.  

 
(1) 

 

3.1.1. Generation of simulated octahedral precipitate tilt series 

The simulated test object should have one solid component shaped 
as a regular octahedron, defined as the shape which is formed by con- 
necting all the face centres of a cube. This will have 8 faces, angles 

between edges are 90°, and angles between faces meeting at an edge 

are 70.5° and angles between sides meeting across a point are 109.5°. 

To simulate the experimental data as closely as possible, a 3D model 

(mesh model) was created using CAD software. This mesh model was 

then voxelised using the method of Patil and Ravi [42]. The voxeli- 

sation involves converting objects from continuous geometric form 

into voxels representation that best approximates the original object. 

The result is a binary 3D matrix with voxel values of logical 1 to 

represent the boundary and inside region of a 3D object of constant 

density or 0 to represent the background. This 3D matrix was spa- 

tially quantised in a way that simulates the ideal output from the de- 

tector of the STEM imaging process (i.e. each octahedron object re- 

quires a box of approximately 233 pixels to be represented in a similar 

way to the real precipitates in the experimental EELS elemental-map 

tilt series). Fig. 4(a1–c1) shows the simulated octahedron from  three 

orthogonal projections. To simulate the imaging process, the Radon 

transform for parallel-beam geometry was performed upon the sam- 

pled 3D matrix at 10° intervals from ±50° rotations. Then, shot    and 

quantisation noise were added to the simulated images. All simulation 

generation was performed using MATLAB (Mathworks Inc.), recon- 

structed using IMOD [21] and visualised using AMIRA (FEI). The 

Radon transform represents the path-length of the rays in the mater- 

ial, which was determined by taking line integrals through the sam- 

ple between the source and detector to generate the projection image 

Iout. The simulated projections were scaled to have a mean value equal 

to the mean of the EELS elemental maps, and subsequently corrupted 

by shot, Gaussian and quantisation noise to obtain a low SNR dataset. 

This should nicely approximate the signal seen by HAADF imaging 

in the STEM (which should be close to linear for low object thick- 

nesses) or EELS edge intensities, after correction for multiple scatter- 

ing and normalisation by I0 (which should be completely linear with 

thickness). 

 
3.1.2. Addition of noise and quantisation 

It was assumed that only shot and Gaussian noise are present in 

the detected intensity. The shot noise arises because the electrons ar- 

rive at the detector at random. Due to this, the number of the detected 

electrons in a time interval will vary, following Poisson statistics. The 

signal to noise ratio of the value on each pixel is equal to. A noisy 

Gaussian background of standard deviation ρ was added to the    pro- 

jections, to simulate electronic noise in the amplifier system, resulting 

in a dataset with reduced SNR. The ρ parameter was approximated to 

mimic the experimental projections. 

In any electron detecting system, there are a limited number of 

possible discrete values of electrons that can be detected. For digi-   

tal processing, the continuous intensity of detected intensity needs to 

be converted into a discrete value, (i.e. quantised). Quantisation is the 

Where P(x) returns a random value from Poisson distribution (with a 

mean and variance of x) and L is the pixel bit depth and N(x,) returns a 

random value from a Gaussian distribution with a mean of x and vari- 

ance of   . 

With the phantom images as the ground truth, the reconstructed 

simulation was assessed in terms of two commonly used metrics: Peak 

Signal-to-Noise Ratio (PSNR) [43] and Structural SIMilarity (SSIM) 

index [44]. PSNR was obtained as ratio between the signal's maximum 

powers (peak reference intensity) to the power of the signal's noise 

(root mean square of reconstruction error). The PSNR is measured in 

decibels (dB) and the higher the PSNR value, the better the quality of 

the reconstruction. Although the PSNR is a simple mathematical met- 

ric that is commonly used as a distortion metric, it usually does not 

correlate closely with perceived image quality [45]. This is why we 

have chosen to use a different, and more advanced metric, the SSIM. 

The SSIM index range between 0–100% and has been shown to be 

consistent with visual perception as can be seen in [44]. 

 
3.1.3. Simulation results 

Fig. 4(a2–c3) shows the SIRT and DLET reconstructions from the 

simulated 10 projection tilt-series of a vanadium carbide octahedron. 

As can be seen, the SIRT reconstruction clearly suffers from elonga- 

tion and boundaries blurring in the missing wedge (z) direction. Also, 

as expected, it suffers from streaking artefacts due to the limited angu- 

lar range. These artefacts are obviously reduced in the corresponding 

DLET reconstruction as can be seen in Fig. 4 (a3–c3), where it is clear 

that the DLET reconstruction has accurately recovered the simulated 

3D phantom. Also, the denoising capability of the adaptive sparsifying 

transform in DLET has produced a near uniform intensity across the 

background. It should further be noted that SIRT orthoslices falsely 

show a reduced density in the voxels in the centre of the octahedron, 

whereas the correct uniform density through the octahedron is repro- 

duced by reconstruction with the DLET algorithm. The quality metrics 

for the reconstruction (Table 1) confirm the effectiveness of the adap- 

tive sparsifying transform. 

