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Introduction
The mid- to late Holocene climate of the Southern Hemisphere 
high latitudes is characterised by an early Holocene warm period 
from 11,000 to 9500 cal. yr BP, a general cooling until 4500 cal. 
yr BP and a mid–late Holocene warm period from 4500 to 2800 
cal. yr BP or later (Bentley et al., 2009). Following this, a cooler 
period generally persisted until the present rapid regional warm-
ing of the last few decades with many regional variations (Hodg-
son et al., 2009).

The mid–late Holocene warm period in the Antarctic Peninsula 
region has been attributed to increases in solar insolation (Bentley 
et al., 2009) and changes in the meridional position of the core of 
the Southern Hemisphere Westerly Wind (SHW) belt. Understand-
ing the link between climate changes and the position and strength 
in the SHW in this region is important because changes in the 
winds can affect upwelling in the Southern Ocean, which in turn 
affects global CO2 levels (e.g. Anderson et al., 2009; Björck et al., 
2012; Hodgson and Sime, 2010; Le Quéré et al., 2010; Watson and 
Garabato, 2006). Multiple climate model simulations (Varma et al., 
2012) suggest an overall strengthening and poleward shifting trend 
in the SHW during the course of the mid- to late Holocene corre-
sponding with a cooling trend in Antarctica (Masson et al., 2000). 
However, validating the model results with reconstructions of the 

past position and intensity of the SHW still remains elusive. For 
example, Varma et al. (2012) note that proxy records from western 
Patagonia (Moreno et al., 2010) suggest a trend of increasing SHW 
strength during the past 7000 years, which is not supported by sedi-
mentological and pollen-based reconstructions of precipitation 
variability in South Patagonia (see Fletcher and Moreno, 2012; 
Lamy et al., 2010).

These studies highlight a limitation of many high-latitude pal-
aeoclimate records which show considerable variability not only in 
the timing of inferred warm and cool periods (which is further 
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compounded by low resolution age control in many studies; 
Table 1), but also in differences in the precise climate forcing 
mechanisms used to explain them. In the core belt of the SHW, the 
lack of reliable reconstructions is particularly acute because of the 
limited amount of landmasses from which palaeoclimate records 
can be obtained. These landmasses consist of the southernmost tip 
of South America and a small number of islands in the sub-Antarc-
tic region. Even at these locations, local orographic, glaciological 
and edaphic factors can overprint the regional climate signals.

Here, we present a well-dated, high-resolution pollen record of 
mid- to late Holocene vegetation and climate change from a lake 
sediment core from Fan Lake, Annenkov Island, South Georgia 
(Figure 1). The South Georgia archipelago lies in the core belt of the 
SHW, and its climate is governed by the latitudinal movement of the 
Polar Front Zone (PFZ) and the SHW (Bentley et al., 2007), which 
makes it particularly sensitive to even relatively minor climatic fluc-
tuations. Most existing palaeorecords have been taken from the 
north and northeastern side of South Georgia (Bentley et al., 2007; 
Rosqvist and Schuber, 2003), but sites off the southwest coast, such 
as Annenkov Island, are thought to be particularly responsive 
because they are not affected by active glaciation, or orographic 
influences prevalent on the northeastern sites.

The overall aims of our project were (1) to establish when 
Annenkov Island was last glaciated, (2) to assess whether the tim-
ing and extent of any periods of Holocene glacier advance were 
synchronous or offset with known phases of glacier advance on 
mainland South Georgia and (3) to test the hypothesis that Holo-
cene palaeoenvironmental change on Annenkov Island is more 
directly coupled to changes in the SHW circulation compared 
with sites elsewhere on South Georgia that are influenced by oro-
graphic effects. The first two aims are addressed further in forth-
coming papers. In this paper, our aims were to identify long-term 
regional changes in climate and vegetation and to test whether 
long-distance pollen influx at Fan Lake is related to previously 
reconstructed changes in SHW circulation.

Site and present day vegetation
South Georgia is located in the South Atlantic Ocean approxi-
mately 1300 km east–southeast of the Falklands Islands (Figure 
1). The island is ~170 km long with mountains (Allardyce Range) 
reaching up to 2000 m down the middle of the island (Bentley 
et al., 2007; Rosqvist and Schuber, 2003). Meteorological records 
from King Edward Point show well-defined summer and winter 
seasons (Barrow, 1978) on the north coast of South Georgia with 
a mean annual temperature of 2°C (Van der Putten et al., 2004) 
and a mean annual precipitation of around 1400 mm at sea level 
(Rosqvist and Schuber, 2003). South Georgia is positioned at the 
maximum northern limit of Antarctic pack ice, and over half the 
island is permanently covered in glaciers and ice fields (Bentley 
et al., 2007).

Annenkov Island (54°29′S–55°00′S, 35°30′W–38°30′W; Fig-
ure 1) is situated c. 15 km off the mid-south-west coast of South 
Georgia. Although it rises to 640 m (Olstad Peak; Figure 1c), no 
permanent snow or ice cover remains (Barrow, 1983). Fan Lake 
is one of two large permanent lakes on Annenkov Island. The 
lake is c. 430 m long, 200 m wide and located c. 90 m.a.s.l. on the 
southeastern corner of Annenkov Island (Pettigrew, 1981). The 
lake catchment consists of a shallow U-shaped valley surrounded 
by a series of ridges, which become progressively less vegetated 
with altitude (Figure 1d). There are several streams entering the 
lake, possibly changing course across the vegetated fan area 
through time. There is a small inflow through a peat land covered 
gravel delta at the western end, and at the eastern end an outflow 
stream cuts through two prominent sets of bedrock ridges and a 
landscape of hummocks and hollows filled by peat land. Petti-
grew (1981) described glacial till exposed by the outflow stream 

from Fan Lake, but from our observations, this could also be 
heavily vegetated weathered bedrock. A steep, partially vege-
tated scree slope on the northern side of the lake is composed of 
fine-grained mudstone, which outcrops on a small hill to the 
north of the fault line. A waterfall-stream also enters the lake on 
the northern edge.