Fig. 5 shows the result of fitting the reconstruction results from 

simulations to an idealised octahedron. The SIRT reconstruction (as 

indicated by the arrows in Fig. 5a) is elongated in the missing wedge 

(z-direction). This artefact is significantly reduced in the DLET recon- 

struction as shown in (Fig. 5b), suggesting that DLET will be much 

more effective in working with this kind of data with a significant 

missing wedge and relatively coarse angular steps. 

 
Table 1 

Quality metric values of simulation reconstruction in Fig. 4. 

Method/metric PSNR SSIM 

SIRT 16.61 29.25% 

DLET 19.51 82.26% 
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3.2. Experimental study: reconstructions on experimental maps from 

DualEELS 

 
After creating 11 different maps from the DualEELS spectrum im- 

ages of an area containing two precipitates, the 3D vanadium distri- 
bution was reconstructed using both SIRT and DLET. The resulting 
reconstruction comparison is shown in Fig. 6. Orthoslices through re- 

constructed EELS elemental maps of the VCx precipitate from the V-

L2,3 signal are shown to the top in a1-aiii for SIRT and to the bottom in 

b1-biii for DLET. As can be seen, DLET provided a reconstruc- tion 
with reduced noise and a clear separation between the precipitates and 
the background signal. This makes the segmentation step much more 
straightforward and provides high-fidelity surfaces for quanti- tative 
analysis. For comparison, a 3D reconstruction performed on  the 
HAADF signal recorded simultaneously with the collection of the 

DualEELS spectrum images is shown in Fig. 7. (a1–a3) are for SIRT 

and (a2–a3) are for DLET. The HAADF data reconstructs in a very 

similar manner to the EELS, giving confidence that the reconstruction 

is reliable. 

It is also clear that the use of DLET together with DualEELS to ac- 

curately reconstruct a signal that is a linear function of thickness has 

resulted in well-behaved orthoslices with constant density throughout 

the thickness (i.e. no cupping artefacts [46,47]), as is clearly shown in 

the line profiles in Fig. 8(c) and (d) for both the V-L2,3 maps and the 

HAADF maps. 
SIRT reconstructions in Fig. 8(a) and (b) also show absence of cup- 

ping artefacts, however, the line profiles are clearly more curved and 

it is difficult to segment the precipitate's boundaries accurately. The 

SIRT reconstruction also shows a high background noise level. The 

DLET reconstruction shows a near steady intensity across the back- 

ground. Additionally, the SIRT reconstruction of the precipitate is of 

lower contrast and lower intensity, compared to the DLET reconstruc- 

tion. This is probably due to a well-known limitation of SIRT, where 

the intensity of the reconstructed precipitates can be influenced by the 

their size [50]. 

 

For comparison, a DLET reconstruction is also shown using EELS 

maps made without deconvolution to remove the effects of plural scat- 

tering in the spectra (Fig. 8-e) together with the same profile through 

the centre of the precipitate (Fig. 8-f). In this case, even in a relatively 

thin precipitate, there is a subtle, but noticeable cupping artefact. It is 

anticipated that such artefacts would be far worse in thicker precipi- 

tates examined with EELS tomography. 

The streaking and blurring present after using SIRT is also absent 

in the DLET reconstruction. These results accord well with the simu- 

lation study, and it is clear that reconstruction using DLET has mas- 

sively outperformed SIRT for reconstruction fidelity, and the results 

are particularly impressive considering just 11 projections were used. 

This really demonstrates the usefulness of this compressed sensing ap- 

proach to 3D reconstruction of spectroscopic mapping data – such data 

is always likely to be limited in signal to noise by its very nature, since 

the total possible signal will be limited by either how much radiation 

dose can be applied to the sample before it is altered significantly or 

by the available time for data collection. 

For a further comparison of SIRT versus DLET, Fig. 9 shows sur- 

face rendered views of segmented 3D EELS elemental map fitted to 

idealised octahedra, again showing very clearly the massive z-elonga- 

tion that results from the use of SIRT, just as was predicted in our 

simulation study above. ESI Video S1 in the supplemental informa- 

tion shows 360° volume rendering views and the segmented   surface 

of the reconstructed EELS dataset. It should be noted, that whilst the 

precipitate approximates to an ideal octahedron, corners and edges are 

not as sharp as in the ideal geometric shape: this is entirely as would 

be expected since single atoms for corners or lines of single atoms for 

edges are unlikely to be thermodynamically stable, and it is likely that 

both corners and edges would be somewhat rounded to minimise sur- 

face energy. 