Cores were extracted from the deepest point of Fan Lake 
(18 m) and from the centre of a peat land area (henceforth referred 
to as KH4; 54°29.927′S, 37°02.876′W) c. 50 m from the eastern 
outflow stream. The latter was used to better constrain the local 
deglaciation history of the site.

The vegetation in the region is dominated by sub-Antarctic 
herbs and shrubs such as Acaena spp. (Acaena magellanica, A. 
magellanica × Acaena tenera, A. tenera), Colobanthus spp. 
(Colobanthus quitensis, Colobanthus subulatus) and Callitriche 
antarctica (Greene, 1969; Greene and Walton, 1975). A. magel-
lanica herbfields are found in sheltered areas, while Colobanthus 
spp. is frequent in rock face and fellfield communities on Annen-
kov Island (Barrow, 1983). Grasslands (Poa flabellata) are abun-
dant throughout South Georgia (Barrow, 1978; Greene, 1969). 
Ferns such as Polypodium australe, Grammitis kerguelensis, 
Hymenophyllum falklandicum, Blechnum penna-marina and the 
clubmoss Lycopodium magellanicum are found in some quantity 
(Greene, 1969; Greene and Walton, 1975). Montia fontana, a wet 
flush species, Ranunculus biternatus and C. antarctica, a water-
starwort plant, are found in wetter environments on South Geor-
gia (Barrow, 1983).

One potential problem of reconstructing past vegetation on 
South Georgia is the selective preservation of pollen produced by 
some species. For example, while the flowering plants, Juncus 
(Juncus inconspicuous, Juncus scheuchzerioides) and Rostkovia 
magellanica are two of the most common native species (Greene, 
1969; Van der Putten et al., 2010), the pollen are not preserved in 
fossil assemblages (Van der Putten et al., 2004).

South Georgia experienced little or no human activity until the 
establishment of sealing and whaling stations on the north coast 
of the island during the last c. 150 years (Barrow, 1978). As a 
result of these human impacts, a number of introduced plant spe-
cies are present, but in many cases, these are restricted to the areas 
around the abandoned whaling stations (Osborne et al., 2009). 
Currently, 62 introduced species have been recorded on South 
Georgia (Osborne et al., 2009), but they are less pervasive on 
Annenkov Island because of the infrequency of human visitation. 
For some species, such as members of the Asteraceae, it remains 
unclear whether they were introduced or are native to the region 
(Birnie, 1990; Osborne et al., 2009).

Material and methods
Sedimentology and chronology
Sediment cores were extracted from Fan Lake (Figure 1d) using 
UWITEC gravity and percussion driven piston corers. Two 18-cm 
UWITEC gravity cores were extracted to recover the near-surface 
sediments from the main core site and sectioned at 0.5-cm inter-
vals, with a thick moss layer preventing deeper coring. The UWI-
TEC piston corer was deployed to extract deeper sediments in a 
series of 2-m long offset drives capturing 1.87–1.90 m of sedi-
ment with 20 cm overlaps to produce a continuous sequence down 
to 5.8 m, where drilling was stopped by a large rock or bedrock. 
The cores were photographed (visual and x-radiographic imag-
ery), macroscopically described and analysed for wet density, dry 
mass (105°C for 12 h), organic content (loss-on-ignition (LOI) at 
550°C for 2 h) and carbonate composition (LOI at 925°C for 2 h, 
multiplied by 1.36 to provide a first approximation of total car-
bonate) following standard methods (Dean, 1974). Known over-
laps, the main changes in lithology defined initially by density, 
LOI, Barington Instruments MS2G loop sensor (1 cm sensor, 10-s 
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measurement time) at 2-mm intervals with standard calibration 
procedures (Gunn and Best, 1998), were used with the position of 
visible moss layers and key lithological markers, to stack the five 
core sections into a single stratigraphic sequence and to produce a 
composite depth sequence.

Lead-210 (210Pb) and Ceasium-137 (137Cs) dating analysis was 
undertaken on the upper 11 cm of the surface core using dried and 
homogenised samples packed into a 40-mm tube to 40 mm depth 
and left to stand for at least 21 days to allow 226Ra and 214Pb to 
reach equilibrium. Samples were measured on an Ortec J-shape 
ultra-low background germanium well detector and remote pre-
amplifier. Data analysis and dating model calculations were 
undertaken following standard procedures as defined in Appleby 
(2001). 137Cs was at or below detection limits. Unsupported 210Pb 
estimates were derived from both the constant initial concentra-
tion (CIC) and constant rate of supply (CRS) method (Table S1, 
available online) (Appleby and Oldfield, 1978). CRS ages were 
used in whole core age–depth modelling.