Supplementary material related to this article can be found online 

at doi:10.1016/j.ultramic.2016.08.004. 

With the benefit of the DLET algorithm in combination with EELS 

maps for C and V from deconvoluted data, it is therefore possible     

to produce 3D renderings of the actual structure of the carbon ex 

 

 
 

Fig. 6. Reconstructions of the Vanadium signal in VC precipitates from the experimental DualEELS tomography tilt-series. (a1–a2) 3D perspective view of reconstructions using 

SIRT. (ai–aiii) Orthogonal slices through the SIRT reconstruction were extracted respectively from (a1–a2). (b1–b2) 3D perspective view from which (bi–biii) were extracted, re- 

spectively. 
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Fig. 7. Reconstructions of Vanadium precipitates from the experimental HAADF signal recorded simultaneously with EELS dataset. (a1–a2) 3D perspective view voxel projections 

of reconstruction using SIRT, (a3) Orthogonal slice through the centre of volume in a1. (b2–b2) 3D perspective view voxel projections of reconstruction using DLET, (b3) Orthogonal 

slice through the centre of volume in b1. 

 

traction replica, as shown in Fig. 10, showing both the carbon and the 

partially embedded VC precipitates. A full 3D rendering of this is also 

shown in ESI Video S2 in the supplemental material. Perhaps unsur- 

prisingly, parts of the precipitates are encapsulated within the carbon, 

whilst other parts protrude beyond it. Moreover, the roughness of the 

carbon surface is clear, which is a reflection of the surface roughness 

of the steel that the replica was extracted from after the initial etch. 

The use of such 3D reconstructions may in future also help to better 

understand the replica extraction process. 

Supplementary material related to this article can be found online 

at doi:10.1016/j.ultramic.2016.08.004. 

 

4. Conclusion 

 

It is shown in this paper that using DualEELS to generate EELS 

maps without multiple scattering through Fourier-log deconvolution 

and normalisation by the zero loss peak intensity is important for    

the correct 3D reconstruction of the chemistry of materials using 

EELS tomography, since only after deconvolution and normalisa-  

tion is there a truly linear relationship between edge intensity and 

thickness. It is shown that not performing deconvolution can lead to 

cupping artefacts (i.e. centres of apparently lower density than the 

edges), whereas once deconvolution has been applied, these artefacts 

are absent. This use of deconvoluted EELS data for map generation 

when combined with a new compressed sensing algorithm (Dictionary 

Learning Electron Tomography – DLET), is shown in both    simula- 

tion and experiment to do an excellent job of reconstructing the 3D 

 

shape of octahedral vanadium carbide precipitates. These are shown to 

deviate slightly from pure octahedra in reality, as would be expected 

due to the thermodynamic instability of sharp edges and corners, but 

the use of the DLET algorithm was key to understanding this properly 

without distortions, since the older SIRT algorithm distorts the shape 

significantly in the missing wedge (z) direction. This then allows the 

correct 3D chemically-sensitive representation of complex inhomoge- 

neous nanostructures, such as the carbon extraction replicas of vana- 

dium carbide studied in this work. 
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Appendix A. Supplementary material 

 

Supplementary data associated with this article can be found in the 

online version at doi:10.1016/j.ultramic.2016.08.004. 
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Fig. 8. Average line profile through the region of the orthoslices between the yellow dotted lines indicated in (a) Fig. 6-ai, which is a SIRT reconstruction of EELS elemental maps 

(b) Fig. 7-a3, which is a SIRT reconstruction of HAADF tilt series. (c) Fig. 6-bi, which is a DLET reconstruction of EELS elemental maps, and (d) Fig. 7-b3, which is a DLET 

reconstruction of HAADF tilt series. Neither shows any cupping artefacts. Cupping artefacts resulting from omitting deconvolution to remove multiple scattering from the EELS 

data. (e) Orthogonal slice through the centre of the DLET 3D reconstruction from the raw normalised V-L2,3 signal (i.e. without applying deconvolution), (f) Average Line profile 

integrated vertically through the dotted area indicated in (e). 
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Fig. 9. A comparison of reconstructions of the VC precipitate from the V-L2 signal using (a) SIRT and the (b) DLET algorithm showing a comparison to an idealised octahedron. 

Note that the distortion in the Z (missing wedge) direction is much reduced using DLET. 

 

 
Fig. 10. (a) Volume rendered views of the combined volume resulted from reconstructions of Vanadium Maps and Carbon maps. (b) Surface rendered views of the segmented volume 

of (a). 
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