A total of 32 samples for radiocarbon dating were taken from 
the Fan Lake core. One basal sample from the KH4 peat core was 
also dated to provide an additional constraint on the timing of 
catchment deglaciation (Table 2). Calibration of terrestrial radio-
carbon ages was carried out in OXCAL v.4.2 (Bronk Ramsey, 
2009) using the SHCal13 Southern Hemisphere atmosphere data-
set (Hogg et al., 2013). For post-bomb samples, absolute percent-
age of modern carbon (pMC) data were corrected according to 
13C/12C isotopic ratios from measured pMC, where a ‘modern’ 
pMC value is defined as 100% (ad 1950), and the ‘present day’ 
pMC value is defined as 107.5% (ad 2010), and calibrated using 
the SHCal13 SH Zone 1-2 Bomb curve in CALIBomb (Hua et al., 
2013; Reimer and Reimer, 2004). As all radiocarbon age errors 

are less than 50 years, calibrated ages are rounded to the nearest 
5 years in Table 2.

A master age–depth model was constructed using a combina-
tion of all 210Pb CRS ages and 32 radiocarbon ages in a Bayesian 
age–depth model undertaken in BACON v2.2 (Blaauw and Chris-
ten, 2011; Figure 2; Table 2). All ages quoted in text are weighted 
mean ages produced from the BACON age–depth model rounded 
to the nearest 10 years (Figure 2; Table 2).

Palynological analysis
Below 92 cm, the core was subsampled at 8-cm increments for 
pollen analysis. To capture higher resolution changes during the 
late Holocene, the uppermost ~92cm of the core was subsampled 
at 3- to 4-cm increments.

Approximately 1–2 g of sediment per sample were run through 
a 125-µm sieve after treatment with KOH and HCl. Standard 
laboratory techniques (Fægri and Iversen, 1989) including HF 
treatment and acetolysis were used to process the pollen samples. 
A Lycopodium tablet was added to calculate pollen concentrations 
(Stockmarr, 1971), and samples were mounted with silicone oil. 
Lycopodium was differentiated between the tablets (Lycopodium 
clavatum) and the species found on South Georgia (L. magellani-
cum) because of different reticula (cf. Wilce, 1972). Between 400 
and 600 pollen grains were counted per sample, with the excep-
tion of the lower portion of the core (400–587 cm), where the pol-
len influx dropped significantly. Acaena and Poaceae dominate 
the entire pollen profile with total percentages between 90% and 
98%. Barrow (1976, 1978, 1983), Markgraf and D’Antoni (1978), 
and the pollen reference collection held at Northumbria Univer-
sity was used for pollen and spore identification. Indeterminable 
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and damaged pollen grains were used as an indicator for erosion 
and fluvial sediment transport, based upon these pollen grains 
becoming indeterminable because of damage by transportation 
and sediment removal.

The Tilia program was used to produce percentage and influx 
pollen diagrams (Grimm, 1990) with pollen assemblage zones 
delimited by stratigraphically constrained cluster analysis in 
CONISS (Grimm, 1987). The significance of the zones was 
assessed using a broken-stick model in the Rioja package (Jug-
gins, 2012). The pollen sum that is used to calculate percentage 
pollen diagrams is the total of pollen, excluding fungal spores and 
pollen grains derived from long-distance transport.

Multivariate analysis of the pollen data
Principal components analyses (PCAs) of the Fan Lake pollen 
data were carried out in PRIMER 6 and PAST (Clark and Gor-
ley, 2006; Hammer et al., 2001). Rare (consistently <1%) pol-
len taxa were excluded, and remaining pollen percentages were 
normalised in PRIMER 6 (Clark and Gorley, 2006) prior to 

analysis. Confidence intervals (95%) were calculated for the 
total long-distance taxa (Ephedra, Fabaceae undiff., Myrta-
ceae, Nassauvia, Nothofagus and Podocarpaceae) using Psim-
poll version 4.26 (Bennett, 2008). Through this method, 
changes in long-distance transport from the Fan Lake record 
are shown by deviation from the overlapping confidence limits 
indicated by a mean of 1.496 or greater.

Results
Sedimentology and chronology
The 587-cm Fan Lake core lithology was divided into eight units 
(Figure 2), from a basal unit (Unit 1) composed of a clast-sup-
ported sandy matrix to the uppermost units, which consist of lami-
nated organic lake muds (Unit 7), capped by a living microbial mat 
and lake mud deposit (Unit 8; Figure 2). Between c. 587 and 
499.5 cm, Unit 1 consists of a dark grey clast-supported diamicton 
to a dark greyish brown sandy matrix with clasts. Unit 1 grades 
into Unit 2 (499.5–442 cm), which is predominantly composed of 
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17

Figure 2. (a) Age–depth model for calculation of down-core radiocarbon ages (see text) compared with visual and x-radiographic core imagery 
(taken using an ITRAX XRF core scanner; running conditions 50 kV, 50 mA, 200 ms, 100 µm measurement interval), sedimentology and grain size 
summary data for the composite Fan Lake core. X-radiographic images are negatives; hence, areas with greater relative density are grey–white 
and darker areas are more organic or, in Units 1-2, represent areas of the core where clasts were removed before scanning. Age–depth modelling 
was undertaken in BACON v2.2 (Blaauw and Christen, 2011) using all radiocarbon ages and constant rate of supply (CRS) age model 210Pb data 
(shown as white circles in c; see also Table S1, available online) using the SHCal13 calibration curve (Hogg et al., 2013) with 5-cm segments, 121 
segments in total, for 27 million iterations and with every 615th iteration selected. Initial parameters were mean accumulation rate of 20 yr cm−1, 
accumulation shape = 1.5, mem. strength = 20. When tested, mem. strength values of 10–100 gave essentially the same result, increasing confidence 
in the model parameters chosen and the reliability of the model. Calibrated age probability distributions with identification numbers are shown 
in blue. The median best-fit age plot (1-mm interval) in red is superimposed on individual BACON data runs shown as a grey shaded area. Darker 
grey areas indicate a greater density of individual age–depth model runs. The solid grey line represents the 95% confidence age limits for model 
runs. Colour versions of the core image can be viewed in the online version of this article; (b) Set up parameters for the BACON age–depth 
model; (c) Pb-210 ages (±1-sigma errors) from the CRS model which were used in the whole core age–depth model (red line and grey shading as 
described in a; (d) Sedimentation rates for the Fan Lake core calculated at 1 cm and 2 mm intervals.
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dark grey to a very dark greyish brown sandy matrix with clasts. 
Unit 3 (442–424 cm) is a fine organic lake mud, capped by Unit 4 
(424–325 cm), an interbedded, and convoluted unit of sand and 
fine lake mud. Units 5 and 6 (325–257.5 cm) are geochemically 
similar, but fine upwards from a dark greyish brown silt-rich silty-
clay into a light grey/pale yellow clay-rich silty-clay layer. Unit 7 
(257.5–0 cm) comprises finely laminated organic mud, with occa-
sional 2- to 3-cm thick sandy-silt layers. Organic carbon (mea-
sured as LOI) increases from 325 cm towards the top of the core, 
with maximum values present between 250 and 200 cm.

Reworking of older material appears to have affected some of 
the bulk ages from glacially derived sediments near the base of 
the core. Within Unit 7, reworking of ‘older’ moss layers is evi-
dent between c. 1500 and 1000 cal. yr BP. In the uppermost 50 cm 
of the core, the Bayesian age–depth model (Figure 2) favours the 
210Pb data as being a more likely scenario, given the small errors 
associated with these ages and the age reversals present in radio-
carbon data in the top 11 cm of the core. A more detailed assess-
ment of the Fan Lake sedimentology, geochemistry and 
chronology, and an assessment of the impact of meltwater events 
on the lake system, will be presented in forthcoming papers.

Palynology
Pollen grains are well preserved through the core with influx con-
tinually high between approximately 350 and 150 cm. The major 
taxa found throughout all the pollen zones are Acaena and Poa-
ceae. Pollen of Asteraceae regularly occurs throughout the entire 
Fan Lake record.

Three major pollen zones (Fan1, Fan2 and Fan3a–e) were 
defined by the stratigraphically constrained cluster analysis. Fan1, 
Fan2 and Fan3d–e were statistically significant as assessed using 
the broken-stick analysis. Other zones defined by the stratigraphi-
cally constrained cluster analysis were not significant but retained 
to aid description and interpretation of the data (Figure 3).

Pollen zone Fan1: 587–340 cm; ~7700–3790 cal. 
yr BP
Poaceae and Acaena are the dominant taxa in this zone with rela-
tive percentages of 80% and 10–20%, respectively. A slight 
increase in Colobanthus (2–3%) is found at 384 and 429 cm. Noth-
ofagus increases up to 3% at 500 and 515 cm. Callitriche and Poly-
podium are found in small quantities (<5%). Nothofagus slightly 
increases between 510 and 480 cm (Figure 3). The total pollen 
influx reaches 19,348 grains cm−2 yr−1 at 384 cm (Figure 4).

Pollen zone Fan2: 340–232 cm; ~3790–3050 cal. 
yr BP
A drop in Poaceae to 65–80% is recorded while Acaena increases 
to 10–35%. Pollen grains derived from long-distance transport 
(e.g. Ephedra, Nothofagus, Podocarpaceae) are found in small 
quantities (<1%). Colobanthus is consistently found at approxi-
mately 1% in this zone. Callitriche and Polypodium are the only 
other pollen taxa (1–2%) consistently present (Figure 3). Higher 
pollen influx (5771–13,553 grains cm−2 yr−1) is observed, along 
with higher Acaena (1493–3867 grains cm−2 yr−1) and Callitriche 
(11–65 grains cm−2 yr−1) (Figure 4).

Pollen zone Fan3: 232–0 cm; ~3050 cal. yr BP to 
present
The pollen zone is characterised by lower Acaena (5–30%) and 
higher Poaceae (70–90%) pollen percentages. Callitriche, inde-
terminable and long-distance transport pollen grains, occur 
with slightly higher percentages (0–3%) throughout this zone 
(Figure 3).

Pollen sub-zone Fan3a: 232–200 cm; ~3050–2750 
cal. yr BP
Increasing Acaena percentages (10–30%) and decreasing Poa-
ceae (70–90%) percentages occur in this zone. Callitriche, Colo-
banthus and indeterminable grains stay between 0% and 1% 
(Figure 3). Total pollen influx peaks to 13,922 grains cm−2 yr −1 in 
this zone with high Acaena (up to 4098 grains cm−2 yr−1) and Cal-
litriche (26–56 grains cm−2 yr−1) (Figure 4).

Pollen sub-zone Fan3b: 200–154 cm; ~2750–2430 
cal. yr BP
Poaceae percentages remain from 70% to 80% through this zone, 
and Acaena declines to 17–20%. At the top of this zone, a slight 
increase in Nassauvia (1–2%) is found. Callitriche and Coloban-
thus remain around 2% throughout the zone. Asteraceae (1%) and 
a number of indeterminable undifferentiated grains increase. At 
164 cm, a large spike in the unknown sphere or ovoid is observed 
(Figure 3). Pollen influx begins to drop from 18,262 to 7910 grains 
cm−2 yr−1 at the top of this zone. Callitriche increases to 85 grains 
cm−2 yr−1 (Figure 4).

Pollen sub-zone Fan3c: 154–94 cm; ~2430–1670 
cal. yr BP
Poaceae percentages are on average higher compared with zone 
Fan3d, while Acaena percentages decrease. Colobanthus and 
Callitriche make up 1% of the total pollen sum, while Polypo-
dium makes up <1%. Ranunculus (1%) first appears in this 
zone, while an increase in unknown monolete spores (2%) is 
observed. At 140 cm, a large increase in zygospores occurs, but 
overall, pollen influx continues to decline. Long-distance trans-
port from South America is represented by pollen of Ephedra, 
Fabaceae, Nothofagus and Podocarpus. A peak in Nothofagus 
and Ephedra influx of 75 grains cm−2 yr−1 is present at 131.5 cm 
(Figure 4). A high Callitriche influx of 3–75 grains cm−2 yr−1 is 
also observed.

Pollen sub-zone Fan3d: 94–33 cm; ~1670–430 cal. 
yr BP
Poaceae decreases to 70–90% of the pollen sum, whereas 
Acaena increases from 10–30%. At 92 cm, a slight increase 
(3%) is found in Callitriche, Polypodium, indeterminable and 
fungal undifferentiated spores. Callitriche is consistently higher 
in this zone (1–2%) compared with the rest of the core. Colo-
banthus and Polypodium taxa are found in small percentages 
(<5%). Blechnum (<1%) is present for the first time in this zone. 
An increase in pollen influx up to 10,011 grains cm−2 yr−1 is 
observed at 60 cm.

Pollen sub-zone Fan3e: 33–0 cm; ~430 cal. yr BP to 
recent
Poaceae percentages increase and Acaena percentage decreases in 
this zone. Monolete and trilete spores, indeterminable grains and 
fungal spores undifferentiated increase to 2%. Callitriche and 
Colobanthus remain around 1–2%. Ranunculus and Polypodium 
comprise <1% of the pollen sum. Sphagnum (<1%) is found in 
this zone for the first time. Nothofagus increases to >1% between 
20 cm and 17 cm (Figure 3).

PCA
PCA was used to investigate statistical relationships within the 
pollen dataset, which could help to identify floral assemblages 
composed of co-occurring taxa with similar environmental pref-
erences. The first and second PCA axes explain 34% of the total 
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variation. The first PCA axis explains 20% of the variance and 
clearly separates the dominant taxa Acaena and Poaceae, provid-
ing evidence that they are indicators of different environmental 
conditions (Figure 5). Although the climate of South Georgia has 
more than likely remained ‘cold’ and ‘wet’ throughout the Holo-
cene, the first PCA axis likely represents a subtle shift in the cli-
mate gradient from relatively ‘warmer’ to ‘cooler’ conditions, 
with the second PCA axis indicating a shift along a ‘drier’ to ‘wet-
ter’ gradient. The PCA separates the aquatic taxa Callitriche on 
the second PCA axis from the indeterminable (eroded) pollen 
grains, possibly indicative of ‘wetter’ environments, and long-
distance taxa (Ephedra, Nothofagus, Podocarpaceae), which are 
likely related to increasing wind transport. These interpretations 
are further confirmed by negative sample score values of the first 
and second PCA axes (Figure 6), indicating slightly warmer and 
drier environments, and positive sample scores possibly repre-
senting cooler and wetter conditions.

Confidence intervals of long-distance taxa
The 95% confidence intervals were plotted for the long-dis-
tance taxa (Figure 6) to identify significant changes in long-
distance pollen transport (a function of SHW strength) and to 
separate them from random variations inherent in the percent-
age counts (Maher, 1972). Confidence limits overlap through-
out the majority of the Fan Lake record indicating few 
significant changes in long-distance pollen transport. However, 
pollen influx of long-distance taxa such as Nothofagus and 
Ephedra is highest in zone Fan3c (Figure 4), and the highest 

percentage peaks with non-overlapping confidence intervals 
occur at 99.5 cm (c. 1745 cal. yr BP) and 20 cm (c. 226 cal. yr 
BP) during periods of potentially colder and wetter climate.

Discussion
Challenges in the interpretation of sub-Antarctic 
pollen records
Despite the treeless and phanerogam-poor sub-Antarctic vegeta-
tion (Van der Putten et al., 2012b) and the low pollen diversity, the 
Fan Lake record shows interpretable changes in the major pollen 
taxa (i.e. Acaena and Poaceae) and the occurrence of environmen-
tal indicator taxa (e.g. Callitriche, indeterminable) that can be 
used, along with sedimentological evidence, to constrain mid- to 
late Holocene climate changes.

Changes in the relative abundance of pollen from C. antarc-
tica can be used as indicators of wetter climatic conditions (Bar-
row, 1983). Long-distance pollen grain influx from the South 
American continent also provides evidence for increased pollen 
transport by the SHW (Schalke and Van Zinderen Bakker, 1971). 
The reliable identification of warmer and colder climate periods 
in the Fan Lake record remains challenging, and the alternating 
dominance of Acaena and Poaceae is difficult to interpret. Within 
the genus, A. magellanica is currently the dominant taxon on 
South Georgia and prefers lowland environments on moist peat or 
dry scree, while A. tenera inhabits high altitude areas (Walton, 
1976). The two species could not be differentiated in the pollen 
records. However, it is most likely that at Fan Lake, the pollen 
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Figure 5. PCA of the Fan Lake pollen data showing the scores for the main pollen types (Acaena, Asteraceae, Callitriche, Colobanthus, Ephedra, 
indeterminable, Nassauvia, Nothofagus, Podocarpaceae, Poaceae, Polypodium, unknown cyst and Zygospore) on the first two principal components. 
Based on the ecological preferences of these taxa the first axis is interpreted as being related to temperature and the second to precipitation.
PCA: principal components analysis.

 at Glasgow University Library on August 3, 2016hol.sagepub.comDownloaded from 

http://hol.sagepub.com/


Strother et al. 275

was produced by the more abundant species A. magellanica that 
populated the peat around the lake during the Holocene.

The Fan Lake record shows a significant change at c. 2750 cal. 
yr BP from an Acaena- to a more Poaceae-dominated pollen 
assemblage. The timing of this change is broadly coincident with 
late Holocene cooling events identified by many other palaeoen-
vironmental studies from the sub-Antarctic islands (Table 1; e.g. 
Bentley et al., 2009; Unkel et al., 2010). Barrow and Lewis Smith 
(1983) also concluded from a pollen record from Sphagnum Val-
ley, South Georgia, that high Acaena pollen percentages may 
indicate warmer or drier, and high Poaceae percentages cooler or 
cool-wetter climates. High Acaena percentages in Holocene pol-
len records have also been used on the Kerguelen Islands and 
Marion Island to identify warmer and drier climates, respectively 
(Scott and Hall, 1983; Young and Schofield, 1973). Despite these 
previous studies, we still treat the interpretation of Acaena and 
Poaceae with caution because in the South Indian Ocean sector, 
Van der Putten et al. (2010) could not demonstrate a relationship 
between the occurrence of A. magellanica and warmer climates. 
We therefore consider other proxies such as organic carbon and 
sedimentological evidence in addition to Acaena and Poaceae to 
support our palaeoclimate interpretations.

Local lake environments
During the mid-Holocene, Fan Lake was surrounded by sub-
Antarctic vegetation mainly consisting of small shrubs and 
herbs, such as Acaena, Asteraceae, Callitriche and Coloban-
thus. The presence of Asteraceae is in agreement with findings 

from Lake Maiviken, South Georgia (Birnie, 1990). Osborne 
et al. (2009) considered this family as introduced, but we agree 
with Birnie (1990) in that Asteraceae might be native to South 
Georgia. The lithology between ~7700 and 3790 cal. yr BP is 
characterised by poorly sorted sediment such as clast-sup-
ported diamicton, a sandy matrix with clasts and sand along 
with the presence of indeterminable, eroded pollen grains 
which point to fast flowing waters, erosion and persistent gla-
cial activity in the mid–upper catchment. Increasing tempera-
tures at the beginning of the Holocene probably caused local 
glacier retreat and increased meltwater input into Fan Lake. 
Minor and fluctuating increases of Colobanthus between 7590 
and 3950 cal. yr BP might indicate short drier periods with 
reduced precipitation or reduced periods of meltwater input, as 
this small sub-Antarctic shrub today inhabits drier environ-
ments (Convey et al., 1999).

A peak in indeterminable grains, fern and fungal spores at 
~3860 cal. yr BP suggests a relatively short disturbance and soil 
erosion, which coincides with an influx of coarse sand and some 
of the highest sedimentation rates (0.2–0.4 cm/yr) in the core 
(Figure 2). The subsequent decrease in the percentage of indeter-
minable grains at ~3790 cal. yr BP could indicate a slow progres-
sion towards a less glaciated mid–upper catchment and may 
coincide with the onset of a late Holocene ‘climate optimum’. A 
strong increase in pollen influx and organic carbon suggests 
higher catchment biomass within lake production between ~3230 
and 2710 cal. yr BP. A warmer-than-present environment is 
inferred from an increase in Acaena around Fan Lake, probably 
predominantly residing in the lower altitude moist peat areas.
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From c. 2750 cal. yr BP (Pollen sub-zone Fan3b), several 
changes in the Fan Lake pollen and sediment record indicate the 
progression towards a cooler and wetter environment in the late 
Holocene. A sharp drop in total pollen influx suggests decreasing 
plant biomass. The contemporaneous slight increase in sediment 
grain size in pollen zone Fan3b along with an increase in indeter-
minable and eroded pollen grains suggest higher sediment and 
water inputs possibly from seasonal melting of snowfields in the 
catchment. Coinciding with this drop in total pollen influx is an 
increase in Callitriche, suggesting a generally wetter environment 
from 2750 cal. yr BP onwards. The water-starwort Callitriche, 
which today colonises moist habitats on South Georgia (Convey 
et al., 1999), possibly grew in the lower catchment areas of the 
Holocene Fan Lake where water may have collected in the bogs. 
The regular flooding might have also caused a general decline in 
Acaena, which formerly occupied these habitats. Further evi-
dence suggesting a changing lake environment includes the 
increase in percentages of unknown spheres or ovoids, and the 
zygospores, which peak at ~2495 and ~ 2260 cal. yr BP, respec-
tively. The origin of both palynomorphs is unknown. However, it 
is likely that they have been produced within the lake (e.g. by 
algae), possibly indicating a rapid change in lake ecology.

Two colder/wetter periods can be identified between c. 2750–
1670 and c. 710 cal. yr BP to present if we assume that Acaena–
Poaceae ratio can be applied to reconstruct temperature and/or 
precipitation changes (see discussion above). Although a slight 
trend towards an increase in organic content is observed from c. 
710 cal. yr BP to present, a greater influx of Callitriche and a low 
total pollen influx suggest cooler and wetter conditions towards 
the present. The interpretation of warmer/drier environmental 
conditions between c. 1670–710 cal. yr BP is supported by higher 
Acaena pollen percentages and a contemporaneous increase in 
pollen influx and organic content (Figures 3 and 6).

Long-distance signal
Long-distance pollen grains from the South American continent 
are regularly present in the Fan Lake record. Changes in the abun-
dance of the long-distance grains can aid in determining latitudinal 
shifts or changes in the intensity of the SHW (Bentley et al., 2009; 
Markgraf et al., 2003; Moreno et al., 2009). The long-distance sig-
nal is dominated by pollen from the southern beech Nothofagus, 
the conifer Podocarpus and the shrub Ephedra. Nothofagus and 
Podocarpus are today abundant forest trees in temperate and warm 
temperate climate zones of South America (Veblen et al., 1995, 
1996) but also colonise as shrubs, together with Nassauvia and 
Ephedra, the sub-Antarctic vegetation of southern South America, 
for example, southern Patagonia and Tierra del Fuego (Björck 
et al., 2012; Markgraf et al., 2007; Montade et al., 2012). Because 
of the wide climate tolerance of these taxa, Holocene climate vari-
ability and a subsequent shift of vegetation zones in southern 
South America are unlikely to have a major impact on the total 
influx of long-distance pollen grains on South Georgia.

The Fan Lake record shows slight increases in long-distance 
pollen influx throughout the late Holocene cooling after 2430 cal. 
yr BP. Small peaks are present between approximately 2210 and 
1670 cal. yr BP (Figure 4). The highest abundance of long-dis-
tance pollen occurs during the inferred cooler and wetter periods 
on Annenkov Island. Ephedra and Nothofagus comprise the 
majority of the long-distance signal, suggesting that the pollen 
grains have been transported from the southernmost, sub-Antarc-
tic vegetation of South America (rather than from the Podocar-
pus- and Nothofagus-rich cool temperate rainforests).

Climate change
The Fan Lake record provides evidence of warmer conditions 
in the mid- to late Holocene, which culminates in a period of 

comparatively higher biomass production between 3790 and 
2750 cal. yr BP. With a subsequent gradual change towards 
slightly cooler and wetter environments after c. 2750 cal. yr BP, 
the pollen-based climate reconstruction from the Fan Lake 
record broadly agrees with other South Georgia, Antarctic Pen-
insula, maritime- and sub-Antarctic records (see Table 1; e.g. 
Bentley et al., 2009; Unkel et al., 2010).

Previous records from the north coast of South Georgia sug-
gest several cooling and drying events during the mid- to late 
Holocene, but no strong signal of these changes are present on 
Annenkov Island. For example, from grey scale density, weight-
loss-on-ignition and grain size analyses, Rosqvist and Schuber 
(2003) reconstructed cooler periods between 7800 and 7400 cal. 
yr BP, 7200 and 7000 cal. yr BP, 5200 and 4400 cal. yr BP and 
2400 and 1600 cal. yr BP. The slight increases in the pollen per-
centages of the cushion plant Colobanthus might indicate short 
dry events around 7590–3950 cal. yr BP, which roughly coincide 
with dry periods previously identified by Van der Putten et al. 
(2004, 2009) through macrofossil analyses at Tønsberg Point 
(8800–8200 cal. yr BP) and Kanin Point (4400–3400 cal. yr BP) 
on the north coast of South Georgia.

Rosqvist and Schuber (2003) indicate cooling on South Geor-
gia between 2400 and 1600 cal. yr BP based on glacial advances, 
although the accuracy of these dates have been questioned (More-
ton et al., 2004). The interpretation of a late Holocene climate 
change at Fan Lake is also supported by lake sediment studies on 
South Georgia (Lake Maiviken), which suggest the onset of wet-
ter conditions at c. 2750 cal. yr BP (Birnie, 1990). However, 
recent macrofossil studies from Kanin Point and Tønsberg are 
more contradictory (Van der Putten et al., 2009). While Tønsberg 
assemblages suggest a change from wet to extremely wet condi-
tions at 2200 cal. yr BP, Kanin Point seems to have developed 
from a wet to a dry peat bank environment (Van der Putten et al., 
2009). Since the Tønsberg sequence was located in a depression, 
it was more likely affected by higher precipitation. In contrast, the 
Kanin Point vegetation responded to a decrease in temperature 
allowing a Warnstorfia bog to be introduced by Chorisodontium 
aciphyllum and Polytrichum cf. strictum, indicating wetter envi-
ronments (Van der Putten et al., 2009). Various lake sediments, 
pollen and macrofossil proxy data also suggest a cooler period on 
South Georgia that started at c. 2200 cal. yr BP (Clapperton et al., 
1989; Van der Putten et al., 2009, 2012a).

Various sub- and maritime-Antarctic islands and Antarctic 
Peninsula records closely resemble Fan Lake in showing a late 
Holocene ‘climate optimum’, late Holocene cooling and a possi-
ble warming overlapping with the ‘Medieval Climate Anomaly’ 
(‘MCA’) (Table 1). At Fan Lake, the warm and stable lake condi-
tions inferred between 3790 and 2750 cal. yr BP overlap with the 
late Holocene ‘climate optimum’ from c. 3500 to 1150 cal. yr BP 
on maritime-Antarctic Signy Island, at 850 km distance (Hodgson 
and Convey, 2005; Jones et al., 2000). Similar to Fan Lake, mul-
tiple lake sediment records from Signy Island suggest a late Holo-
cene ‘climate optimum’ through LOI and pollen concentration 
data. This interpretation also coincides with the late Holocene 
Hypsithermal in the Beak 1 Lake record between 3169 and 2120 
cal. yr BP from Beak Island in the Prince Gustav Channel, NE 
Antarctic Peninsula, as indicated by an increase in sediment accu-
mulation and a peak in organic carbon, along with increased pri-
mary production (Sterken et al., 2012). Other examples of a 
climate optimum starting at around the mid–late Holocene bound-
ary (4200 yr BP), or in the first part of the late Holocene, are 
described by Bentley et al. (2009) and Hodgson et al. (2009).

From 2710 cal. yr BP onwards, the decline in pollen influx in 
the Fan Lake record indicates a change towards a generally cooler 
and wetter climate, which persisted until today. With several inter-
bedded warm and cold periods, the climate on Annenkov Island 
has been very variable throughout the last 2700 years. The major-
ity of research in the sub-Antarctic puts the start of cooling in the 
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late Holocene at c. 2500 cal. yr BP, but uncertainty still remains as 
to the exact timing (Bentley et al., 2009; see also Table 1).

At the end of the late Holocene, increased Acaena pollen per-
centages, high pollen influx and increased organic flux suggest 
the existence of a relatively warmer period at Fan Lake which was 
centred around 1670–710 cal. yr BP. The signature of this 
extended period of late Holocene warming has been detected at 
several Antarctic Peninsula (e.g. Bentley et al., 2009) and South 
American locations (e.g. Kastner et al., 2010; Mauquoy et al., 
2004; Neukom et al., 2010) and overlaps with the timing of both 
the earlier Northern and later Southern Hemisphere expression of 
a ‘MCA’ (Neukom et al., 2014). The effects of the ‘MCA’ have 
been reported in both hemispheres, but the timing of these events 
varies widely (Bird et al., 2011; Ledru et al., 2013; Neukom et al., 
2010). This led Neukom et al. (2014) to conclude that there is no 
empirical support for a globally coherent warm phase during the 
pre-industrial (ad 1000–1850) era.

SHW and climate changes
The influx of non-native long-distance transported pollen grains 
in fossil records from the sub-Antarctic islands is primarily con-
trolled by wind strength and the latitudinal position of the SHW 
and is therefore indicative of changes in atmospheric circulation 
patterns (e.g. Van der Putten et al., 2012b). Climate models and 
observational data suggest that during cold periods, the SHW 
shifts towards the equator, whereas during warmer phases (such 
as today), the movement is polewards (Bentley et al., 2009; Lamy 
et al., 2001; Toggweiler et al., 2006; Varma et al., 2012). How-
ever, how latitudinal shifts of wind belts affected precipitation 
and wind strength in the sub-Antarctic region (at c. 50°S) and 
whether these wind belts contracted or expanded throughout the 
Holocene remains debated (Hodgson and Sime, 2010).

Multi-proxy studies on lake sediment cores in SW Patagonia 
and Chile show increased wind strength along with increases in 
precipitation during cooler periods in the late Holocene, such as 
the ‘Little Ice Age’ (‘LIA’), 400–150 cal. yr BP (Bentley et al., 
2009; Moy et al., 2008). Increased wind strength and precipitation 
associated with the SHW could have caused the expansion of 
Nothofagus-dominated woodlands in SW Patagonia and Tierra 
del Fuego in the late Holocene (Moreno et al., 2009; Moy et al., 
2011). However, during the mid-Holocene, Lamy et al. (2001) 
suggested poleward westerly wind shifts occurred in phase with 
warmer temperatures, changing to an anti-phased relationship in 
the late Holocene. As a result of this anti-phasing between the 
core and the northern margin, the core SHW belt became stronger 
during the early Holocene and weaker during the late Holocene 
(Lamy et al., 2010).

In contrast, the pollen record from Fan Lake situated at c. 54°S 
provides evidence of a strengthening of the SHW during the late 
Holocene. Although the overall number of grains per sample and 
the percentage variations are relatively low, the Fan Lake record 
suggests that highest transport by westerly winds occurred during 
late Holocene cold periods at 2210–1670 cal. yr BP and after 710 
cal. yr BP.

Conclusion
Most existing palaeoenvironmental records from the Antarctic 
and sub-Antarctic islands broadly identify a trend from a warm 
period in the beginning of the late Holocene followed by a pro-
longed cooling phase, but several uncertainties remain in defining 
the timing and underlying drivers for these past changes.

The well-dated, 5.8 m-long sediment record from Fan Lake on 
Annenkov Island, near South Georgia, was used to reconstruct the 
Holocene vegetation and climate history of the South Atlantic 
sector of the Southern Ocean at a high temporal resolution. We 

identified three key phases in the pollen record from Fan Lake: 
(1) a warm late Holocene ‘climate optimum’ from c. 3790 to 2750 
cal. yr BP, with stable, but low, in-lake productivity and high bio-
mass production; (2) a step-change after 2750 cal. yr BP toward 
cooler and wetter environmental conditions, as indicated by a 
decline in Acaena pollen, a rise of the aquatic plant Callitriche 
and an increase in indeterminable, eroded pollen grains; (3) a 
return to slightly warmer conditions between 1670 and 710 cal. yr 
BP, overlapping with some warm events associated with a ‘MCA’ 
in the Northern and Southern Hemispheres.

The presence of long-distance transport pollen grains in the 
Fan Lake record was used to reconstruct changes in atmospheric 
circulation patterns. Although the overall number of long-distance 
transport pollen grains in the Fan Lake record was comparatively 
low, the pollen record suggests a link between cold periods and 
stronger SHW in the late Holocene at this location.

Further studies are needed to better understand the history of the 
SHW and their impact on Holocene climate change. We suggest that 
future research should focus on coring sites on the west coasts of 
sub-Antarctic islands, close enough to the continental landmasses to 
show a distinct signal of long-distance pollen grain transport.
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